Skip to main content

Performance Modeling for Carbon Nanotube Interconnects

  • Chapter
  • First Online:
Carbon Nanotube Electronics

Part of the book series: Integrated Circuits and Systems ((ICIR))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In [41], a factor of 2 corresponding to the contributions of both conduction and valence subbands was missed in the code written to calculate the number of conduction channels in a graphene shell. The value of a was consequently underestimated by a factor of 2.

References

  1. Topics in Applied Physics, “Carbon Nanotubes: Synthesis, Structure, Properties and Applications,” M.S. Dresselhaus, G. Dresselhaus, and Ph. Avouris (Eds.), Berlin, New York, Springer, 2000.

    Google Scholar 

  2. A. P. Graham, et al., “How do carbon nanotubes fit into the semiconductor roadmap?” Appl. Phys. A, vol. 80, pp. 1141–1151, 2005.

    Article  Google Scholar 

  3. P. L. McEuen, M. S. Fuhrer, and H. Park, “Single-walled carbon nanotube electronics,” IEEE Trans. Nanotech., vol. 1, pp. 78–85, March 2002.

    Article  Google Scholar 

  4. R. Meservey and P. M. Tedrow, “Measurement of the kinetic inductance of superconducting linear structures,” J. Appl. Phys., vol. 40, pp. 2028–2034, April 1969.

    Article  Google Scholar 

  5. J. M. Pond, J. H. Claassen, and W. L. Carter, “Measurement and modeling of kinetic inductance microstrip delay lines,” IEEE Trans. Microwave Theory and Techniques, vol. MTT-35, pp. 1256–1262, Dec. 1987.

    Google Scholar 

  6. H. Ehrenreich and H. R. Philipp, “Optical properties of Ag and Cu,” Phys. Rev., vol. 128, pp. 1622–1629, Nov. 1962.

    Article  Google Scholar 

  7. A. Porch, P. Mauskopf, S. Doyle, and C. Dunscombe, “Calculation of the characteristics of coplanar resonators for kinetic inductance detectors,” IEEE Trans. Appl. Superconductivity, vol. 15, pp. 552–555, June 2005.

    Article  Google Scholar 

  8. A. Naeemi and J. D. Meindl, “Design and performance modeling for single-wall carbon nanotubes as local, semi-global and global interconnects in gigascale integrated systems,” IEEE Trans. Electron Devices, vol. 54, pp. 26–37, Jan. 2007.

    Article  Google Scholar 

  9. M. W. Bockrath, “Carbon Nanotubes: Electrons in One Dimension,” Ph.D. dissertation, University of California, Berekeley, CA 1999.

    Google Scholar 

  10. P. J. Burke, “Lüttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes,” IEEE Trans. Nanotech. vol. 1, pp. 129–144, Sept. 2002.

    Article  Google Scholar 

  11. S. Salahuddin, M. Lundstrom, and S. Datta, “Transport effects on signal propagation in quantum wires,” IEEE Trans. Electron Devices, vol. 52, pp. 1734–1741, Aug. 2005.

    Article  Google Scholar 

  12. Z. Yu and P. J. Burke, “Microwave transport in metallic single-walled carbon nanotubes,” Nano Letters, vol. 5, pp. 1403–1406, June 2005.

    Article  Google Scholar 

  13. J. R. Juroshek, C. A. Hoer, and R. F. Kaiser, “Calibrating network analyzers with imperfect test ports," IEEE Transactions on Instrumentation and Measurement, vol. 38, pp. 898–901, 1989.

    Article  Google Scholar 

  14. S. Datta, “Electronic Transport in Mesoscopic Systems,” Cambridge University Press, 1995.

    Google Scholar 

  15. Z. Yao, C. L. Kane, and C. Dekker, “High-field electrical transport in single-wall carbon nanotubes,” Phys. Rev. Lett., vol. 84, pp. 2941–2944, 2000.

    Article  Google Scholar 

  16. W. Liang, M. Bockrath, D. Bozovic, J. H. Hafner, M. Tinkham, and H. Park, “Fabry-perot interference in nanotube electron waveguide,” Nature, vol. 411, pp. 665–669, June 2001.

