Circuits, Applications and Outlook

  • Ali Keshavarzi
  • Arijit Raychowdhury
Part of the Integrated Circuits and Systems book series (ICIR)


In this chapter, we summarize the opportunities and challenges in the integration of carbon nanotubes into circuits and systems for electronic applications, and we present an outlook for the field. First, the promise of nanotube transistors for future digital circuits is discussed in Section 10.2 while presenting a framework for benchmarking their performance limits as compared to the Si technology. Nanotube transistor design considerations for circuit integration are also discussed. In Section 10.3, we cover a range of extended nanotube applications beyond digital circuits and present a discussion of the short-term exploratory applications and products based on nanotube devices. Finally, the materials, processing, and device challenges associated with nanotube electronics are discussed in Section 10.4 followed by the concluding remarks in Section 10.5.

Nanotubes for Digital Electronics

Scaling of FETs

Aggressive scaling of the CMOS technology continues in nanoscale (Figs.


Parasitic Capacitance Digital Circuit Schottky Barrier Height Voltage Swing Technology Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    K. Roy, S. Mukhopadhyay, H. Mahmoodi-Meimandi, “Leakage current mechanisms and leakage reduction techniques in deep-submicron CMOS circuits,” IEEE Proceedings, Feb. 2003, pp. 305–327.Google Scholar
  2. 2.
    S. Borkar, “Technology trends and design challenges for microprocessor design,” Proceedings of the 24th European Solid-State Circuits Conference, 1998. (ESSCIRC ’98) 22–24 Sept. 1998, pp. 7–8.Google Scholar
  3. 3.
    A. Keshavarzi, J. W. Tschanz, S. Narendra, V. De, W. R. Daasch, K Roy, M. Sachdev, C. F. Hawkins, “Leakage and process variation effects in current testing on future CMOS circuits,” IEEE Design and Test of Computers, 19(5), Sept.–Oct. 2002, pp. 36–43.Google Scholar
  4. 4.
    D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, Chenming Hu, “FinFET-a self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Transactions on Electron Devices, 47(12), Dec. 2000, pp. 2320–2325.CrossRefGoogle Scholar
  5. 5.
    B. Doyle, B. Boyanov, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, R. Rios, R. Chau, “Tri-Gate fully-depleted CMOS transistors: fabrication, design and layout,” Digest of Technical Papers VLSI Technology Symposium, June 2003, pp. 133–134.Google Scholar
  6. 6.
    S. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C.-H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Zhiyong Ma, B. McIntyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, Y. El-Mansy, “A 90-nm logic technology featuring strained-silicon,” IEEE Transactions on Electron Devices, 51(11), Nov. 2004, pp. 1790–1797.CrossRefGoogle Scholar
  7. 7.
    S. Datta, T. Ashley, R. Chau, K. Hilton, R. Jefferies, T. Martin, T. Phillips, “85 nm gate length enhancement and depletion mode InSb quantum well transistors for ultra high speed and very low power digital logic applications,” Technical Digest of International Electron Device Meeting, Dec. 2005, pp. 783–786.Google Scholar
  8. 8.
    P. L. McEuen, M. S. Fuhrer, H. Park, “Single-walled carbon nanotube electronics,” IEEE Transactions on Nanotechnology, 1, March 2002, pp. 78–85.Google Scholar
  9. 9.
    Ph. Avouris, “Supertubes [carbon nanotubes]” IEEE Spectrum, 41(8), Aug. 2004, pp. 40–45.CrossRefGoogle Scholar
  10. 10.
    Ph. Avouris, J. Appenzeller, V. Derycke, R. Martel, S. Wind, “Carbon nanotube electronics,” Digest of International Electron Device Meet, Dec. 2002, pp. 281–284.Google Scholar
  11. 11.
    A. Keshavarzi, A. Raychowdhury, J. Kurtin, K. Roy, V. De, “Carbon nanotube field effect transistors for high performance digital circuits – transient analysis, parasitics, and scalability,” IEEE Transactions on Electron Devices, 35, Nov. 2006, pp. 2718–2726.CrossRefGoogle Scholar
  12. 12.
    A. Keshavarzi, A. Raychowdhury, J. Kurtin, K. Roy, and V. De, “Scalability of carbon nanotube FET-based circuits,” Proceeding of IEEE Asian Solid-State Circuit Conference, Nov. 2006, pp. 415–418.Google Scholar
  13. 13.
    R. Chau, S. Datta, M. Doczy, B. Doyle, B. Jin, J. Kavalieros, A. Majumdar, M. Metz, and M. Radosavljevic, “Benchmarking nanotechnology for high-performance and low-power logic transistor applications,” IEEE Transactions on Nanotechnology, 4(2), March 2005, pp. 153–158.CrossRefGoogle Scholar
  14. 14.
    V. Derycke, R. Martel, J. Appenzeller, Ph. Avouris, “Carbon nanotube inter- and intramolecular logic gates,” Nano Letters, 1(9), pp. 453–456.Google Scholar
  15. 15.
    A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, “Logic circuits with carbon nanotube transistors,” Science, 294, 2001, pp. 1317–1320.CrossRefGoogle Scholar
  16. 16.
    M. Freitag, M. Radosavljevic, Y. Zhou, A. T. Johnson, W. F. Smith, “Controlled creation of a carbon nanotube diode by a scanned gate,” Applied Physics Letters, 79(20), Nov. 2001, pp. 3326–3328.CrossRefGoogle Scholar
  17. 17.
    A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai, “Ballistic carbon nanotube field-effect transistors,” Nature, 427, 2003, pp. 654–657.CrossRefGoogle Scholar
  18. 18.
    J. Appenzeller, J. Knoch, M. Radosavljevic, Ph. Avouris, “Multimode transport in Schottky-Barrier carbon-nanotube field-effect transistors,” Physical Review Letters, 92, June 2004, p. 226802.CrossRefGoogle Scholar
  19. 19.
    M. Radosavljevic, S. Heinze, J. Tersoff, Ph. Avouris, “Drain voltage scaling in carbon nanotube transistors,” Applied Physics Letters, 83, 2003, p. 2435.CrossRefGoogle Scholar
  20. 20.
    A. Raychowdhury, A. Keshavarzi, J. Kurtin, V. De, K. Roy, “Carbon nanotube field effect transistors for high performance digital circuits – DC analysis and modeling toward optimum transistor structure," IEEE Transactions on Electron Device, 35, Nov. 2006, pp. 2711–2717.CrossRefGoogle Scholar
  21. 21.
    Y.-M. Lin, J. Appenzeller, J. Knoch, P. Avouris, “High-performance carbon nanotube field-effect transistor with tunable polarities,” IEEE Transactions on Nanotechnology, 4(5), Sept. 2005, pp. 481–489.CrossRefGoogle Scholar
  22. 22.
    J. Guo, A. Javey, H. Dai, S. Datta, M. Lundstrom, “Predicted performance advantages of carbon nanotube transistors with doped nanotubes as source/drain,” cond-mat, 0309039.Google Scholar
  23. 23.
    J. Appenzeller, Y.-M. Lin, J. Knoch, Ph. Avouris, “Band-to-band tunneling in carbon nanotube field-effect transistors,” Physical Review Letters, 93(19), Nov. 2004, p. 196805.CrossRefGoogle Scholar
  24. 24.
    S. O. Koswatta, D. E. Nikonov, M. S. Lundstrom, “Computational study of carbon nanotube p-i-n tunnel FETs,” Technical Digest of International Electron Device Meeting, Dec. 2005, pp. 525–528.Google Scholar
  25. 25.
    A. Raychowdhury, X. Fong, Q. Chen, K. Roy, “Analysis of super cut-off transistors for ultralow power digital logic circuits," Proc. of ISLPED, 1, 2006, pp. 1–8.Google Scholar
  26. 26.
    Simulation were performed by Purdue Emerging Technology Evaluator on NanoHUB –
  27. 27.
    A. Raychowdhury, J. Kurtin, K. Roy, V. De, A. Keshavarzi, “Digital circuits with carbon nanotube transistors," 2007 Proceeding of International Conference on Solid State Devices and Materials, Sept. 2007, pp. 1162–1163.Google Scholar
  28. 28.
    M. E. Hwang, A. Raychowdhury, and K. Roy, “Effectiveness of energy recovery techniques in reducing on-chip power density in molecular nano-technologies,” Proceedings of the 2004 International Symposium on Circuits and Systems, 3, May 2004, pp. 709–712.Google Scholar
  29. 29.
    J. Chen, C. Clinke, A. Afzali, P. Avouris, “Air-stable chemical doping of carbon nanotube transistors,” Proceedings of the Device Research Conference, 2004, pp. 137–138.Google Scholar
  30. 30.
    A. Javey, J. Guo, D. Farmer, Q. Wang, E. Yenilmez, R. Gordon, M. Lundstrom, H. Dai, “Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays,” Nanoletters, 4, 2004, pp. 1319–1322.Google Scholar
  31. 31.
    C. Kocabas, S. J. Kang, T. Ozel, M. Shim, and J. A. Rogers, “Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors,” Journal of Physical Chemistry C, 111(48), 2007, 17879–17886.CrossRefGoogle Scholar
  32. 32.
    K. Ryu, A. Badmaev, L. Gomez, F. Ishikawa, B. Lei, and C. Zhou. “Syn-thesis of aligned single-walled carbon nanotubes using catalysts de-fined by nanosphere lithography”, Journal of American Chemical Society, 129, 2007, 10104–10105.CrossRefGoogle Scholar
  33. 33.
    G. Zhang, X. Wang, X. Li, Y. Lu, A. Javey, and H. Dai, “Carbon nanotubes: from growth, placement, and assembly control to 60 mV/decade and Sub-60 mV/decade tunnel transistors”, IEEE IEDM Technical Digest, 2006.Google Scholar
  34. 34.
    N. Pimparkar, J. Guo, M. Alam, “Performance assessment of sub-percolating nanobundle network transistors by an analytical model," Digest of IEDM, 1, 2005, pp. 120–125.Google Scholar
  35. 35.
    X. Li, X. Tu, S. Zaric, K. Welsher, W. S. Seo, W. Zhao, and H. Dai, “Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection,” Journal of American Chemical Society, 129(51), 2007, 15770–15771.CrossRefGoogle Scholar
  36. 36.
    L. Zhang, S. Zaric, X. Tu, W. Zhao, and H. Dai, "Assessment of chemically separated carbon nanotubes for nanoelectronics,” Journal of American Chemical Society, 130(8), 2008, 2686–2691.CrossRefGoogle Scholar
  37. 37.
    A. Raychowdhury, J. Kurtin, S. Borkar, V. De, K. Roy, and A. Keshavarzi, “Theory of multi-tube carbon nanotube transistor for high speed variation-tolerant circuits,” 2008 Device Research Conference, June 23–25, 2008, Santa Barbara, California.Google Scholar
  38. 38.
    N. S. Lee, D. S. Chung, I. T. Han, J. H. Kang, Y. S. Choi, H. Y. Kim, S. H. Park, Y. W. Jin, W. K. Yi, M. J. Yun, J. E. Jung, C. J. Lee, J. H, You, S. H. Jo, C. G. Lee, and J. M. Kim, “Application of carbon nanotubes to field emission displays,” Diamond and Related Materials, 10(2), Feb. 2001, pp. 265–270.CrossRefGoogle Scholar
  39. 39.
    M. Nihei, M. Horibe, A. Kawabata, and A. Yuji, “Carbon nanotube vias for future LSI interconnects,” Proceedings of the IEEE 2004 International Interconnect Technology Conference, June 2004, pp. 251–253.Google Scholar
  40. 40.
    M. E. Hwang, A. Raychowdhury, and K. Roy, “Energy-recovery techniques to reduce on-chip power density in molecular nanotechnologies,” IEEE Transaction on Circuits and Systems I: Fundamental Theory and Applications, 52(8), Aug. 2005, pp. 1580–1589.CrossRefGoogle Scholar
  41. 41.
    A. Javey, R. Tu, D. B. Farmer, J. Guo, R. G. Gordon, H. Dai, “High performance n-type carbon nanotube field-effect transistors with chemically doped contacts,” Nano Letters, 5(2), 2005, pp. 345–348.CrossRefGoogle Scholar
  42. 42.
    J. A. Misewich, R. Martel, Ph. Avouris, J. C. Tsang, S. Heinze, and J. Tersoff, “Electrically induced optical emission from a carbon nanotube FET,” Science, 300(5620), May 2003, pp. 783–786.CrossRefGoogle Scholar
  43. 43.
    M. Shim and G. P. Siddons, “Photoinduced conductivity changes in carbon nanotube transistors,” Applied Physics Letters, 83(17), Oct. 2003, pp. 3564–3566.CrossRefGoogle Scholar
  44. 44.
    Y. M. Li et al. “Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method,” Nano Letters, 4(2), Feb. 2004, pp. 317–321.CrossRefGoogle Scholar
  45. 45.
    C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin Epitaxial Graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” Journal of Physical Chemistry B, 108, 2004, p. 19912.CrossRefGoogle Scholar
  46. 46.
    K. Ryu, A. Badmaev, L. Gomez, F. Ishikawa, B. Lei, and C. Zhou, “Symthesis of algined single-walled carbon nanotubes using catalysts defined by nanosphere lithography,” Journal of American Chemical Society, 129, 2007, pp. 10104–10105.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ali Keshavarzi
    • 1
  • Arijit Raychowdhury
  1. 1.Intel CorporationHillsboroUSA

Personalised recommendations