Abstract
A pulse-based FCC-compliant ultra-wideband (UWB) transceiver is designed and integrated as a four chip and planar antenna solution. The signaling is based on 500 MHz-wide subbanded binary-phase-shift-keyed (BPSK) Gaussian pulses centered in one of 14 bands across the 3.1–10.6 GHz bandwidth. The system includes a UWB planar antenna, a Gaussian BPSK transmitter, a direct-conversion front-end, dual 500 MSps analog-to-digital converters, and a parallelized digital baseband for timing control and data demodulation. The RF local oscillators and baseband gain stages are implemented externally. A 100 Mbps wireless link is established with this chipset. A bit-error rate of 10-3 is observed at a -84 dBm sensitivity. This energy-aware receiver is implemented with strategic hardware hooks such that the quality of service is exchangeable with power consumption.
Keywords
- Antenna ċ ADC ċ AGC ċ DLL ċ Gaussian pulse generator ċ LNA ċ notch filter ċ parallelism ċ quality-of-service (QoS) ċ RAKE ċ transceiver ċ ultra-wideband (UWB)
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Federal Communications Commission, “Ultra-Wideband Transmission Systems,” Federal Register, vol.67, no.95, February 14, 2002.
L. Stoica, A. Rabbachin, and I. Oppermann, “A Low-Complexity Noncoherent IR-UWB Transceiver Architecture With TOA Estimation,” in IEEE Transactions on Microwave Theory and Techniques, April 2006.
T. Terada, S. Yoshizumi, M. Muqsith, Y. Sanada, and T. Kuroda, “A CMOS Ultra-Wideband Impulse Radio Transceiver for 1-Mb/s Data Communications and ±2.5-cm Range Finding,” IEEE Journal of Solid-State Circuits, vol.41, no.4, pp.891–898, April 2006.
A. Tan and M. Chia, “UWB RADAR Transceiver and Measurement for Medical Imaging,” in IEEE International Workshop on Biomedical Circuits and Systems, 2004.
M. Shen, T. Koivisto, T. Peltonen, L. Zheng, E. Tjukanoff, and H. Tenhunen, “UWB Radio Module Design for Wireless Sensor Networks,” in NORCHIP Conference, 2005.
I. O’Donnell and R. Brodersen, “A 2.3mW Baseband Impulse-UWB Transceiver Front-end in CMOS,” in IEEE Proceedings of the Symposium on VLSI Circuits, June 2006.
A. Tamtrakarn, H. Ishikuro, K. Ishida, M. Takamiya, and T. Sakurai, “A 1-V 299μW Flashing UWB Transceiver Based on Double Thresholding Scheme,” in IEEE Proceedings of the Symposium on VLSI Circuits, June 2006.
S. Chakraborty, N. Belk, A. Batra, M. Goel, and A. Dabak, “Towards Fully Integrated Wideband Transceivers: Fundamental Challenges, Solutions and Future,” in IEEE International Workship on Radio-Frequency Integration Technology, November 2005.
BIBentryALTinterwordspacing “Qualcomms High-End GPS Features Now Available in Mass-Market Chipsets,” October 5 2005. [Online]. Available: urlhttp://www.qualcomm.com/press/releases/2005/ 051003_gpsone_enhance.htm% l BIBentrySTDinterwordspacing
B. P. Ginsburg and A. P. Chandrakasan, “Dual Scalable 500MS/s, 5b Time-Interleaved SAR ADCs for UWB Applications,” in IEEE Proceedings of the Custom Integrated Circuits Conference, September 2005.
R. Blazquez and A. P. Chandrakasan, “Architectures for Energy-Aware Impulse UWB Communication,” in IEEE Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, 2005.
D. D. Wentzloff and A. P. Chandrakasan, “Gaussian Pulse Generators for Subbanded Ultra-Wideband Transmitters,” IEEE Transactions on Microwave Theory and Techniques, vol.54, no.4, pp.1647–1655, June 2006.
J. D. Powell and A. P. Chandrakasan, “Differential and Single Ended Elliptical Antennas for 3.1–10.6 GHz Ultra Wideband Communication,” in IEEE Proceedings of the Antennas and Propagation Society International Symposium, June 2004.
F. S. Lee and A. P. Chandrakasan, “A BiCMOS Ultra-Wideband 3.1-10.6-GHz Front-End,” IEEE Journal of Solid-State Circuits, vol.41, no.8, pp.1784–1791, August 2006.
B. Razavi, T. Aytur, C. Lam, F. -R. Yang, K. -Y. Li, R. -H. Yan, H. -C. Kang, C. -C. Hsu, and C. -C. Lee, “A UWB CMOS Transceiver,” IEEE Journal of Solid-State Circuits, vol.12, pp.2555–2562, 2005.
A. Ismail and A. A. Abidi, “A 3.1–8.2GHz Zero-IF Receiver and Direct Frequency Synthesizer in 0.18μm SiGe BiCMOS for Mode-2 MB-OFDM UWB Communication,” IEEE Journal of Solid-State Circuits, vol.40, pp. 2573–2582, December 2005.
J. Bergervoet, H. Kundur, D. Leenaerts, R. vande Beek, R. Roovers, G. vander Weide, H. Waite, and S. Aggarwal, “A Fully Integrated 3-band OFDM UWB Transceiver in 0.25 μm SiGe BiCMOS,” in IEEE Proceedings of the Radio Frequency Integrated Circuits Symposium, June 2006.
C. Sandner, S. Derksen, D. Draxelmayr, S. Ek, V. Filimon, G. Leach,S. Marsili, D. Matveev, K. Mertens, F. Michl, H. Paule, M. Punzenberger, C. Reindl, R. Salerno, M. Tiebout, A. Wiesbauer, I. Winter, and Z. Zhang, “A WiMedia/MBOA-Compliant CMOS RF Transceiver for UWB,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, February2006.
A. Tanaka, H. Okada, H. Kodama, and H. Ishikawa, “A 1.1V 3.1-to-9.5GHz MB-OFDM UWB Transceiver in 90nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, February 2006.
T. Aytur, H. -C. Kang, R. Mahadevappa, M. Altintas, S. ten Brink,T. Diep, C. -C. Hsu, F. Shi, F. -R. Yang, C. -C. Lee, R. -H. Yan, and B. Razavi, “A Fully Integrated UWB PHY in 0.13 μm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2006.
BIBentryALTinterwordspacing “XS110 UWB Solution forMedia-Rich Wireless Applications,” 2004. [Online]. Available:urlhttp://www.freescale.com/files/microcontrollers/doc/fact_sheet/MOTUWBF%S.pdf BIBentrySTDinterwordspacing
S. Iida, K. Tanaka, H. Suzuki, N. Yoshikawa, N. Shoji, B. Griffiths,D. Mellor, F. Hayden, I. Butler, and J. Chatwin, “A 3.1 to 5GHz CMOS DSSS UWB Transceiver for WPANs,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, February 2005.
A. Kasamatsu, K. Li, and T. Matsui, “Development of CMOS UWB Transceivers in NICT UWB Consortium,” in Proceedings of the APCM 2005, December 2005.
BIBentryALTinterwordspacing “WiMedia Alliance Technical Resource Webpage,” 2005. [Online]. Available: urlhttp://www.wimedia.org/en/resources/technicallibrary.asp?id=res BIBentrySTDinterwordspacing
R. vande Beek, D. Leenaerts, and G. vander Weide, “A Fast-Hopping Single-PLL 3-Band MB-OFDM UWB Synthesizer,” IEEE Journal of Solid-State Circuits, vol.41, no.7, pp.1522–1529, July 2006.
J. Lee, “A 3-to-8-GHz Fast-Hopping Frequency Synthesizer in 0.18-μm CMOS Technology,” IEEE Journal of Solid-State Circuits, vol.41, no.3, pp.566–573, March 2006.
C. -F. Liang, S. -I. Liu, Y. -H. Chen, T. -Y. Yang, and G. -K. Ma, “A 14-band Frequency Synthesizer for MB-OFDM UWB Application,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, February 2006.
A. Batra, J.Balakrishnan, and A. Dabak, “Multi-band OFDM: A new approach for UWB,” in IEEE Proceedings of the International Symposium on Circuits and Systems, 2004.
S. Aggarwal, D. Leenaerts, R. vande Beek, G. vander Weide, K. Harish, J. Bergervoet, A. Landesman, Y. Zhang, C. Razzell, H. Waite, and R. Roovers, “A Low Power Implementation for the Transmit Path of a UWB Transceiver,” in IEEE Proceedings of the Custom Integrated Circuits Conference, 2006.
A. Azakkour, M. Regis, F. Pourchet, and G. Alquie, “A New Integrated Monocycle Generator and Transmitter for Ultra-Wideband (UWB) Communications,” in IEEE Radio Frequency Integrated Circuits Symposium, pp.79–82, June 200.
S. Bagga, W. A. Serdijn, and J. R. Long, “A PPM Gaussian Monocycle Transmitter for Ultra-Wideband Communication,” in IEEE Conference on Ultra Wideband Systems and Technologies, May 2004.
Y. Jeong, S. Jung, and J. Liu, “A CMOS Impulse Generator for UWB Wireless Communication Systems,” in IEEE International Symposium on Circuits and Systems, vol.4, pp.129–132, May 2004.
L. Smaini, C. Tinella, D. Helal, C. Stoecklin, L. Chabert, C. Devaucelle, R. Cattenoz, N. Rinaldi, and D. Belot, “Single-Chip CMOS Pulse Generator for UWB Systems,” IEEE Journal of Solid-State Circuits, vol.41, no.7, pp.1551–1561, July 2006.
G. -D. Lim, Y. Zheng, W. -G. Yeoh, and Y. Lian, “A novel low power UWB transmitter IC,” in IEEE Radio Frequency Integrated Circuits Symposium, pp.269–272, June 2006.
K. Marsden, H. -J. Lee, D. S. Ha, and H. -S. Lee, “Low power CMOS re-programmable pulse generator for UWB systems,” in IEEE Conference on Ultra Wideband Systems and Technologies, pp.443–447, November 2003.
H. Kim, D. Park, and Y. Joo, “All-digital low-power CMOS pulse generator for UWB system,” IEEE Electronics letters, vol.40, no.24, pp.1534–1535, November 2004.
T. Norimatsu, R. Fujiwara, M. Kokubo, M. Miyazaki, Y. Ookuma, M. Hayakawa, S.Kobayashi, N. Koshizuka, and K. Sakamura, “A Novel UWB Impulse-Radio Transmitter with All-Digitally-Controlled Pulse Generator,” in European Solid-State Circuits Conference, pp.267–270, September 2005.
J. A.C. Bingham, “Multicarrier Modulation for Data Transmission: An Idea Whose Time Has Come,” IEEE Communications Magazine, vol.28, no.5, pp.5–14, May 1990.
J. G. Proakis, Digital Communications, 4thed. New York: McGraw Hill Inc., 2000.
R. Price and P. E.G. Jr., “A Communication Technique for Multipath Channels,” in IEEE Proceedings of the IRE, vol.46, pp.555–570, March 1958.
G. Turin, “Introduction to Spread-Spectrum Antimultipath Techniques and Their Application to Urban Digital Radio,” in Proceedings of the IEEE, vol.68, pp.328–353, March 1980.
J. S. Lehnert and M. B. Pursley, “Multipath Diversity Reception of Spread Spectrum Multiple-Access Communications,” in IEEE Transactions on Communications, vol.35, pp.1189–1198, November 1987.
