Skip to main content

QTL Mapping in Other Populations

  • Chapter
  • First Online:
  • 3670 Accesses

Abstract

BC and F 2 populations are the most commonly used populations for QTL mapping. There are other populations which can also be used for QTL mapping. These include recombinant inbred lines (RIL), double haploids (DH), four-way crosses, diallel crosses, full-sib families, half-sib families, and random-mating populations with pedigree structures. We are going to discuss a few of them in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdi H (2007) Bonferroni and Šidák corrections for multiple comparisons. Encyclopedia of Measurement and Statistics. Sage, Thousand Oaks, California

    Google Scholar 

  • Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Human Genet 62(5):1198–1211

    Article  CAS  Google Scholar 

  • Amos CI (1994) Robust variance-components approach for assessing genetic linkage in pedigrees. Am J Human Genet 54(3):535–543

    CAS  Google Scholar 

  • Baldi P, Long AD (2001) A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17(6):509–519

    Article  PubMed  CAS  Google Scholar 

  • Banerjee S, Yandell BS, Yi N (2008) Bayesian quantitative trait loci mapping for multiple traits. Genetics 179(4):2275–2289

    Article  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate – a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B (Stat Methodol) 57(1):289–300

    Google Scholar 

  • Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW (2004) Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Nat Acad Sci USA 101(7):2173–2178

    Article  PubMed  CAS  Google Scholar 

  • Bottolo L, Petretto E, Blankenberg S, Cambien F, Cook SA, Tiret L, Richardson S (2011) Bayesian detection of expression quantitative trait loci hot-spots. Genetics 189(4):1449–1459

    Article  PubMed  Google Scholar 

  • Bottolo L, Richardson S (2010) Evolutionary stochastic search for Bayesian model exploration. Bayesian Anal 5(3):583–618

    Article  Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J Roy Stat Soc Ser B (Stat Methodol) 26(2):211–252

    Google Scholar 

  • Box GEP, Tiao GC (1973) Bayesian inference in statistical analysis. Wiley, New York

    Google Scholar 

  • Brem RB, Yvert G, Clinton R, Kruglyak L (2002) Genetic dissection of transcriptional regulation in budding yeast. Science 296(5568):752–755

    Article  PubMed  CAS  Google Scholar 

  • Broman KW, Speed TP (2002) A model selection approach for the identification of quantitative trait loci in experimental crosses. J Roy Stat Soc Ser B (Stat Methodol) 64(4):641–656

    Article  Google Scholar 

  • Cai X, Huang A, Xu S (2011) Fast empirical Bayesian LASSO for multiple quantitative trait locus mapping. BMC Bioinformatics 12(1):211

    Article  PubMed  Google Scholar 

  • Che X, Xu S (2010) Significance test and genome selection in Bayesian shrinkage analysis. Int J Plant Genomics 2010:doi:10.1155/2010/893206

    Google Scholar 

  • Chen M, Presting G, Barbazuk WB, Goicoechea JL, Blackmon, B, Fang G, Ki H, Frisch D, Yu Y, Sun S, Higingbottom S, Phimphilai J, Phimphilai D, Thurmond S, Gaudette B, Li P, Liu J, Hatfield J, Main D, Farrar K, Henderson C, Barnett L, Costa R, Williams B, Walser S, Atkins M, Hall C, Budiman MA, Tomkins JP, Luo M, Bancroft I, Salse J, Regad F, Mohapatra T, Singh NK, Tyagi AK, Soderlund C, Dean RA, Wing RA (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14(3):537–545

    Article  PubMed  CAS  Google Scholar 

  • Cheung VG, Spielman RS (2002) The genetics of variation in gene expression. Nat Genet 32(Supp):522–525

    Google Scholar 

  • Chun H, Keles S (2009) Expression quantitative trait loci mapping with multivariate sparse partial least squares regression. Genetics 182(1):79–90

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138(3):963–971

    PubMed  CAS  Google Scholar 

  • Civardi L, Xia Y, Edwards EJ, Schnable PS, Nikolau BJ (1994) The relationship between genetic and physical distances in the cloned al-h2 interval of the Zea mays L. genome. Proc Nat Acad Sci USA 91(17):8268–8272

    Google Scholar 

  • Cohen AC (1991) Truncated and censored samples:theory and applications, vol 119 of Statistics: textbooks and monographs, 1st edn. Marcel Dekker Inc., New York

    Google Scholar 

  • Cookson W, Liang L, Abecasis G, Moffatt M, Lathrop M (2009) Mapping complex disease traits with global gene expression. Nat Rev Genet 10(3):184–194

