Basic Concepts of Quantitative Genetics

  • Shizhong Xu
Chapter

Abstract

Quantitative genetics is a special branch of genetics, which is concerned with the inheritance of the differences between individuals that are measured in degree rather than in kind. These individual differences are referred to as quantitative differences orquantitative traits. Formally, a quantitative trait is defined as a trait whose value varies continuously across individuals (Falconer and Mackay 1996; Lynch and Walsh 1998). The phenotype of a quantitative trait measured from an individual is not determined by genes alone; it is also determined by environmental variants. The proportion of the phenotypic variance explained by the segregation of a single gene is usually small. However, the contribution of all these small-effect genes collectively is significant to the variation of the phenotype. Genes controlling the variation of a quantitative trait are calledquantitative trait loci (QTL). Note that the term QTL defined in this book is used for both the singular and plural forms, e.g., one QTL for weight and two QTL for height. In the quantitative genetics literature, QTL represents the singular form and QTLs is used as the plural form. No matter how small a QTL is, it segregates just like a regularMendelian locus. For small-effect QTL, we simply cannot observe the segregation and must resort to statistical methods to infer the segregation. Most statistical methods applied in quantitative genetics require specific genetic models, which will be the focus of this chapter.

References

  1. Abdi H (2007) Bonferroni and Šidák corrections for multiple comparisons. Encyclopedia of Measurement and Statistics. Sage, Thousand Oaks, CaliforniaGoogle Scholar
  2. Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Human Genet 62(5):1198–1211CrossRefGoogle Scholar
  3. Amos CI (1994) Robust variance-components approach for assessing genetic linkage in pedigrees. Am J Human Genet 54(3):535–543Google Scholar
  4. Baldi P, Long AD (2001) A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17(6):509–519PubMedCrossRefGoogle Scholar
  5. Banerjee S, Yandell BS, Yi N (2008) Bayesian quantitative trait loci mapping for multiple traits. Genetics 179(4):2275–2289PubMedCrossRefGoogle Scholar
  6. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate – a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B (Stat Methodol) 57(1):289–300Google Scholar
  7. Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW (2004) Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Nat Acad Sci USA 101(7):2173–2178PubMedCrossRefGoogle Scholar
  8. Bottolo L, Petretto E, Blankenberg S, Cambien F, Cook SA, Tiret L, Richardson S (2011) Bayesian detection of expression quantitative trait loci hot-spots. Genetics 189(4):1449–1459PubMedCrossRefGoogle Scholar
  9. Bottolo L, Richardson S (2010) Evolutionary stochastic search for Bayesian model exploration. Bayesian Anal 5(3):583–618CrossRefGoogle Scholar
  10. Box GEP, Cox DR (1964) An analysis of transformations. J Roy Stat Soc Ser B (Stat Methodol) 26(2):211–252Google Scholar
  11. Box GEP, Tiao GC (1973) Bayesian inference in statistical analysis. Wiley, New YorkGoogle Scholar
  12. Brem RB, Yvert G, Clinton R, Kruglyak L (2002) Genetic dissection of transcriptional regulation in budding yeast. Science 296(5568):752–755PubMedCrossRefGoogle Scholar
  13. Broman KW, Speed TP (2002) A model selection approach for the identification of quantitative trait loci in experimental crosses. J Roy Stat Soc Ser B (Stat Methodol) 64(4):641–656CrossRefGoogle Scholar
  14. Cai X, Huang A, Xu S (2011) Fast empirical Bayesian LASSO for multiple quantitative trait locus mapping. BMC Bioinformatics 12(1):211PubMedCrossRefGoogle Scholar
  15. Che X, Xu S (2010) Significance test and genome selection in Bayesian shrinkage analysis. Int J Plant Genomics 2010:doi:10.1155/2010/893206Google Scholar
  16. Chen M, Presting G, Barbazuk WB, Goicoechea JL, Blackmon, B, Fang G, Ki H, Frisch D, Yu Y, Sun S, Higingbottom S, Phimphilai J, Phimphilai D, Thurmond S, Gaudette B, Li P, Liu J, Hatfield J, Main D, Farrar K, Henderson C, Barnett L, Costa R, Williams B, Walser S, Atkins M, Hall C, Budiman MA, Tomkins JP, Luo M, Bancroft I, Salse J, Regad F, Mohapatra T, Singh NK, Tyagi AK, Soderlund C, Dean RA, Wing RA (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14(3):537–545PubMedCrossRefGoogle Scholar