    Article  Google Scholar 

  17. A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, and H. Dai, “High-field quasiballistic transport in short carbon nanotubes,” Phys. Rev. Lett., vol. 92, p. 106804, March 2004.

    Article  Google Scholar 

  18. O. Hjortstam, P. Isberg, S. Söderholm, and H. Dai, “Can we achieve ultra-low resistivity in carbon nanotube-based metal composites?” Appl. Phys. A, vol. 78, pp. 1175–1179, Jan. 2004.

    Article  Google Scholar 

  19. J. Y. Park, S. Rosenbelt, Y. Yaish, V. Sazonova, H. Üstunel, S. Braig, T. A. Arias, and P. L. McEuen, “Electron–phonon scattering in metallic single-walled carbon nanotubes,” Nano Lett., vol. 4, pp. 517–520, 2004.

    Article  Google Scholar 

  20. S. Li, Z. Yu, C. Rutherglen, and P. J. Burke, “Electrical properties of 0.4 cm long single-walled carbon nanotubes,” Nano Lett., vol. 4, pp. 2003–2007, 2004.

    Article  Google Scholar 

  21. P. J. de Pablo, et al., “Nonlinear resistance versus length in single-walled carbon nanotubes,” Phys. Rev. Lett. Vol. 88, p. 036804, Jan. 2002.

    Article  Google Scholar 

  22. A. Javey, P. Qi, Q. Wang, and H. Dai, “10- to 50-nm-long quasi-ballistic carbon nanotube devices obtained without complex lithography,” Proc. Natl. Acad. Sci. USA, vol. 101, pp. 13408–13410, 2004.

    Google Scholar 

  23. International Technology Roadmap for Semiconductors (ITRS), ed., Semiconductor Industry Association, CA, 2003.

    Google Scholar 

  24. HSPICE Simulation and Analysis User Guide, Release U-2003.03-PA, Synopsys, Inc., 2003.

    Google Scholar 

  25. A. Raychowdhury and K. Roy, “A circuit model for carbon nanotube interconnects: comparative study with Cu interconnects for scaled technologies,” Int. Conf. Comp. Aided Design, pp. 237–240, 2004.

    Google Scholar 

  26. W. Steinhogl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt, “Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller,” J. Appl. Phys., vol. 97, pp. 023706-7, 2005.

    Article  Google Scholar 

  27. P. Delaney, H. J. Choi, J. Ihm, S. G. Louie, and M. L. Cohen, “Broken symmetry and pseudogaps in ropes of carbon nanotubes,” Phys. Rev. B, vol. 60, pp. 7899–7904, Sept. 1999.

    Article  Google Scholar 

  28. A. A. Maarouf, C. L. Kane, and E. J. Mele, “Electronic structure of carbon nanotube ropes,” Phys. Rev. B, vol. 61, pp. 11156–11165, April 2000.

    Article  Google Scholar 

  29. H. Stahl, J. Appenzeller, R. Martel, and P. Avouris, “Intertube coupling in ropes of single-wall carbon nanotubes,” Phys. Rev. B, vol. 61, pp. 11156–11165, April 2000.

    Article  Google Scholar 

  30. M. Nihei, D. Kondo, A. Kawabata, Sh. Sato, H. Shioya, M. Sakaue, T. Iwai, M. Ohfuti, and Y. Awano, “Low-resistance multi-walled carbon nanotube vias with parallel channel conduction of inner shells,” IEEE Int. Interconnect Technol. Conf., pp. 234–236, June 2005.

    Google Scholar 

  31. S. M. Rossnagel and T. S. Kuan, “Alteration of Cu conductivity in the size effect regime,” J. Vac. Sci. Technol. B, vol. 22, pp. 240–247, Jan./Feb. 2004.

    Article  Google Scholar 

  32. A. Naeemi and J. D. Meindl, “Impact of electron–phonon scattering on the performance of carbon nanotube interconnects for gigascale integration (GSI),” IEEE Electron Device Lett., pp. 476–478, July 2005.

    Google Scholar 

  33. A. Naeemi, J. A. Davis, and J. D. Meindl, “Compact physical models for multilevel interconnect crosstalk in gigascale integration (GSI),” IEEE Trans. Electron. Devices, vol. 51, pp. 1902–1912, Nov. 2004.