    Article  PubMed  CAS  Google Scholar 

  • Cullinan WE, Herman JP, Battaglia DF, Akil H, Watson SJ (1995) Pattern and time course of immediate early gene expression in rat brain following acute stress. Neuroscience 64(2): 477–505

    Article  PubMed  CAS  Google Scholar 

  • Dagliyan O, Uney-Yuksektepe F, Kavakli IH, Turkay M (2011) Optimization based tumor classification from microarray gene expression data. Publ Libr Sci One 6(2):e14579

    CAS  Google Scholar 

  • de Boor C (1978) A practical guide to splines. Springer, New York

    Book  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc Ser B (Stat Methodol) 39(1):1–38

    Google Scholar 

  • Dou B, Hou B, Xu H, Lou X, Chi X, Yang J, Wang F, Ni Z, Sun Q (2009) Efficient mapping of a female sterile gene in wheat (Triticum aestivum l.). Genet Res 91(05):337–343

    Google Scholar 

  • Dunn OJ (1961) Multiple comparisons among means. J Am Stat Assoc 56(293):52–64

    Article  Google Scholar 

  • Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7(1):1–26

    Article  Google Scholar 

  • Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann Stat 32(2):407–499

    Article  Google Scholar 

  • Efron B, Tibshirani R, Storey JD, Tusher V (2001) Empirical Bayes analysis of a microarray experiment. J Am Stat Assoc 96(456):1151–1160

    Article  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Nat Acad Sci USA 95(25):14863–14868

    Article  PubMed  CAS  Google Scholar 

  • Elston RC, Steward J (1971) A general model for the genetic analysis of pedigree data. Hum Hered 21(6):523–542

    Article  PubMed  CAS  Google Scholar 

  • Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J, Carlson S, Helgason A, Walters GB, Gunnarsdottir S, Mouy M, Steinthorsdottir V, Eiriksdottir GH, Bjornsdottir G, Reynisdottir I, Gudbjartsson D, Helgadottir A, Jonasdottir A, Styrkarsdottir U, Gretarsdottir S, Magnusson KP, Stefansson H, Fossdal R, Kristjansson K, Gislason HG, Stefansson T, Leifsson BG, Thorsteinsdottir U, Lamb JR, Gulcher JR, Reitman ML, Kong A, Schadt EE, Stefansson K (2008) Genetics of gene expression and its effect on disease. Nature 452:423–428

    Article  PubMed  CAS  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman Group Ltd., London

    Google Scholar 

  • Feenstra B, Skovgaard IM, Broman KW (2006) Mapping quantitative trait loci by an extension of the Haley-Knott regression method using estimating equations. Genetics 173(4):2269–2282

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1981a) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1981b) Evolutionary trees from gene frequencies and quantitative characters: finding maximum likelihood estimates. Evolution 35(6):1229–1242

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791

    Article  Google Scholar 

  • Fisher RA (1946) A system of scoring linkage data, with special reference to the pied factors in mice. Am Nat 80(794):568–578

    Article  PubMed  CAS  Google Scholar 

  • Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 97(458):611–631

    Article  Google Scholar 

  • Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Software 33(1):1–22

    Google Scholar 

  • Fu YB, Ritland K (1994) On estimating the linkage of marker genes to viability genes controlling inbreeding depression. Theoret Appl Genet 88(8):925–932

    Article  Google Scholar 

  • Fulker DW, Cardon LR (1994) A sib-pair approach to interval mapping of quantitative trait loci. Am J Hum Genet 54(6):1092–1103

    PubMed  CAS  Google Scholar 

  • Gelfand AE, Hills SE, Racine-Poon A, Smith AFM (1990) Illustration of Bayesian inference in normal data models using Gibbs sampling. J Am Stat Assoc 85(412):972–985

    Article  Google Scholar 

  • Gelman A (2005) Analysis of variance – why it is more important than ever. Ann Stat 33(1):1–53

    Article  Google Scholar 

  • Gelman A (2006) Prior distributions for variance parameters in hierarchical models (Comment on article by Browne and Draper). Bayesian Anal 1(3):515–533

    Google Scholar 

  • Gelman A, Jakulin A, Pittau MG, Su YS (2008) A weakly informative default prior distribution for logistic and other regression models. Ann Appl Stat 2(4):1360–1383

    Article  Google Scholar 

  • Geman S, Geman D (1984) Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell PAMI-6(6):721–741

    Article  Google Scholar 

  • George EI, McCulloch RE (1993) Variable selection via Gibbs sampling. J Am Stat Assoc 88(423):881–889

    Article  Google Scholar 

  • George EI, McCulloch RE (1997) Approaches for Bayesian variable selection. Statistica Sinica 7:339–373

    Google Scholar 

  • Ghosh D, Chinnaiyan AM (2002) Mixture modelling of gene expression data from microarray experiments. Bioinformatics 18(2):275–286

    Article  PubMed  CAS  Google Scholar 

  • Gilks WR, Richardson S, Spiegelhalter DJ (1996) Markov chain Monte Carlo in practice. Chapman and Hall/CRC, London

    Google Scholar 

  • Glonek G, Solomon P (2004) Factorial and time course designs for cDNA microarray experiments. Biostatistics 5(1):89–111

    Article  PubMed  CAS  Google Scholar 

  • Goldgar DE (1990) Multipoint analysis of human quantitative genetic variation. Am J Hum Genet 47(6):957–967

    PubMed  CAS  Google Scholar 

  • Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439):531–537

    Article  PubMed  CAS  Google Scholar 

  • Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82(4):711–732

    Article  Google Scholar 

  • Hackett CA, Meyer RC, Thomas WTB (2001) Multi-trait QTL mapping in barley using multivariate regression. Genet Res 77(1):95–106

    Article  PubMed  CAS  Google Scholar 

  • Hackett CA, Weller JI (1995) Genetic mapping of quantitative trait loci for traits with ordinal distributions. Biometrics 51(4):1252–1263

    Article  PubMed  CAS  Google Scholar 

  • Haldane JBS (1919) The combination of linkage values and the calculation of distances between the loci of linked factors. J Genet 8(29):299–309

    Google Scholar 

  • Haldane JBS, Waddington CH (1931) Inbreeding and linkage. Genetics 16(4):357–374

    PubMed  CAS  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69(4):315–324

    Article  PubMed  CAS  Google Scholar 

  • Haley CS, Knott SA, Elsen JM (1994) Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics 136(3):1195–1207

    PubMed  CAS  Google Scholar 

  • Han L, Xu S (2008) A Fisher scoring algorithm for the weighted regression method of QTL mapping. Heredity 101(5):453–464

    Article  PubMed  CAS  Google Scholar 

  • Han L, Xu S (2010) Genome-wide evaluation for quantitative trait loci under the variance component model. Genetica 138(9–10):1099–1109

    Article  PubMed  Google Scholar 

  • Hardy GH (1908) Mendelian proportions in a mixed population. Science 28(706):49–50

    Article  PubMed  CAS  Google Scholar 

  • Hartigan J, Wong MA (1979) Algorithm AS 136: a K-means clustering algorithm. J Roy Stat Soc Ser C (Appl Stat) 28(1):100–108

    Google Scholar 

  • Hartigan JA (1975) Clustering algorithms. Wiley, New York

    Google Scholar 

  • Hartl DL, Clark AG (1997) Principles of population genetics, 3rd edn. Sinauer Associates Inc., Sunderland, Massachusetts

    Google Scholar 

  • Haseman JK, Elston RC (1972) The investigation of linkage between a quantitative trait and a marker locus. Behav Genet 2(1):3–19

    Article  PubMed  CAS  Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1):97–109

    Article  Google Scholar 

  • Hayes JG (1974) Numerical methods for curve and surface fitting. Bull Inst Math Appl 10(5/6):144–152

    Google Scholar 

  • Hayes PM, Liu BH, Knapp SJ, Chen F, Jones B, Blake T, Franckowiak J, Rasmusson D, Sorrells M, Ullrich SE, Wesenberg D, Kleinhofs A (1993) Quantitative trait locus effects and environmental interaction in a sample of North American barley germ plasm. Theor Appl Genet 87(3):392–401

    Article  Google Scholar 

  • Heath SC (1997) Markov chain Monte Carlo segregation and linkage analysis of oligogenic models. Am J Hum Genet 61(3):748–760

    Article  PubMed  CAS  Google Scholar 

  • Henderson CR (1950) Estimation of genetic parameters (abstract). Ann Math Stat 21(2):309–310

    Google Scholar 

  • Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 31(2):423–447

    Article  PubMed  CAS  Google Scholar 

  • Henshall JM, Goddard ME (1999) Multiple-trait mapping of quantitative trait loci after selective genotyping using logistic regression. Genetics 151(2):885–894

    PubMed  CAS  Google Scholar 

  • Hoerl AE, Kennard RW (1970) Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12(2):55–67

    Article  Google Scholar 

  • Horton NJ, Laird NM (1999) Maximum likelihood analysis of generalized linear models with missing covariates. Stat Methods Med Res 8(1):37–50

    Article  PubMed  CAS  Google Scholar 

  • Hu Z, Xu S (2009) PROC QTL – a SAS procedure for mapping quantitative trait loci. Int J Plant Genom 2009:1–3, doi:10.1155/2009/141234

    Article  CAS  Google Scholar 

  • Huelsenbeck JP Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294(5550):2310–2314

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim JG (1990) Incomplete data in generalized linear models. J Am Stat Assoc 85(411): 765–769

    Article  Google Scholar 

  • Ibrahim JG, Chen MH, Lipsitz SR (2002) Bayesian methods for generalized linear models with covariates missing at random. Can J Stat 30(1):55–78

    Article  Google Scholar 

  • Ibrahim JG, Chen MH, Lipsitz SR, Herring AH (2005) Missing-data methods for generalized linear models. J Am Stat Assoc 100(469):332–346

    Article  CAS  Google Scholar 

  • Jia Z, Xu S (2005) Clustering expressed genes on the basis of their association with a quantitative phenotype. Genet Res 86(3):193–207

    Article  PubMed  CAS  Google Scholar 

  • Jia Z, Xu S (2007) Mapping quantitative trait loci for expression abundance. Genetics 176(1): 611–623

    Article  PubMed  CAS  Google Scholar 

  • Jiang C, Zeng ZB (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140(3):1111–1127

    PubMed  CAS  Google Scholar 

  • Jiang C, Zeng ZB (1997) Mapping quantitative trait loci with dominance and missing markers in various crosses from two inbred lines. Genetica 101(1):47–58

    Article  PubMed  CAS  Google Scholar 

  • Jirapech-Umpai T, Aitken S (2005) Feature selection and classification for microarray data analysis: evolutionary methods for identifying predictive genes. BMC Bioinform 6:148

    Article  CAS  Google Scholar 

  • Kao CH (2000) On the differences between the maximum likelihood and the regression interval mapping in the analysis of quantitative trait loci. Genetics 156(2):855–865

    PubMed  CAS  Google Scholar 

  • Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152(3):1203–1216

    PubMed  CAS  Google Scholar 

  • Kendziorski C, Wang P (2006) A review of statistical methods for expression quantitative trait loci mapping. Mamm Genome 17(6):509–517

    Article  PubMed  Google Scholar 

  • Kendziorski CM, Chen M, Yuan M, Lan H, Attie AD (2006) Statistical methods for expression quantitative trait loci (eQTL) mapping. Biometrics 62(1):19–27

    Article  PubMed  CAS  Google Scholar 

  • Knott SA, Haley CS (2000) Multitrait least squares for quantitative trait loci detection. Genetics 156(2):899–911

    PubMed  CAS  Google Scholar 

  • Korol AB, Ronin YI, Itskovich AM, Peng J, Nevo E (2001) Enhanced efficiency of quantitative trait loci mapping analysis based on multivariate complexes of quantitative traits. Genetics 157(4):1789–1803

    PubMed  CAS  Google Scholar 

  • Korol AB, Ronin YI, Kirzhner VM (1995) Interval mapping of quantitative trait loci employing correlated trait complexes. Genetics 140(3):1137–1147

    PubMed  CAS  Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Hum Genet 12(1):172–175

    Article  Google Scholar 

  • Lan H, Chen M, Flowers JB, Yandell BS, Stapleton DS, Mata CM, Mui ET, Flowers MT, Schueler KL, Manly KF, Williams RW, Kendziorski C, Attie AD (2006) Combined expression trait correlations and expression quantitative trait locus mapping. Pub Lib Sci Genet 2(1):e6

    Google Scholar 

  • Land AH, Doig AG (1960) An automatic method of solving discrete programming problems. Econometrica 28(3):497–520

    Article  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121(1):185–199

    PubMed  CAS  Google Scholar 

  • Lee Y, Lee C (2003) Classification of multiple cancer types by multicategory support vector machines using gene expression data. Bioinformatics 19(9):1132–1139

    Article  PubMed  CAS  Google Scholar 

  • Li CC (1955) Population genetics. University of Chicago Press, Chicago

    Google Scholar 

  • Liao J, Chin K (2007) Logistic regression for disease classification using microarray data: model selection in a large p and small n case. Bioinformatics 23(15):1945–1951

    Article  PubMed  CAS  Google Scholar 

  • Liu BH (1998) Statistical genomics: linkage, mapping and qtl analysis, 1st edn. CRC, Boca Raton

    Google Scholar 

  • Lorieux M, Goffinet B, Perrier X, Leon DG, Lanaud C (1995a) Maximum-likelihood models for mapping genetic markers showing segregation distortion. 1. Backcross populations. Theor Appl Genet 90(1):73–80