  17. Cheung VG, Spielman RS (2002) The genetics of variation in gene expression. Nat Genet 32(Supp):522–525Google Scholar
  18. Chun H, Keles S (2009) Expression quantitative trait loci mapping with multivariate sparse partial least squares regression. Genetics 182(1):79–90PubMedCrossRefGoogle Scholar
  19. Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138(3):963–971PubMedGoogle Scholar
  20. Civardi L, Xia Y, Edwards EJ, Schnable PS, Nikolau BJ (1994) The relationship between genetic and physical distances in the cloned al-h2 interval of the Zea mays L. genome. Proc Nat Acad Sci USA 91(17):8268–8272Google Scholar
  21. Cohen AC (1991) Truncated and censored samples:theory and applications, vol 119 of Statistics: textbooks and monographs, 1st edn. Marcel Dekker Inc., New YorkGoogle Scholar
  22. Cookson W, Liang L, Abecasis G, Moffatt M, Lathrop M (2009) Mapping complex disease traits with global gene expression. Nat Rev Genet 10(3):184–194PubMedCrossRefGoogle Scholar
  23. Cullinan WE, Herman JP, Battaglia DF, Akil H, Watson SJ (1995) Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience 64(2): 477–505PubMedCrossRefGoogle Scholar
  24. Dagliyan O, Uney-Yuksektepe F, Kavakli IH, Turkay M (2011) Optimization based tumor classification from microarray gene expression data. Publ Libr Sci One 6(2):e14579Google Scholar
  25. de Boor C (1978) A practical guide to splines. Springer, New YorkCrossRefGoogle Scholar
  26. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc Ser B (Stat Methodol) 39(1):1–38Google Scholar
  27. Dou B, Hou B, Xu H, Lou X, Chi X, Yang J, Wang F, Ni Z, Sun Q (2009) Efficient mapping of a female sterile gene in wheat (Triticum aestivum l.). Genet Res 91(05):337–343Google Scholar
  28. Dunn OJ (1961) Multiple comparisons among means. J Am Stat Assoc 56(293):52–64CrossRefGoogle Scholar
  29. Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7(1):1–26CrossRefGoogle Scholar
  30. Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann Stat 32(2):407–499CrossRefGoogle Scholar
  31. Efron B, Tibshirani R, Storey JD, Tusher V (2001) Empirical Bayes analysis of a microarray experiment. J Am Stat Assoc 96(456):1151–1160CrossRefGoogle Scholar
  32. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Nat Acad Sci USA 95(25):14863–14868PubMedCrossRefGoogle Scholar
  33. Elston RC, Steward J (1971) A general model for the genetic analysis of pedigree data. Hum Hered 21(6):523–542PubMedCrossRefGoogle Scholar
  34. Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J, Carlson S, Helgason A, Walters GB, Gunnarsdottir S, Mouy M, Steinthorsdottir V, Eiriksdottir GH, Bjornsdottir G, Reynisdottir I, Gudbjartsson D, Helgadottir A, Jonasdottir A, Styrkarsdottir U, Gretarsdottir S, Magnusson KP, Stefansson H, Fossdal R, Kristjansson K, Gislason HG, Stefansson T, Leifsson BG, Thorsteinsdottir U, Lamb JR, Gulcher JR, Reitman ML, Kong A, Schadt EE, Stefansson K (2008) Genetics of gene expression and its effect on disease. Nature 452:423–428PubMedCrossRefGoogle Scholar
  35. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman Group Ltd., LondonGoogle Scholar
  36. Feenstra B, Skovgaard IM, Broman KW (2006) Mapping quantitative trait loci by an extension of the Haley-Knott regression method using estimating equations. Genetics 173(4):2269–2282PubMedCrossRefGoogle Scholar
  37. Felsenstein J (1981a) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376PubMedCrossRefGoogle Scholar
  38. Felsenstein J (1981b) Evolutionary trees from gene frequencies and quantitative characters: finding maximum likelihood estimates. Evolution 35(6):1229–1242CrossRefGoogle Scholar
  39. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791CrossRefGoogle Scholar
  40. Fisher RA (1946) A system of scoring linkage data, with special reference to the pied factors in mice. Am Nat 80(794):568–578PubMedCrossRefGoogle Scholar
  41. Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 97(458):611–631CrossRefGoogle Scholar
  42. Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Software 33(1):1–22Google Scholar