    Article  Google Scholar 

  34. RAPHAEL, “Interconnect Analysis Program”, TMA Inc, 1996.

    Google Scholar 

  35. N. C. Bruce, A. García-Valenzuela, and D. Kouznetsov, “Rough-surface capacitor: approximations of the capacitance with elementary functions," J. Phys. D: Appl. Phys., vol. 32, pp. 2692–2702, 1999.

    Article  Google Scholar 

  36. R. Venkatesan, J. A. Davis, and J. D. Meindl, “Compact distributed RLC interconnect models – part IV: unified models for time delay, crosstalk, and repeater insertion," IEEE Trans. Electron Devices, vol. 50, pp. 1094–1102, 2003.

    Article  Google Scholar 

  37. H. J. Li, W. G. Lu, J. J. Li, X. D. Bai, and C. Z. Gu, "Multichannel ballistic transport in multiwall carbon nanotubes," Phys. Rev. Lett., vol. 95, pp. 086601-4, 2005.

    Article  Google Scholar 

  38. Q. Yanm J. Wu, G. Zhou, W. Duan, and B. Gu, “Ab initio study of transport properties of multiwalled carbon nanotubes,” Phys. Rev. B, vol. 72, p. 155425, Oct. 2005.

    Article  Google Scholar 

  39. J. Y. Huang, S. Chen, S. H. Jo, Z. Wang, D. X. Han, G. Chen, M. S. Dresselhaus, and Z. F. Ren, “Atomic-scale imaging of wall-by-wall breakdown and concurrent transport measurements in multiwall carbon nanotubes," Phys. Rev. Lett., vol. 94, pp. 236802-4, 2005.

    Article  Google Scholar 

  40. L. Forró and C. Schönenberger, “Physical properties of multi-wall nanotubes,” Topics in Applied Physics, Carbon Nanotubes: Synthesis, Structure, Properties and Applications, M.S. Dresselhaus, G. Dresselhaus, and Ph. Avouris (Eds.), Springer, 2000.

    Google Scholar 

  41. A. Naeemi and J. D. Meindl, “Compact physical models for multiwall carbon-nanotube interconnects,” IEEE Electron Device Lett., vol. 27, pp. 338–340, May 2006.

    Article  Google Scholar 

  42. A. Svizhenko, M. P. Anantram, and T. R. Govindan, “Ballistic transport and electrostatics in metallic carbon nanotubes,” IEEE Trans. Nanotech., vol. 4, pp. 557–562, Sept. 2005.

    Article  Google Scholar 

  43. C. T. White and T. N. Todorov, “Carbon nanotubes as long ballistic conductors,” Nature, vol. 393, pp. 240–242, May 1998.

    Article  Google Scholar 

  44. J. Jiang, J. Dong, H. T. Yang, and D. Y. Xing, “Universal expression for localization length in metallic carbon nanotubes,” Phys. Rev. B, vol. 64, p. 045409, July 2001.

    Article  Google Scholar 

  45. M. Inohara et al., “High performance copper and low-k interconnect technology fully compatible to 90 nm-node SOC application (CMOS4),” IEDM, pp. 77–80, 2002.

    Google Scholar 

  46. T. Sakurai, “Perspectives on power-aware electronics,” IEEE ISSCC Dig, Tech. Papers, pp. 26–29, Feb. 2003.

    Google Scholar 

  47. P. Zarkesh-Ha, P. Wright, S. Lakshminarayanan, C.-C. Cheng, W. Loh, and W. Lynch, “Backend process optimization for 90 nm high-density ASIC chips,” IEEE Int. Interconnect Technol. Conf., pp. 123–125, June 2003.

    Google Scholar 

  48. A. Naeemi, R. Venkatesan, and J. D. Meindl, “Optimal global interconnects for GSI,” IEEE Trans. Electron. Devices, vol. 50, pp. 980–987, April 2003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Naeemi, A., Meindl, J.D. (2009). Performance Modeling for Carbon Nanotube Interconnects. In: Kong, J., Javey, A. (eds) Carbon Nanotube Electronics. Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-69285-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-69285-2_7

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-36833-7

  • Online ISBN: 978-0-387-69285-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics