Skip to main content

Bioinformatics for Traumatic Brain Injury: Proteomic Data Mining

  • Chapter
Data Mining in Biomedicine

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 7))

Abstract

The importance of neuroproteomic studies is that they will help elucidate the currently poorly understood biochemical mechanisms or pathways underlying various psychiatric, neurological and neurodegenerative diseases. In this chapter, we focus on traumatic brain injury (TBI), a neurological disorder currently with no FDA approved therapeutic treatment. This chapter describes data mining strategies for proteomic analysis in traumatic brain injury research so that the diagnosis and treatment of TBI can be developed. We should note that brain imaging provides only coarse resolutions and proteomic analysis yields much finer resolutions to these two problems. Our data mining approach is not only at the collected data level, but rather an integrated scheme of animal modeling, instrumentation and data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.N. Adkins, S.M. Varnum, K.J. Auberry, R.J. Moore, N.H. Angell, R.D. Smith, D.L. Springer, and J.G. Pounds. Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry. Molecular & Cellular Proteomics, 1: 947–955, 2002.

    Article  CAS  Google Scholar 

  2. R. Aebersold and J.D. Watts. The need for national centers for proteomics. Nature Biotechnology, 20(7): 651–651, 2002.

    Article  PubMed  CAS  Google Scholar 

  3. R.D. Appel, A. Bairoch, and D.F. Hochstrasser. 2-D Databases on the World Wide Web in Methods in Molecular Biology. In A.J. Link, editor, 2-D Proteome Analysis Protocols, pages 383–391. Humana Press, Totowa, NJ, 1999.

    Google Scholar 

  4. R. Axelrod. Structure of Decision. Princeton University Press, 1976.

    Google Scholar 

  5. W.V. Bienvenut, C. Deon, C. Pasquarello, J.M. Campbell, J.C. Sanchez, M.L. Vestal, and D.F. Hochstrasser. Matrix-assisted laser desorption/ionization-tandem mass spectrometry with high resolution and sensitivity for identification and characterization of proteins. Proteomics, 2(7): 868–876, 2002.

    Article  PubMed  CAS  Google Scholar 

  6. B. Bjellqvist, K. Ek, P.G. Righetti, E. Gianazza, A. Gorg, and R. Westermeier. Isoelectric focusing in immobilized pH gradients: Principle, methodology and some applications. Journal of Biochemical and Biophysical Methods, 6: 317–339, 1982.

    Article  PubMed  CAS  Google Scholar 

  7. J. Boguslavsky. Resolving the proteome by relying on 2DE methods. Drug Discovery & Development, 6(7): 57–60, 2003.

    Google Scholar 

  8. R.G.G. Cattell, editor. The Object Database Standard: ODMG-93, Morgan Kaufmann, 1996.

    Google Scholar 

  9. D.N. Chakravarti, B. Chakrarti, and I. Moutsatsos. Informatic tools for proteome profiling. Bio Techniques, Computational Proteomics Supplement, 32: S4–S15, 2002.

    Google Scholar 

  10. S. Chen. Knowledge acquisition on neural networks. In B. Bouchon, L. Saitta and R. R. Yager, editors, Uncertainty and Intelligent Systems, pages 281–289. Lecture Notes in Computer Science, Springer-Verlag, Vol. 313, 1988.

    Google Scholar 

  11. S. Chen. Some extensions of probabilistic logic. Proceedings of the AAAI Workshop on Uncertainty in Artificial Intelligence, Philadelphia, PA, August 8–10, pages 43–48, 1986; An extended version appeared in Uncertainty in Artificial Intelligence, Vol. 2, edited by L. N. Kanal and J. F. Lemmer, North-Holland, 1986.

    Google Scholar 

  12. S. Chen. Automated reasoning on neural networks: A probabilistic approach. IEEE First International Conference on Neural Networks, San Diego CA, June 21–24, 1987.

    Google Scholar 

  13. S. Chen. Knowledge discovery of gene functions and metabolic pathways. IEEE BioInformatic and Biomedical Engineering Conference, Washington, DC, November 2000.

    Google Scholar 

  14. S. Chen. Knowledge representation for systems biology. First International Conference on Systems Biology, Tokyo Japan, November 14–16, 2000.

    Google Scholar 

  15. S. Chen. Digital Libraries: The Life Cycle of Information. Better Earth Publisher, 1998.

    Google Scholar 

  16. P. Davidsson, A. Westman-Brinkmalm, C.L. Nilsson, M. Lindbjer, L. Paulson, N. Andreasen, M. Sjogren, and K. Blennow. Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients. Neuroreport, 13(5):611–5, 2002.

    Article  PubMed  CAS  Google Scholar 

  17. N.D. Denslow, M.E. Michel, M.D. Temple, C. Hsu, K. Saatman, and R.L. Hayes. Application of Proteomics Technology to the Field of Neurotrauma. Journal of Neurotrauma, 20: 401–407, (2003).

    Article  PubMed  Google Scholar 

  18. S. Derra. Lab-on-a-chip technologies emerging from infancy. Drug Discovery & Development, 6(5): 40–45, 2003.

    Google Scholar 

  19. J. Finnie Animal models of traumatic brain injury: a review. Australian Veterinary Journal, 79(9): 628–633, 2001.

    Article  PubMed  CAS  Google Scholar 

  20. M. Fountoulakis, R. Hardmaier, E. Schuller, and G. Lubec. Differences in protein level between neonatal and adult brain. Electrophoresis, 21(3): 673–678, 2000.

    Article  PubMed  CAS  Google Scholar 

  21. M. Fountoulakis, E. Schuller, R. Hardmeier, P. Berndt, and G. Lubec. Rat brain proteins: two-dimensional protein database and variations in the expression level. Electrophoresis, 20(18): 3572–3579, 1999.

    Article  PubMed  CAS  Google Scholar 

  22. S.A. Gerber, J. Rush, O. Stemman, M.W. Kirschner, and S.P. Gygi. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proceedings of the National Academy of Sciences, 100: 6940–6945, 2003.

    Article  CAS  Google Scholar 

  23. I. Goldknopf, H.R. Park, and H.M. Kuerer. Merging diagnostics with therapeutic proteomics. IVD Technology, 9(1): 1–6, 2003.

    Google Scholar 

  24. A. Gorg, W. Postel, and S. Gunther. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 9: 531–546, 1988.

    Article  PubMed  CAS  Google Scholar 

  25. S.G. Grant, W.P. Blackstock. Proteomics in neuroscience: from protein to network. Journal of Neuroscience, 21(21): 8315–8, 2001.

    PubMed  CAS  Google Scholar 

  26. S.G.N. Grant and H. Husi. Proteomics of multiprotein complexes: answering fundamental questions in neuroscience. Trends in Biotechnology, 19(10 Suppl):S49–54, 2001.

    Article  PubMed  CAS  Google Scholar 

  27. S. Graslund, R. Falk, E. Brundell, C. Hoog, and S. Stahl. A high-stringency proteomics concept aimed for generation of antibodies specific for cDNA-encoded proteins. Biotechnology and Applied Biochemistry, 35(Pt 2): 75–82, 2002.

    Article  PubMed  CAS  Google Scholar 

  28. S.P. Gygi, B. Rist, S.A. Gerber, F. Turecek, M.H. Gelb, and R. Aebersold. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnology, 17: 994–9, 1999.

    Article  PubMed  CAS  Google Scholar 

  29. S.P. Gygi and R. Aebersold. Mass spectrometry and proteomics. Current Opinion in Chemical Biology, 4: 489494, 2000.

    Article  Google Scholar 

  30. S. Hanash. HUPO initiatives relevant to clinical proteomics. Molecular and Cellular Proteomics, 3: 298–301, 2004.

    Article  PubMed  CAS  Google Scholar 

  31. S. Hanash. Disease proteomics. Nature, 422(6928): 226–232, 2003.

    Article  PubMed  CAS  Google Scholar 

  32. D.F. Hochstrasser, J.C. Sanchez, and R.D. Appel. Proteomics and its trends facing nature’s complexity. Proteomics, 2(7): 807–812, 2002.

    Article  PubMed  CAS  Google Scholar 

  33. H. Husi and S.G. Grant. Proteomics in neuroscience: from protein to network. Journal of Neuroscience, 21(21): 8315–8318, 2001.

    Google Scholar 

  34. P. James. Chips for proteomics; a new tool or just hype? Biotechniques, Suppl:4–10, 2002

    PubMed  Google Scholar 

  35. D. Janssen. Major approaches to identifying key PTMs. Genomics and Proteomics, 3(1): 38–41, 2003.

    Google Scholar 

  36. P. Jungblut, B. Thiede, U. Zimny-Arndt, E.C. Muller, C. Scheler, and B. Wittmann-Liebold. Resolution power of two-dimensional electrophoresis and identification of proteins from gels. Electrophoresis, 17: 839–847, 1996.