  43. Fu YB, Ritland K (1994) On estimating the linkage of marker genes to viability genes controlling inbreeding depression. Theoret Appl Genet 88(8):925–932CrossRefGoogle Scholar
  44. Fulker DW, Cardon LR (1994) A sib-pair approach to interval mapping of quantitative trait loci. Am J Hum Genet 54(6):1092–1103PubMedGoogle Scholar
  45. Gelfand AE, Hills SE, Racine-Poon A, Smith AFM (1990) Illustration of Bayesian inference in normal data models using Gibbs sampling. J Am Stat Assoc 85(412):972–985CrossRefGoogle Scholar
  46. Gelman A (2005) Analysis of variance – why it is more important than ever. Ann Stat 33(1):1–53CrossRefGoogle Scholar
  47. Gelman A (2006) Prior distributions for variance parameters in hierarchical models (Comment on article by Browne and Draper). Bayesian Anal 1(3):515–533Google Scholar
  48. Gelman A, Jakulin A, Pittau MG, Su YS (2008) A weakly informative default prior distribution for logistic and other regression models. Ann Appl Stat 2(4):1360–1383CrossRefGoogle Scholar
  49. Geman S, Geman D (1984) Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell PAMI-6(6):721–741CrossRefGoogle Scholar
  50. George EI, McCulloch RE (1993) Variable selection via Gibbs sampling. J Am Stat Assoc 88(423):881–889CrossRefGoogle Scholar
  51. George EI, McCulloch RE (1997) Approaches for Bayesian variable selection. Statistica Sinica 7:339–373Google Scholar
  52. Ghosh D, Chinnaiyan AM (2002) Mixture modelling of gene expression data from microarray experiments. Bioinformatics 18(2):275–286PubMedCrossRefGoogle Scholar
  53. Gilks WR, Richardson S, Spiegelhalter DJ (1996) Markov chain Monte Carlo in practice. Chapman and Hall/CRC, LondonGoogle Scholar
  54. Glonek G, Solomon P (2004) Factorial and time course designs for cDNA microarray experiments. Biostatistics 5(1):89–111PubMedCrossRefGoogle Scholar
  55. Goldgar DE (1990) Multipoint analysis of human quantitative genetic variation. Am J Hum Genet 47(6):957–967PubMedGoogle Scholar
  56. Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  57. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439):531–537PubMedCrossRefGoogle Scholar
  58. Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82(4):711–732CrossRefGoogle Scholar
  59. Hackett CA, Meyer RC, Thomas WTB (2001) Multi-trait QTL mapping in barley using multivariate regression. Genet Res 77(1):95–106PubMedCrossRefGoogle Scholar
  60. Hackett CA, Weller JI (1995) Genetic mapping of quantitative trait loci for traits with ordinal distributions. Biometrics 51(4):1252–1263PubMedCrossRefGoogle Scholar
  61. Haldane JBS (1919) The combination of linkage values and the calculation of distances between the loci of linked factors. J Genet 8(29):299–309Google Scholar
  62. Haldane JBS, Waddington CH (1931) Inbreeding and linkage. Genetics 16(4):357–374PubMedGoogle Scholar
  63. Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69(4):315–324PubMedCrossRefGoogle Scholar
  64. Haley CS, Knott SA, Elsen JM (1994) Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics 136(3):1195–1207PubMedGoogle Scholar
  65. Han L, Xu S (2008) A Fisher scoring algorithm for the weighted regression method of QTL mapping. Heredity 101(5):453–464PubMedCrossRefGoogle Scholar
  66. Han L, Xu S (2010) Genome-wide evaluation for quantitative trait loci under the variance component model. Genetica 138(9–10):1099–1109PubMedCrossRefGoogle Scholar
  67. Hardy GH (1908) Mendelian proportions in a mixed population. Science 28(706):49–50PubMedCrossRefGoogle Scholar
  68. Hartigan J, Wong MA (1979) Algorithm AS 136: a K-means clustering algorithm. J Roy Stat Soc Ser C (Appl Stat) 28(1):100–108Google Scholar
  69. Hartigan JA (1975) Clustering algorithms. Wiley, New YorkGoogle Scholar
  70. Hartl DL, Clark AG (1997) Principles of population genetics, 3rd edn. Sinauer Associates Inc., Sunderland, MassachusettsGoogle Scholar
  71. Haseman JK, Elston RC (1972) The investigation of linkage between a quantitative trait and a marker locus. Behav Genet 2(1):3–19PubMedCrossRefGoogle Scholar
  72. Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1):97–109CrossRefGoogle Scholar
  73. Hayes JG (1974) Numerical methods for curve and surface fitting. Bull Inst Math Appl 10(5/6):144–152Google Scholar
