Skip to main content

Information Flow in Coupled Nonlinear Systems: Application to the Epileptic Human Brain

  • Chapter
Data Mining in Biomedicine

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 7))

Abstract

A recently proposed measure, namely Transfer Entropy (TE), is used to estimate the direction of information flow between coupled linear and nonlinear systems. In this study, we suggest improvements in the selection of parameters for the estimation of TE that significantly enhance its accuracy and robustness in identifying the direction of information flow and quantifying the level of interaction between observed data series from coupled systems. We demonstrate the potential usefulness of the improved method through simulation examples with coupled nonlinear chaotic systems. The statistical significance of the results is shown through the use of surrogate data. The improved TE method is then used for the study of information flow in the epileptic human brain. We illustrate the application of TE to electroencephalographic (EEG) signals for the study of localization of the epileptogenic focus and the dynamics of its interaction with other brain sites in two patients with Temporal Lobe Epilepsy (TLE).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Liang, M. Ding, S. L. Bressler. Temporal dynamics of Information Flow in the Cerebral Cortex. Neurocomputing, 38: 1429–1435, 2001.

    Article  Google Scholar 

  2. J.A. Vastano, H.L. Swinney. Information transport spatiotemporal systems. Physical Review Letters, 60: 1773–1776, 1988.

    Article  PubMed  Google Scholar 

  3. T. Schreiber. Measuring information transfer. Physical Review Letters, 85: 461–464, 2000.

    Article  PubMed  CAS  Google Scholar 

  4. S. Sabesan. Entropy and Transfer of Entropy-Based Measures: Application to Dynamics of Epileptic Seizures. M.S. Thesis, Arizona State University, August 2003.

    Google Scholar 

  5. S. Sabesan, K. Narayanan, A. Prasad, and L.D. Iasemidis. Improved Measure of Information Flow in Coupled Non-Linear Systems. In Proceedings of ICMS, pages 270–274, 2003.

    Google Scholar 

  6. A. T. Bharucha-Reid. Elements of the Theory of Markov Processes and Their Applications. Dover Pubns, 1997.

    Google Scholar 

  7. R.Q. Quiroga, J. Arnhold, K. Lehnertz, and P. Grassberger. Kullback-Leibler and renormalized entropies: Application to electroencephalograms of epilepsy patients. Physical Review E, 62(6): 8380–8386, 2000.

    Article  CAS  Google Scholar 

  8. J.M. Martinerie, A.M. Albano, A.I. Mees, and P.E. Rapp. Mutual information, strange attractors and the optimal estimation of dimension. Physical Review A, 45(10): 7058–7064, 1992.

    Article  PubMed  Google Scholar 

  9. P. Grassberger and I. Procaccia. Measuring the strangeness of Strange Attractors. Physica D, 9: 189–208, 1983.

    Article  Google Scholar 

  10. K. Pawelzik and H.G. Schuster. Generalized dimensions and entropies from a measured time series. Physical Review A, 35(1): 481–484, 1987.

    Article  PubMed  Google Scholar 

  11. P. Gaspard and G. Nicolis. What can we learn from homoclinic orbits in chaotic dynamics. Journal of Statistical Physics, 31: 499–518, 1983.

    Article  Google Scholar 

  12. L.D. Iasemidis, D.S. Shiau, J.C. Sackellares, P.M. Pardalos, and A. Prasad. Dynamical resetting of the human brain at epileptic seizures: Application of nonlinear dynamics and global optimization techniques. IEEE Transactions on Biomedical Engineering, 51: 493–506, 2004.

    Article  PubMed  Google Scholar 

  13. L.D. Iasemidis, P.M. Pardalos, D.S. Shiau, W. Chaowolitwongse, K. Narayanan, S. Kumar, P.R. Carney, and J.C. Sackellares. Prediction of human epileptic seizures based on optimization and phase changes of brain electrical activity. Optimization Methods and Software, 18: 81–104, 2003.

    Article  Google Scholar 

  14. L.D. Iasemidis, D.S. Shiau, W. Chaovalitwongse, J.C. Sackellares, P.M. Pardalos, J.C. Principe, P.R. Carney, A. Prasad, B. Veeramani, and K. Tsakalis. Adaptive epileptic seizure prediction system. IEEE Transactions on Biomedical Engineering, 50: 616–627, 2003.

    Article  PubMed  Google Scholar 

  15. L.D. Iasemidis. Epileptic seizure prediction and control. IEEE Transactions on Biomedical Engineering, 50: 549–558, 2003.

    Article  PubMed  Google Scholar 

  16. L.D. Iasemidis and J.C. Sackellares. Chaos theory in epilepsy. The Neuroscientist, 2: 118–126, 1996.

    Article  Google Scholar 

  17. L.D. Iasemidis, J.C. Sackellares, and R.S. Savit. Quantification of hidden time dependencies in the EEG within the framework of nonlinear dynamics. In B.H. Jansen and M.E. Brandt, editors, Nonlinear Dynamical Analysis of the EEG, pages 30–47. World Scientific, Singapore, 1993.

    Google Scholar 

  18. E. Basar and T.H. Bullock. Brain Dynamics: Progress and Prospectives. Springer-Verlag, Heidelberg, Germany, 1989.

    Google Scholar 

  19. L.D. Iasemidis, A. Barreto, R.L. Gilmore, B.M. Uthman, S.N. Roper and J.C. Sackellares. Spatio-temporal evolution of dynamical measures precedes onset of mesial temporal lobe seizures. Epilepsia, 35S: 133–139, 1994.

    Google Scholar 

  20. F. Lopes da Silva. EEG analysis: theory and practice; Computer-assisted EEG diagnosis: pattern recognition techniques. In E. Niedermeyer and F. Lopes da Silva, editors, Electroencephalography; Basic Principles, Clinical Applications and Related Fields, 2nd edition, pages 871–919. Wiley, Baltimore, MA, 1987.

    Google Scholar 

  21. K. Lehnertz and C.E. Elger. Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss. Electroencephalography and Clinical Neurophysiology, 95: 108–117, 1995.

    Article  PubMed  CAS  Google Scholar 

  22. T. Schreiber. Determination of noise level of chaotic time series. Physical Review E, 48: 13–16, 1993.

    Article  Google Scholar 

  23. A.M. Albano, J. Muench, C. Schwartz, A.I. Mees, and P.E. Rapp. Singular value decomposition and Grassberger-Procaccia algorithm. Physical Review A, 38(6): 3017–3026, 1988.

    Article  PubMed  Google Scholar 

  24. J.P. Eckmann and D. Ruelle. Ergodic theory of chaos and strange attractors. Reviews of Modern Physics, 57: 617–623, 1985.

    Article  CAS  Google Scholar 

  25. P. Grassberger. Finite sample corrections to entropy and dimension estimates. Physical Review A, 128: 369–374, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sabesan, S., Narayanan, K., Prasad, A., Iasemidis, L.D., Spanias, A., Tsakalis, K. (2007). Information Flow in Coupled Nonlinear Systems: Application to the Epileptic Human Brain. In: Pardalos, P.M., Boginski, V.L., Vazacopoulos, A. (eds) Data Mining in Biomedicine. Springer Optimization and Its Applications, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-69319-4_24

Download citation

Publish with us

Policies and ethics