    Google Scholar 

  • Lorieux M, Perrier X, Goffinet B, Lanaud C, Leon DG (1995b) Maximum-likelihood models for mapping genetic markers showing segregation distortion. 2. F2 populations. Theor Appl Genet 90(1):81–89

    Google Scholar 

  • Loudet O, Chaillou S, Camilleri C, Bouchez D, Daniel-Vedele F (2002) Bay-0 × Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis. Theor Appl Genet 104(6):1173–1184

    Article  PubMed  CAS  Google Scholar 

  • Louis T (1982) Finding the observed information matrix when using the EM algorithm. J Roy Stat Soc Ser B (Stat Methodol) 44(2):226–233

    Google Scholar 

  • Luan Y, Li H (2003) Clustering of time-course gene expression data using a mixed-effects model with B-splines. Bioinformatics 19(4):474–482

    Article  PubMed  CAS  Google Scholar 

  • Luo L, Xu S (2003) Mapping viability loci using molecular markers. Heredity 90(6):459–467

    Article  PubMed  CAS  Google Scholar 

  • Luo L, Zhang YM, Xu S (2005) A quantitative genetics model for viability selection. Heredity 94(3):347–355

    Article  PubMed  CAS  Google Scholar 

  • Luo ZW, Zhang RM, Kearsey MJ (2004) Theoretical basis for genetic linkage analysis in autotetraploid species. Proc Nat Acad Sci USA 101(18):7040–7045

    Article  PubMed  CAS  Google Scholar 

  • Luo ZW, Zhang Z, Leach L, Zhang RM, Bradshaw JE, Kearsey MJ (2006) Constructing genetic linkage maps under a tetrasomic model. Genetics 172(4):2635–2645

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits, 1st edn. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Ma P, Castillo-Davis CI, Zhong W, Liu JS (2006) A data-driven clustering method for time course gene expression data. Nucleic Acids Res 34(4):1261–1269

    Article  PubMed  CAS  Google Scholar 

  • MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. Proceedings of the 5th Berkeley symposium on mathematical statistics and probability, vol 1, pp 281–297, Berkeley, California

    Google Scholar 

  • Mangin B, Thoquet P, Grimsley N (1998) Pleiotropic QTL analysis. Biometrics 54(1):88–99

    Article  Google Scholar 

  • McCullagh P, Nelder JA (1999) Generalized linear models. Monograph on statistics and applied probability. Chapman and Hall/CRC, London

    Google Scholar 

  • McCulloch CE, Searle SR (2001) Generalized linear and mixed models. Wiley, New York

    Google Scholar 

  • McLachlan G, Peel D (2000) Finite mixture models. Wiley, New York

    Book  Google Scholar 

  • McLachlan GJ, Bean RW, Peel D (2002) A mixture model-based approach to the clustering of microarray expression data. Bioinformatics 18(3):413–422

    Article  PubMed  CAS  Google Scholar 

  • McNicholas PD, Murphy TB (2010) Model-based clustering of microarray expression data via latent Gaussian mixture models. Bioinformatics 26(21):2705–2712

    Article  PubMed  CAS  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092

    Article  CAS  Google Scholar 

  • Mitchell-Olds T (1995) Interval mapping of viability loci causing heterosis in Arabidopsis. Genetics 140(3):1105–1109

    PubMed  CAS  Google Scholar 

  • Morgan TH (1928) The theory of the gene. Yale University Press, New Haven

    Google Scholar 

  • Morgan TH, Bridges CB (1916) Sex-linked inheritance in drosophila. Carniegie Institute of Washington, Washington DC

    Book  Google Scholar 

  • Narula SC (1979) Orthogonal polynomial regression. Int Stat Rev 47(1):31–36

    Article  Google Scholar 

  • Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313

    Article  Google Scholar 

  • Nelder JA, Wedderburn RWM (1972) Generalized linear models. J Roy Stat Soc Ser A (General) 135(3):370–384

    Article  Google Scholar 

  • Nettleton D, Doerge RW (2000) Accounting for variability in the use of permutation testing to detect quantitative trait loci. Biometrics 56(1):52–58

    Article  PubMed  CAS  Google Scholar 

  • Newton MA, Noueiry A, Sarkar D, Ahlquist P (2004) Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics 5(2):155–176

    Article  PubMed  Google Scholar 

  • Ouyang M, Welsh WJ, Georgopoulos P (2004) Gaussian mixture clustering and imputation of microarray data. Bioinformatics 20(6):917–923

    Article  PubMed  CAS  Google Scholar 

  • Pan W, Lin J, Le CT (2002) Model-based cluster analysis of microarray gene expression data. Genome Biol 3(2):research0009.1–0009.8

    Google Scholar 

  • Park T, Casella G (2008) The Bayesian Lasso. J Am Stat Assoc 103(482):681–686

    Article  CAS  Google Scholar 

  • Park T, Yi SG, Lee S, Lee SY, Yoo DH, Ahn JI, Lee YS (2003) Statistical tests for identifying differentially expressed genes in time-course microarray experiments. Bioinformatics 19(6):694–703

    Article  PubMed  CAS  Google Scholar 

  • Peddada SD, Lobenhofer EK, Li L, Afshari CA, Weinberg CR, Umbach DM (2003) Gene selection and clustering for time-course and dose-response microarray experiments using order-restricted inference. Bioinformatics 19(7):834–841

    Article  PubMed  CAS  Google Scholar 

  • Piepho HP (2001) A quick method for computing approximate thresholds for quantitative trait loci detection. Genetics 157(1):425–432

    PubMed  CAS  Google Scholar 

  • Potokina E, Caspers M, Prasad M, Kota R, Zhang H, Sreenivasulu N, Wang M, Graner A (2004) Functional association between malting quality trait components and cDNA array based expression patterns in barley. Mol Breed 14(2):153–170

    Article  CAS  Google Scholar 

  • Qu Y, Xu S (2004) Supervised cluster analysis for microarray data based on multivariate Gaussian mixture. Bioinformatics 20(12):1905–1913

    Article  PubMed  CAS  Google Scholar 

  • Qu Y, Xu S (2006) Quantitative trait associated microarray gene expression data analysis. Mol Biol Evol 23(8):1558–1573

    Article  PubMed  CAS  Google Scholar 

  • Robinson GK (1991) That BLUP is a good thing: the estimation of random effects. Stat Sci 6(1):15–32

    Article  Google Scholar 

  • Rubin NB (1987) Multiple imputation for nonresponse in survey. Wiley, New York

    Book  Google Scholar 

  • Rubinstein R (1981) Simulation and the Monte Carlo method. Wiley, New York

    Book  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    PubMed  CAS  Google Scholar 

  • SAS Institute (2008a). SAS/IML 9.2 user’s guide. SAS Institute Inc, Cary, North Carolina

    Google Scholar 

  • SAS Institute (2008b) SAS/STAT 9.2 user’s guide. SAS Institute Inc., Cary, North Carolina

    Google Scholar 

  • Satagopan JM, Yandell BS, Newton MA, Osborn TC (1996) A Bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics 144(2):805–816

    PubMed  CAS  Google Scholar 

  • Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G, Linsley PS, Mao M, Stoughton RB, Friend SH (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297–302

    Article  PubMed  CAS  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470

    Article  PubMed  CAS  Google Scholar 

  • Schliep A, Schnhuth A, Steinhoff C (2003) Using hidden Markov models to analyze gene expression time course data. Bioinformatics 19(supp 1):i255–i263

    Article  PubMed  Google Scholar 

  • Schork NJ (1993) Extended multipoint identity-by-descent analysis of human quantitative traits: efficiency, power, and modeling considerations. Am J Hum Genet 53(6):1306–1319

    PubMed  CAS  Google Scholar 

  • Schwarz GE (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  Google Scholar 

  • Searle SR, Casella G, McCulloch CE (1992) Variance components. Wiley, New Yok

    Book  Google Scholar 

  • Seber GAF (1977) Linear regression analysis, 1st edn. Wiley, New York

    Google Scholar 

  • Sillanpää MJ, Arjas E (1998) Bayesian mapping of multiple quantitative trait loci from incomplete inbred line cross data. Genetics 148(3):1373–1388

    PubMed  Google Scholar 

  • Sillanpää MJ, Arjas E (1999) Bayesian mapping of multiple quantitative trait loci from incomplete outbred offspring data. Genetics 151(4):1605–1619

    PubMed  Google Scholar 

  • Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3(2):Article 3

    Google Scholar 

  • Sobel E, Sengul H, Weeks DE (2001) Multipoint estimation of identity-by-descent probabilities at arbitrary positions among marker loci on general pedigrees. Hum Hered 52(3):121–131

    Article  PubMed  CAS  Google Scholar 

  • Sober E (1983) Parsimony in systematics: philosophical issues. Ann Rev Ecol Systemat 14: 335–357

    Article  Google Scholar 

  • Sokal R, Michener C (1958) A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 38:1409–1438

    Google Scholar 

  • Sorensen D, Gianola D (2002) Likelihood, Bayesian, and MCMC methods in quantitative genetics. Springer, New York

    Google Scholar 

  • Statnikov A, Aliferis CF, Tsamardinos I, Hardin D, Levy S (2005) A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 21(5):631–643

    Article  PubMed  CAS  Google Scholar 

  • Steeb W, Hardy Y (2011) Matrix calculus and Kronecker product: a practical approach to linear and multilinear algebra. World Scientific Publishing Company, Singapore

    Book  Google Scholar 

  • Storey JD, Xiao W, Leek JT, Tompkins RG, Davis RW (2005) Significance analysis of time course microarray experiments. Proc Nat Acad Sci USA 102(36):12837–12842

    Article  PubMed  CAS  Google Scholar 

  • Studier JA, Keppler KJ (1988) A note on the neighbor-joining algorithm of Saitou and Nei. Mol Biol Evol 5(6):729–731

    PubMed  CAS  Google Scholar 

  • Swofford DL, Olsen GJ, Waddell PJ, Hillis DM (1996) Phylogenetic inference. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics, 2nd edn. Sinauer Associates, Sunderland, Mass., pp 407–514

    Google Scholar 

  • ter Braak CJF, Boer MP, Bink MCAM (2005) Extending Xu’s Bayesian model for estimating polygenic effects using markers of the entire genome. Genetics 170(3):1435–1438

    Article  PubMed  CAS  Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the Lasso. J Roy Stat Soc Ser B (Stat Methodol) 58(1):267–288

    Google Scholar 

  • Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1:211–244

    Google Scholar 

  • Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Nat Acad Sci USA 98(9):5116–5121

    Article  PubMed  CAS  Google Scholar 

  • Visscher PM, Haley CS, Knott SA (1996) Mapping QTLs for binary traits in backcross and F2 populations. Genet Res 68(01):55–63

    Article  Google Scholar 

  • Vogl C, Xu S (2000) Multipoint mapping of viability and segregation distorting loci using molecular markers. Genetics 155(3):1439–1447

    PubMed  CAS  Google Scholar 

  • Wald A (1943) Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans Am Math Soc 54(3):426–482

    Article  Google Scholar 

  • Wang C, Zhu C, Zhai H, Wan J (2005a) Mapping segregation distortion loci and quantitative trait loci for spikelet sterility in rice (Oryza sativa l.). Genet Res 86(2):97–106

    Google Scholar 

  • Wang H, Zhang Y, Li X, Masinde GL, Mohan S, Baylink DJ, Xu S (2005b) Bayesian shrinkage estimation of quantitative trait loci parameters. Genetics 170(1):465–480

    Article  PubMed  CAS  Google Scholar 

  • Wedderburn RWM (1974) Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 61(3):439–447

    Google Scholar 

  • Weinberg W (1908) Über den nachweis der vererbung beim menschen. Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg 64:368–382

    Google Scholar 

  • Welham S, Cullis B, Kenward M, Thompson R (2007) A comparison of mixed model splines for curve fitting. Aust New Zeal J Stat 49(1):1–23

    Article  Google Scholar 

  • Williams JT, Van Eerdewegh P, Almasy L, Blangero J (1999) Joint multipoint linkage analysis of multivariate qualitative and quantitative traits. I. Likelihood formulation and simulation results. Am J Hum Genet 65(4):1134–1147

    Article  CAS  Google Scholar 

  • Wolfinger RD, Gibson C, Wolfinger ED, Bennet L, Hamadeh H, Rishel P, Afshari C, Paules RS (2001) Assessing gene significance from cDNA microarray expression data via mixed models. J Comput Biol 8(6):625–637

    Article  PubMed  CAS  Google Scholar 

  • Xie C, Xu S (1999) Mapping quantitative trait loci with dominant markers in four-way crosses. Theor Appl Genet 98(6):1014–1021

    Article  Google Scholar 

  • Xu C, Li Z, Xu S (2005) Joint mapping of quantitative trait loci for multiple binary characters. Genetics 169(2):1045–1059

    Article  PubMed  CAS  Google Scholar 

  • Xu C, Wang X, Li Z, Xu S (2009) Mapping QTL for multiple traits using Bayesian statistics. Genet Res 91(1):23–37

    Article  CAS  Google Scholar 

  • Xu C, Xu S (2003) A SAS/IML program for mapping QTL in line crosses. Proceedings of the twenty-eighth annual SAS users group international conference (SUGI), Cary, NC. SAS Institute

    Google Scholar 

  • Xu S (1995) A comment on the simple regression method for interval mapping. Genetics 141(4):1657–1659