  74. Hayes PM, Liu BH, Knapp SJ, Chen F, Jones B, Blake T, Franckowiak J, Rasmusson D, Sorrells M, Ullrich SE, Wesenberg D, Kleinhofs A (1993) Quantitative trait locus effects and environmental interaction in a sample of North American barley germ plasm. Theor Appl Genet 87(3):392–401CrossRefPubMedGoogle Scholar
  75. Heath SC (1997) Markov chain Monte Carlo segregation and linkage analysis of oligogenic models. Am J Hum Genet 61(3):748–760PubMedCrossRefGoogle Scholar
  76. Henderson CR (1950) Estimation of genetic parameters (abstract). Ann Math Stat 21(2):309–310Google Scholar
  77. Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 31(2):423–447PubMedCrossRefGoogle Scholar
  78. Henshall JM, Goddard ME (1999) Multiple-trait mapping of quantitative trait loci after selective genotyping using logistic regression. Genetics 151(2):885–894PubMedGoogle Scholar
  79. Hoerl AE, Kennard RW (1970) Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(2):55–67CrossRefGoogle Scholar
  80. Horton NJ, Laird NM (1999) Maximum likelihood analysis of generalized linear models with missing covariates. Stat Methods Med Res 8(1):37–50PubMedCrossRefGoogle Scholar
  81. Hu Z, Xu S (2009) PROC QTL – a SAS procedure for mapping quantitative trait loci. Int J Plant Genom 2009:1–3, doi:10.1155/2009/141234CrossRefGoogle Scholar
  82. Huelsenbeck JP Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294(5550):2310–2314PubMedCrossRefGoogle Scholar
  83. Ibrahim JG (1990) Incomplete data in generalized linear models. J Am Stat Assoc 85(411): 765–769CrossRefGoogle Scholar
  84. Ibrahim JG, Chen MH, Lipsitz SR (2002) Bayesian methods for generalized linear models with covariates missing at random. Can J Stat 30(1):55–78CrossRefGoogle Scholar
  85. Ibrahim JG, Chen MH, Lipsitz SR, Herring AH (2005) Missing-data methods for generalized linear models. J Am Stat Assoc 100(469):332–346CrossRefGoogle Scholar
  86. Jia Z, Xu S (2005) Clustering expressed genes on the basis of their association with a quantitative phenotype. Genet Res 86(3):193–207PubMedCrossRefGoogle Scholar
  87. Jia Z, Xu S (2007) Mapping quantitative trait loci for expression abundance. Genetics 176(1): 611–623PubMedCrossRefGoogle Scholar
  88. Jiang C, Zeng ZB (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140(3):1111–1127PubMedGoogle Scholar
  89. Jiang C, Zeng ZB (1997) Mapping quantitative trait loci with dominance and missing markers in various crosses from two inbred lines. Genetica 101(1):47–58PubMedCrossRefGoogle Scholar
  90. Jirapech-Umpai T, Aitken S (2005) Feature selection and classification for microarray data analysis: evolutionary methods for identifying predictive genes. BMC Bioinform 6:148CrossRefGoogle Scholar
  91. Kao CH (2000) On the differences between the maximum likelihood and the regression interval mapping in the analysis of quantitative trait loci. Genetics 156(2):855–865PubMedGoogle Scholar
  92. Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152(3):1203–1216PubMedGoogle Scholar
  93. Kendziorski C, Wang P (2006) A review of statistical methods for expression quantitative trait loci mapping. Mamm Genome 17(6):509–517PubMedCrossRefGoogle Scholar
  94. Kendziorski CM, Chen M, Yuan M, Lan H, Attie AD (2006) Statistical methods for expression quantitative trait loci (eQTL) mapping. Biometrics 62(1):19–27PubMedCrossRefGoogle Scholar
  95. Knott SA, Haley CS (2000) Multitrait least squares for quantitative trait loci detection. Genetics 156(2):899–911PubMedGoogle Scholar
  96. Korol AB, Ronin YI, Itskovich AM, Peng J, Nevo E (2001) Enhanced efficiency of quantitative trait loci mapping analysis based on multivariate complexes of quantitative traits. Genetics 157(4):1789–1803PubMedGoogle Scholar
  97. Korol AB, Ronin YI, Kirzhner VM (1995) Interval mapping of quantitative trait loci employing correlated trait complexes. Genetics 140(3):1137–1147PubMedGoogle Scholar
  98. Kosambi DD (1943) The estimation of map distances from recombination values. Ann Hum Genet 12(1):172–175CrossRefGoogle Scholar
  99. Lan H, Chen M, Flowers JB, Yandell BS, Stapleton DS, Mata CM, Mui ET, Flowers MT, Schueler KL, Manly KF, Williams RW, Kendziorski C, Attie AD (2006) Combined expression trait correlations and expression quantitative trait locus mapping. Pub Lib Sci Genet 2(1):e6Google Scholar
  100. Land AH, Doig AG (1960) An automatic method of solving discrete programming problems. Econometrica 28(3):497–520CrossRefGoogle Scholar
  101. Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121(1):185–199PubMedGoogle Scholar
  102. Lee Y, Lee C (2003) Classification of multiple cancer types by multicategory support vector machines using gene expression data. Bioinformatics 19(9):1132–1139PubMedCrossRefGoogle Scholar
  103. Li CC (1955) Population genetics. University of Chicago Press, ChicagoGoogle Scholar
  104. Liao J, Chin K (2007) Logistic regression for disease classification using microarray data: model selection in a large p and small n case. Bioinformatics 23(15):1945–1951PubMedCrossRefGoogle Scholar
  105. Liu BH (1998) Statistical genomics: linkage, mapping and qtl analysis, 1st edn. CRC, Boca RatonGoogle Scholar
  106. Lorieux M, Goffinet B, Perrier X, Leon DG, Lanaud C (1995a) Maximum-likelihood models for mapping genetic markers showing segregation distortion. 1. Backcross populations. Theor Appl Genet 90(1):73–80Google Scholar
  107. Lorieux M, Perrier X, Goffinet B, Lanaud C, Leon DG (1995b) Maximum-likelihood models for mapping genetic markers showing segregation distortion. 2. F2 populations. Theor Appl Genet 90(1):81–89Google Scholar
  108. Loudet O, Chaillou S, Camilleri C, Bouchez D, Daniel-Vedele F (2002) Bay-0 × Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis. Theor Appl Genet 104(6):1173–1184PubMedCrossRefGoogle Scholar
  109. Louis T (1982) Finding the observed information matrix when using the EM algorithm. J Roy Stat Soc Ser B (Stat Methodol) 44(2):226–233Google Scholar
  110. Luan Y, Li H (2003) Clustering of time-course gene expression data using a mixed-effects model with B-splines. Bioinformatics 19(4):474–482PubMedCrossRefGoogle Scholar
  111. Luo L, Xu S (2003) Mapping viability loci using molecular markers. Heredity 90(6):459–467PubMedCrossRefGoogle Scholar
  112. Luo L, Zhang YM, Xu S (2005) A quantitative genetics model for viability selection. Heredity 94(3):347–355PubMedCrossRefGoogle Scholar
  113. Luo ZW, Zhang RM, Kearsey MJ (2004) Theoretical basis for genetic linkage analysis in autotetraploid species. Proc Nat Acad Sci USA 101(18):7040–7045PubMedCrossRefGoogle Scholar
  114. Luo ZW, Zhang Z, Leach L, Zhang RM, Bradshaw JE, Kearsey MJ (2006) Constructing genetic linkage maps under a tetrasomic model. Genetics 172(4):2635–2645PubMedCrossRefGoogle Scholar
  115. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits, 1st edn. Sinauer Associates Inc., SunderlandGoogle Scholar
  116. Ma P, Castillo-Davis CI, Zhong W, Liu JS (2006) A data-driven clustering method for time course gene expression data. Nucleic Acids Res 34(4):1261–1269PubMedCrossRefGoogle Scholar
  117. MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. Proceedings of the 5th Berkeley symposium on mathematical statistics and probability, vol 1, pp 281–297, Berkeley, CaliforniaGoogle Scholar
  118. Mangin B, Thoquet P, Grimsley N (1998) Pleiotropic QTL analysis. Biometrics 54(1):88–99CrossRefGoogle Scholar
  119. McCullagh P, Nelder JA (1999) Generalized linear models. Monograph on statistics and applied probability. Chapman and Hall/CRC, LondonGoogle Scholar
  120. McCulloch CE, Searle SR (2001) Generalized linear and mixed models. Wiley, New YorkGoogle Scholar
  121. McLachlan G, Peel D (2000) Finite mixture models. Wiley, New YorkCrossRefGoogle Scholar
  122. McLachlan GJ, Bean RW, Peel D (2002) A mixture model-based approach to the clustering of microarray expression data. Bioinformatics 18(3):413–422PubMedCrossRefGoogle Scholar
  123. McNicholas PD, Murphy TB (2010) Model-based clustering of microarray expression data via latent Gaussian mixture models. Bioinformatics 26(21):2705–2712PubMedCrossRefGoogle Scholar
  124. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092CrossRefGoogle Scholar
  125. Mitchell-Olds T (1995) Interval mapping of viability loci causing heterosis in Arabidopsis. Genetics 140(3):1105–1109PubMedGoogle Scholar
  126. Morgan TH (1928) The theory of the gene. Yale University Press, New HavenGoogle Scholar
  127. Morgan TH, Bridges CB (1916) Sex-linked inheritance in drosophila. Carniegie Institute of Washington, Washington DCCrossRefGoogle Scholar
  128. Narula SC (1979) Orthogonal polynomial regression. Int Stat Rev 47(1):31–36CrossRefGoogle Scholar
  129. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313CrossRefGoogle Scholar
  130. Nelder JA, Wedderburn RWM (1972) Generalized linear models. J Roy Stat Soc Ser A (General) 135(3):370–384CrossRefGoogle Scholar
  131. Nettleton D, Doerge RW (2000) Accounting for variability in the use of permutation testing to detect quantitative trait loci. Biometrics 56(1):52–58PubMedCrossRefGoogle Scholar
  132. Newton MA, Noueiry A, Sarkar D, Ahlquist P (2004) Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics 5(2):155–176PubMedCrossRefGoogle Scholar
  133. Ouyang M, Welsh WJ, Georgopoulos P (2004) Gaussian mixture clustering and imputation of microarray data. Bioinformatics 20(6):917–923PubMedCrossRefGoogle Scholar
  134. Pan W, Lin J, Le CT (2002) Model-based cluster analysis of microarray gene expression data. Genome Biol 3(2):research0009.1–0009.8Google Scholar
  135. Park T, Casella G (2008) The Bayesian Lasso. J Am Stat Assoc 103(482):681–686CrossRefGoogle Scholar
  136. Park T, Yi SG, Lee S, Lee SY, Yoo DH, Ahn JI, Lee YS (2003) Statistical tests for identifying differentially expressed genes in time-course microarray experiments. Bioinformatics 19(6):694–703PubMedCrossRefGoogle Scholar
  137. Peddada SD, Lobenhofer EK, Li L, Afshari CA, Weinberg CR, Umbach DM (2003) Gene selection and clustering for time-course and dose-response microarray experiments using order-restricted inference. Bioinformatics 19(7):834–841PubMedCrossRefGoogle Scholar
  138. Piepho HP (2001) A quick method for computing approximate thresholds for quantitative trait loci detection. Genetics 157(1):425–432PubMedGoogle Scholar
  139. Potokina E, Caspers M, Prasad M, Kota R, Zhang H, Sreenivasulu N, Wang M, Graner A (2004) Functional association between malting quality trait components and cDNA array based expression patterns in barley. Mol Breed 14(2):153–170CrossRefGoogle Scholar
  140. Qu Y, Xu S (2004) Supervised cluster analysis for microarray data based on multivariate Gaussian mixture. Bioinformatics 20(12):1905–1913PubMedCrossRefGoogle Scholar
  141. Qu Y, Xu S (2006) Quantitative trait associated microarray gene expression data analysis. Mol Biol Evol 23(8):1558–1573PubMedCrossRefGoogle Scholar
  142. Robinson GK (1991) That BLUP is a good thing: the estimation of random effects. Stat Sci 6(1):15–32CrossRefGoogle Scholar
  143. Rubin NB (1987) Multiple imputation for nonresponse in survey. Wiley, New YorkCrossRefGoogle Scholar
  144. Rubinstein R (1981) Simulation and the Monte Carlo method. Wiley, New YorkCrossRefGoogle Scholar
  145. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425PubMedGoogle Scholar
  146. SAS Institute (2008a). SAS/IML 9.2 user’s guide. SAS Institute Inc, Cary, North CarolinaGoogle Scholar
  147. SAS Institute (2008b) SAS/STAT 9.2 user’s guide. SAS Institute Inc., Cary, North CarolinaGoogle Scholar
  148. Satagopan JM, Yandell BS, Newton MA, Osborn TC (1996) A Bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics 144(2):805–816PubMedGoogle Scholar
  149. Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G, Linsley PS, Mao M, Stoughton RB, Friend SH (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297–302PubMedCrossRefGoogle Scholar
  150. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470PubMedCrossRefGoogle Scholar
  151. Schliep A, Schnhuth A, Steinhoff C (2003) Using hidden Markov models to analyze gene expression time course data. Bioinformatics 19(supp 1):i255–i263PubMedCrossRefGoogle Scholar
  152. Schork NJ (1993) Extended multipoint identity-by-descent analysis of human quantitative traits: efficiency, power, and modeling considerations. Am J Hum Genet 53(6):1306–1319PubMedGoogle Scholar
  153. Schwarz GE (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464CrossRefGoogle Scholar
  154. Searle SR, Casella G, McCulloch CE (1992) Variance components. Wiley, New YokCrossRefGoogle Scholar
  155. Seber GAF (1977) Linear regression analysis, 1st edn. Wiley, New YorkGoogle Scholar
  156. Sillanpää MJ, Arjas E (1998) Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data. Genetics 148(3):1373–1388PubMedGoogle Scholar
  157. Sillanpää MJ, Arjas E (1999) Bayesian mapping of multiple quantitative trait loci from incomplete outbred offspring data. Genetics 151(4):1605–1619PubMedGoogle Scholar
  158. Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3(2):Article 3Google Scholar
  159. Sobel E, Sengul H, Weeks DE (2001) Multipoint estimation of identity-by-descent probabilities at arbitrary positions among marker loci on general pedigrees. Hum Hered 52(3):121–131PubMedCrossRefGoogle Scholar
  160. Sober E (1983) Parsimony in systematics: philosophical issues. Ann Rev Ecol Systemat 14: 335–357CrossRefGoogle Scholar
  161. Sokal R, Michener C (1958) A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 38:1409–1438Google Scholar
  162. Sorensen D, Gianola D (2002) Likelihood, Bayesian, and MCMC methods in quantitative genetics. Springer, New YorkGoogle Scholar
  163. Statnikov A, Aliferis CF, Tsamardinos I, Hardin D, Levy S (2005) A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 21(5):631–643PubMedCrossRefGoogle Scholar
  164. Steeb W, Hardy Y (2011) Matrix calculus and Kronecker product: a practical approach to linear and multilinear algebra. World Scientific Publishing Company, SingaporeCrossRefGoogle Scholar
  165. Storey JD, Xiao W, Leek JT, Tompkins RG, Davis RW (2005) Significance analysis of time course microarray experiments. Proc Nat Acad Sci USA 102(36):12837–12842PubMedCrossRefGoogle Scholar
  166. Studier JA, Keppler KJ (1988) A note on the neighbor-joining algorithm of Saitou and Nei. Mol Biol Evol 5(6):729–731PubMedGoogle Scholar
  167. Swofford DL, Olsen GJ, Waddell PJ, Hillis DM (1996) Phylogenetic inference. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics, 2nd edn. Sinauer Associates, Sunderland, Mass., pp 407–514Google Scholar
  168. ter Braak CJF, Boer MP, Bink MCAM (2005) Extending Xu’s Bayesian model for estimating polygenic effects using markers of the entire genome. Genetics 170(3):1435–1438PubMedCrossRefGoogle Scholar
  169. Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J Roy Stat Soc Ser B (Stat Methodol) 58(1):267–288Google Scholar
  170. Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1:211–244Google Scholar
  171. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Nat Acad Sci USA 98(9):5116–5121PubMedCrossRefGoogle Scholar
  172. Visscher PM, Haley CS, Knott SA (1996) Mapping QTLs for binary traits in backcross and F2 populations. Genet Res 68(01):55–63CrossRefGoogle Scholar
  173. Vogl C, Xu S (2000) Multipoint mapping of viability and segregation distorting loci using molecular markers. Genetics 155(3):1439–1447PubMedGoogle Scholar
  174. Wald A (1943) Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans Am Math Soc 54(3):426–482CrossRefGoogle Scholar
  175. Wang C, Zhu C, Zhai H, Wan J (2005a) Mapping segregation distortion loci and quantitative trait loci for spikelet sterility in rice (Oryza sativa l.). Genet Res 86(2):97–106Google Scholar
  176. Wang H, Zhang Y, Li X, Masinde GL, Mohan S, Baylink DJ, Xu S (2005b) Bayesian shrinkage estimation of quantitative trait loci parameters. Genetics 170(1):465–480PubMedCrossRefGoogle Scholar
  177. Wedderburn RWM (1974) Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 61(3):439–447Google Scholar
  178. Weinberg W (1908) Über den nachweis der vererbung beim menschen. Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg 64:368–382Google Scholar
  179. Welham S, Cullis B, Kenward M, Thompson R (2007) A comparison of mixed model splines for curve fitting. Aust New Zeal J Stat 49(1):1–23CrossRefGoogle Scholar
  180. Williams JT, Van Eerdewegh P, Almasy L, Blangero J (1999) Joint multipoint linkage analysis of multivariate qualitative and quantitative traits. I. Likelihood formulation and simulation results. Am J Hum Genet 65(4):1134–1147CrossRefGoogle Scholar
  181. Wolfinger RD, Gibson C, Wolfinger ED, Bennet L, Hamadeh H, Rishel P, Afshari C, Paules RS (2001) Assessing gene significance from cDNA microarray expression data via mixed models. J Comput Biol 8(6):625–637PubMedCrossRefGoogle Scholar
  182. Xie C, Xu S (1999) Mapping quantitative trait loci with dominant markers in four-way crosses. Theor Appl Genet 98(6):1014–1021CrossRefGoogle Scholar
  183. Xu C, Li Z, Xu S (2005) Joint mapping of quantitative trait loci for multiple binary characters. Genetics 169(2):1045–1059PubMedCrossRefGoogle Scholar
  184. Xu C, Wang X, Li Z, Xu S (2009) Mapping QTL for multiple traits using Bayesian statistics. Genet Res 91(1):23–37CrossRefGoogle Scholar
  185. Xu C, Xu S (2003) A SAS/IML program for mapping QTL in line crosses. Proceedings of the twenty-eighth annual SAS users group international conference (SUGI), Cary, NC. SAS InstituteGoogle Scholar
  186. Xu S (1995) A comment on the simple regression method for interval mapping. Genetics 141(4):1657–1659PubMedGoogle Scholar
  187. Xu S (1996) Mapping quantitative trait loci using four-way crosses. Genet Res 68(02):175–181CrossRefGoogle Scholar
  188. Xu S (1998a) Further investigation on the regression method of mapping quantitative trait loci. Heredity 80(3):364–373PubMedCrossRefGoogle Scholar
  189. Xu S (1998b) Iteratively reweighted least squares mapping of quantitative trait loci. Behav Genet 28(5):341–355PubMedCrossRefGoogle Scholar
  190. Xu S (2003) Estimating polygenic effects using markers of the entire genome. Genetics 163(2):789–801PubMedGoogle Scholar
  191. Xu S (2007) An empirical Bayes method for estimating epistatic effects of quantitative trait loci. Biometrics 63(2):513–521PubMedCrossRefGoogle Scholar
  192. Xu S (2008) Quantitative trait locus mapping can benefit from segregation distortion. Genetics 180(4):2201–2208PubMedCrossRefGoogle Scholar
  193. Xu S, Atchley WR (1995) A random model approach to interval mapping of quantitative trait loci. Genetics 141(3):1189–1197PubMedGoogle Scholar
  194. Xu S, Hu Z (2009) Mapping quantitative trait loci using distorted markers. Int J Plant Genom 2009, doi:10.1155/2009/410825Google Scholar
  195. Xu S, Hu Z (2010) Generalized linear model for interval mapping of quantitative trait loci. Theor Appl Genet 121(1):47–63PubMedCrossRefGoogle Scholar
  196. Xu S, Xu C (2006) A multivariate model for ordinal trait analysis. Heredity 97(6):409–417PubMedCrossRefGoogle Scholar
  197. Xu S, Yi N (2000) Mixed model analysis of quantitative trait loci. Proc Nat Acad Sci USA 97(26):14542–14547PubMedCrossRefGoogle Scholar
  198. Xu S, Yi N, Burke D, Galecki A, Miller RA (2003) An EM algorithm for mapping binary disease loci: application to fibrosarcoma in a four-way cross mouse family. Genet Res 82(2):127–138PubMedCrossRefGoogle Scholar
  199. Yeung KY, Bumgarner RE (2003) Multiclass classification of microarray data with repeated measurements: application to cancer. Genome Biol 4(12):R83PubMedCrossRefGoogle Scholar
  200. Yi N (2004) A unified Markov chain Monte Carlo framework for mapping multiple quantitative trait loci. Genetics 167(2):967–975PubMedCrossRefGoogle Scholar
  201. Yi N, George V, Allison DB (2003) Stochastic search variable selection for identifying multiple quantitative trait loci. Genetics 164(3):1129–1138PubMedGoogle Scholar
  202. Yi N, Shriner D (2008) Advances in Bayesian multiple QTL mapping in experimental designs. Heredity 100(3):240–252PubMedCrossRefGoogle Scholar
  203. Yi N, Xu S (1999) A random model approach to mapping quantitative trait loci for complex binary traits in outbred populations. Genetics 153(2):1029–1040PubMedGoogle Scholar
  204. Yi N, Xu S (2000) Bayesian mapping of quantitative trait loci for complex binary traits. Genetics 155(3):1391–1403PubMedGoogle Scholar
  205. Yi N, Xu S (2001) Bayesian mapping of quantitative trait loci under complicated mating designs. Genetics 157(4):1759–1771PubMedGoogle Scholar
  206. Yi N, Xu S (2008) Bayesian LASSO for quantitative trait loci mapping. Genetics 179(2): 1045–1055PubMedCrossRefGoogle Scholar
  207. Yuan M, Lin Y (2005) Efficient empirical Bayes variable selection and estimation in linear models. J Am Stat Assoc 100(472):1215–1225CrossRefGoogle Scholar
  208. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136(4):1457–1468PubMedGoogle Scholar
  209. Zhan H, Chen X, Xu S (2011) A stochastic expectation and maximization algorithm for detecting quantitative trait-associated genes. Bioinformatics 27(1):63–69PubMedCrossRefGoogle Scholar
  210. Zhao H, Speed TP (1996) On genetic map functions. Genetics 142(4):1369–1377PubMedGoogle Scholar
  211. Zhu J, Hastie T (2004) Classification of gene microarrays by penalized logistic regression. Biostatistics 5(3):427–443PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Shizhong Xu
    • 1
  1. 1.Department of Botany and Plant SciencesUniversity of CaliforniaRiversideUSA

Personalised recommendations