    Article  PubMed  CAS  Google Scholar 

  37. H. Kitano. Systems biology: a brief overview. Science, 295(5560): 1662–4, 2002.

    Article  PubMed  CAS  Google Scholar 

  38. H. Kitano. Computational systems biology. Nature, 420(6912): 206–10, 2002.

    Article  PubMed  CAS  Google Scholar 

  39. H. Kitano. Perspectives on systems biology. New Generation Computing, 18(3): 199–216, 2000.

    Google Scholar 

  40. B. Kosko. Fuzzy cognitive maps. International Journal of Man-Machine Studies, 24: 65–75, 1986.

    Article  Google Scholar 

  41. W. Kusnezow and J.D. Hoheisel. Antibody microarrays: promises and problems. Bio Techniques, 33(suppl.): 1423, 2002.

    Google Scholar 

  42. P.F. Lemkin. Comparing Two-dimensional Electrophoretic Gel Images Across the Internet. Electrophoresis, 18: 2759–2773, 1997.

    Article  PubMed  CAS  Google Scholar 

  43. B. Lu and T. Chen. A suffix tree approach to the interpretation of tandem mass spectra: applications to peptides of non-specific digestion and post-translational modifications. Bioinformatics, 19(Suppl 2): II113–II121, 2003.

    PubMed  Google Scholar 

  44. G. Lubec, K. Krapfenbauer, and M. Fountoulakis. Proteomics in brain research: potentials and limitations. Progress in Neurobiology, 69(3): 193–211, 2003.

    Article  PubMed  CAS  Google Scholar 

  45. P. Mendes. GEPASI: a software for modeling the dynamics, steady states and control of biochemical and other systems. Computer Applications in the Biosciences, 9(5): 563–571, 1993.

    PubMed  CAS  Google Scholar 

  46. P. Mendes. Biochemistry by numbers: simulation of biochemical pathways with Gepasi 3. Trends in Biochemical Sciences, 22: 361–363, 1997.

    Article  PubMed  CAS  Google Scholar 

  47. H.E. Meyer, J. Klose, and M. Hamacher. HBPP and the pursuit of standardisation. Lancet Neurology, 2(11): 657–658, 2003.

    Article  PubMed  Google Scholar 

  48. M.D. Moody. Array-based ELISAs for high-throughput analysis of human cytokines. Biotechniques, 31: 186–194, 2001.

    PubMed  CAS  Google Scholar 

  49. W.F. Patton. Detection technologies in proteome analysis. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 771(1–2): 3–31, 2002.

    Article  PubMed  CAS  Google Scholar 

  50. J. Peng, J.E. Elias, C.C. Thoreen, L.J. Licklider, and S.P. Gygi. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large scale protein analysis: The yeast proteome. Journal of Proteome Research, 2: 43–50, 2003.

    Article  PubMed  CAS  Google Scholar 

  51. B.R. Pike, J. Flint, J.R. Dave, X.-C. Lu, K.K.W. Wang, F.C. Tortella, and R.L. Hayes. Accumulation of calpain and caspase-3 proteolytic fragments of brain-derived αII-spectrin in CSF after middle cerebral artery occlusion in rats. Journal of Cerebral Blood Flow & Metabolism, 24(1): 98–106, 2004.

    Article  CAS  Google Scholar 

  52. B.R. Pike, J. Flint, S. Dutta, E. Johnson, K.K.W. Wang, and R.L. Hayes. Accumulation of non-erythroid aII-spectrin and calpain-cleaved aII-spectrin breakdown products in cerebrospinal fluid after traumatic brain injury in rats. Journal of Neurochemistry, 78: 1297–1306, 2001.

    Article  PubMed  CAS  Google Scholar 

  53. A. Raabe, C. Grolms, and V. Seifert. Serum markers of brain damage and outcome prediction in patients after severe head injury. British Journal of Neurosurgery, 13: 56–59, 1999.

    Article  PubMed  CAS  Google Scholar 

  54. R. Raghupathi, D.I. Graham, and T.K. Mcintosh. Apoptosis after traumatic brain injury. Journal of Neurotrauma, 17(10): 927–938, 2000.

    Article  PubMed  CAS  Google Scholar 

  55. V.N. Reddy, M.L. Mavrovouniotis, and M. N. Liebman. Petri net representations in metabolic pathways. Proceedings of ISMB, pp. 328–336, 1993.

    Google Scholar 

  56. D.R. Reyes, D. Iossifidis, P.A. Auroux, and A. Manz. Micro total analysis systems. 1. Introduction, theory, and technology. Analytical Chemistry, 74(12): 2623–2636, 2002.

    Article  PubMed  CAS  Google Scholar 

  57. B. Romner, T. Ingebrigtsen, P. Kongstad, S.E. Borgesen. Traumatic brain damage: serum S-100 protein measurements related to neuroradiological findings. Journal of Neurotrauma, 17(8): 641–647, 2000.

    Article  PubMed  CAS  Google Scholar 

  58. H. Schäfer, K. Marcus, A. Sickmann, M. Herrmann, J. Klose, and H.E. Meyer. Identification of phosphorylation and acetylation sites in alphaA-crystallin of the eye lens (mus musculus) after two-dimensional gel electrophoresis. Analytical and Bioanalytical Chemistry, 376(7): 966–972, 2003.

    Article  CAS  Google Scholar 

  59. D.C. Schwartz and M. Hochstrasser. A superfamily of protein tags: ubiquitin, SUMO and related modifiers. Trends in Biochemical Sciences, 28(6): 321–328, 2003.

    Article  PubMed  CAS  Google Scholar 

  60. R.F. Service. Gold rush-High-speed biologists search for gold in proteins. Science, 294(5549): 2074–2077, 2001.

    Article  PubMed  CAS  Google Scholar 

  61. R.D. Smith. Probing proteomes-seeing the whole picture? Nature Biotechnology, 18: 1041–1042, 2000.

    Article  PubMed  CAS  Google Scholar 

  62. R. Somogyi and C.A. Sniegoski. Modeling the complexity of genetic networks: understanding multigenic and pleiotropic regulation. Complexity, 1: 45–63, 1996.

    Google Scholar 

  63. D.L. Tabb, W.H. McDonald, and J.R. Yates. DTASelect and contrast: Tools for assembling and comparing protein identifications from shotgun proteomics. Journal of Proteome Research, 1: 21–26, 2002.

    Article  PubMed  CAS  Google Scholar 

  64. M. Unlu, M. E. Morgan, and J.S. Minden. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis, 18(11): 2071–2077, 1997.

    Article  PubMed  CAS  Google Scholar 

  65. A. Wiesner. Detection of Tumor Markers with ProteinChip(R) Technology. Current Pharmaceutical Biotechnology, 5(1): 45–67, 2004.

    Article  PubMed  CAS  Google Scholar 

  66. J.R. Yates III, E. Carmack, L. Hays, A.J. Link, and J.K. Eng. Automated Protein Identification using Microcolumn Liquid Chromatography-Tandem Mass Spectrometry. In A.J. Link, editor, 2-D Proteome Analysis Protocols, pages 553–569. Humana Press, Totowa, NJ, 1999.

    Google Scholar 

  67. J.R. Yates, S.F. Morgan, C.L. Gatlin, P.R. Griffin, and J.K. Eng. Method to compare collision-induced dissociation spectra of peptides: Potential for library searching and subtractive analysis. Analytical Chemistry, 70: 3557–3565, 1998.

    Article  PubMed  CAS  Google Scholar 

  68. W.R. Zhang, S. Chen, W. Wang, and R.S. King. A cognitive map based approach to the coordination of distributed cooperative agents. IEEE Transactions on Systems, Man, and Cybernetics, 22: 103–114, 1992.

    Article  Google Scholar 

  69. W.R. Zhang, S. Chen, and J.C. Bezdek. Pool2: A generic system for cognitive map development and decision analysis. IEEE Transactions on Systems, Man, and Cybernetics, 19: 31–39, 1989.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chen, SS., Haskins, W.E., Ottens, A.K., Hayes, R.L., Denslow, N., Wang, K.K.W. (2007). Bioinformatics for Traumatic Brain Injury: Proteomic Data Mining. In: Pardalos, P.M., Boginski, V.L., Vazacopoulos, A. (eds) Data Mining in Biomedicine. Springer Optimization and Its Applications, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-69319-4_20

Download citation

Publish with us

Policies and ethics