    PubMed  CAS  Google Scholar 

  • Xu S (1996) Mapping quantitative trait loci using four-way crosses. Genet Res 68(02):175–181

    Article  Google Scholar 

  • Xu S (1998a) Further investigation on the regression method of mapping quantitative trait loci. Heredity 80(3):364–373

    Article  PubMed  Google Scholar 

  • Xu S (1998b) Iteratively reweighted least squares mapping of quantitative trait loci. Behav Genet 28(5):341–355

    Article  PubMed  CAS  Google Scholar 

  • Xu S (2003) Estimating polygenic effects using markers of the entire genome. Genetics 163(2):789–801

    PubMed  CAS  Google Scholar 

  • Xu S (2007) An empirical Bayes method for estimating epistatic effects of quantitative trait loci. Biometrics 63(2):513–521

    Article  PubMed  CAS  Google Scholar 

  • Xu S (2008) Quantitative trait locus mapping can benefit from segregation distortion. Genetics 180(4):2201–2208

    Article  PubMed  Google Scholar 

  • Xu S, Atchley WR (1995) A random model approach to interval mapping of quantitative trait loci. Genetics 141(3):1189–1197

    PubMed  CAS  Google Scholar 

  • Xu S, Hu Z (2009) Mapping quantitative trait loci using distorted markers. Int J Plant Genom 2009, doi:10.1155/2009/410825

    Google Scholar 

  • Xu S, Hu Z (2010) Generalized linear model for interval mapping of quantitative trait loci. Theor Appl Genet 121(1):47–63

    Article  PubMed  Google Scholar 

  • Xu S, Xu C (2006) A multivariate model for ordinal trait analysis. Heredity 97(6):409–417

    Article  PubMed  CAS  Google Scholar 

  • Xu S, Yi N (2000) Mixed model analysis of quantitative trait loci. Proc Nat Acad Sci USA 97(26):14542–14547

    Article  PubMed  CAS  Google Scholar 

  • Xu S, Yi N, Burke D, Galecki A, Miller RA (2003) An EM algorithm for mapping binary disease loci: application to fibrosarcoma in a four-way cross mouse family. Genet Res 82(2):127–138

    Article  PubMed  CAS  Google Scholar 

  • Yeung KY, Bumgarner RE (2003) Multiclass classification of microarray data with repeated measurements: application to cancer. Genome Biol 4(12):R83

    Article  PubMed  Google Scholar 

  • Yi N (2004) A unified Markov chain Monte Carlo framework for mapping multiple quantitative trait loci. Genetics 167(2):967–975

    Article  PubMed  CAS  Google Scholar 

  • Yi N, George V, Allison DB (2003) Stochastic search variable selection for identifying multiple quantitative trait loci. Genetics 164(3):1129–1138

    PubMed  CAS  Google Scholar 

  • Yi N, Shriner D (2008) Advances in Bayesian multiple QTL mapping in experimental designs. Heredity 100(3):240–252

    Article  PubMed  CAS  Google Scholar 

  • Yi N, Xu S (1999) A random model approach to mapping quantitative trait loci for complex binary traits in outbred populations. Genetics 153(2):1029–1040

    PubMed  CAS  Google Scholar 

  • Yi N, Xu S (2000) Bayesian mapping of quantitative trait loci for complex binary traits. Genetics 155(3):1391–1403

    PubMed  CAS  Google Scholar 

  • Yi N, Xu S (2001) Bayesian mapping of quantitative trait loci under complicated mating designs. Genetics 157(4):1759–1771

    PubMed  CAS  Google Scholar 

  • Yi N, Xu S (2008) Bayesian LASSO for quantitative trait loci mapping. Genetics 179(2): 1045–1055

    Article  PubMed  CAS  Google Scholar 

  • Yuan M, Lin Y (2005) Efficient empirical Bayes variable selection and estimation in linear models. J Am Stat Assoc 100(472):1215–1225

    Article  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136(4):1457–1468

    PubMed  CAS  Google Scholar 

  • Zhan H, Chen X, Xu S (2011) A stochastic expectation and maximization algorithm for detecting quantitative trait-associated genes. Bioinformatics 27(1):63–69

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Speed TP (1996) On genetic map functions. Genetics 142(4):1369–1377

    PubMed  CAS  Google Scholar 

  • Zhu J, Hastie T (2004) Classification of gene microarrays by penalized logistic regression. Biostatistics 5(3):427–443

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Xu, S. (2013). QTL Mapping in Other Populations. In: Principles of Statistical Genomics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-70807-2_12

Download citation

Publish with us

Policies and ethics