L. Feng and W. Namgoong, “An Oversampled Channelized UWB Receiver with Transmitted Reference Modulation,” IEEE Transactions on Wireless Communications, vol.5, no.6, pp.1497–1505, June 2006.
J. Ryckaert, M. Badaroglu, V. D. Heyn, G. V. der Plas, P. Nuzzo, A. Baschirotto, S. D’Amico, C. Desset, H. Suys, M. Libois, B. V. Poucke, P. Wambacq, and B. Gyselinckx, “A 16mA UWB 3-to-5GHz 20Mpulses/s Quadrature Analog Correlation Receiver in 0.18μm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, February 2006.
D. Shen, F. Lin, and W. G. Yeoh, “An Analog Correlator with Dynamic Bias Control for Pulse Based UWB Receiver in 0.18 μm CMOS Technology,” in IEEE Proceedings of the Radio Frequency Integrated Circuits Symposium, June 2006.
G. Cusmai, M. Brandolini, P. Rossi, and F. Svelto, “A 0.18-μm CMOS Selective Receiver Front-End for UWB Applications,” IEEE Journal of Solid-State Circuits, vol.41, no.8, pp.1764–1771, August 2006.
R. Roovers, D. M.W. Leenaerts, J. Bergervoet, K. S. Harish, R. C.H. vande Beek, G. vander Weide, H. Waite, Y. Zhang, S. Aggarwal, and C. Razzell, “An Interference-Robust Receiver for Ultra-Wideband Radio in SiGe BiCMOS Technology,” IEEE Journal of Solid-State Circuits, vol.40, no.12, pp.2563–2572, December 2005.
D. D. Wentzloff, R. Blazquez, F. S. Lee, B. P. Ginsburg, J. D. Powell, and A. P. Chandrakasan, “System Design Considerations for Ultra-Wideband Communication,” IEEE Communications Magazine, vol.43, no.8, pp.114–121, 2005.
R. Blazquez, F. S. Lee, D. D. Wentzloff, B. Ginsburg, J. Powell, and A.P.Chandrakasan, “Direct conversion pulsed UWB Transceiver Architecture,” in Design, Automation and Test in Europe, Mar. 2005.
W. A. Kissick, “The Temporal and Spectral Characteristics ofUltra-Wideband Signals,” National Telecommunications and Information Administration (NTIA), Report 01–383, January 2001.
P. P. Newaskar, R. Blazquez, and A. P. Chandrakasan, “A/DPrecision Requirements for an Ultra-Wideband Radio Receiver,” in IEEE Workshop on Signal Processing Systems, pp.270–275, October 2002.
G. Geelen, “A 6 b 1.1 GSample/s CMOS A/D converter,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp.128–129, February 2001.
K. Sushihara and A. Matsuzawa, “A 7b 450MSample/s 50mW CMOSADC in 0.3mm2,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp.170–171, February 2002.
P. Scholtens and M. Vertregt, “A 6-b 1.6-GSample/s flash ADC in 0.18-μm CMOS Using Averaging Termination,” IEEE Journal of Solid-State Circuits, vol.37, no.12, pp.1599–1609, December 2002.
X. Jiang and M. -C.F. Chang, “A 1-GHz Signal Bandwidth 6-bitCMOS ADC with Power-Efficient Averaging,” IEEE Journal of Solid-State Circuits, vol.40, no.2, pp.532–535, February 2005.
C. Sandner, M. Clara, A. Hartig, and F. Kuttner, “A 6-bit 1.2-GS/s Low-Power Flash-ADC in 0.13-μm Digital CMOS,” IEEE Journal of Solid-State Circuits, vol.40, no.7, pp.1499–1505, July 2005.
D. Draxelmayr, “A 6b 600,MHz 10mW ADC Array in Digital 90 nm CMOS,” in ISSCC Dig. Tech. Papers, pp.264–265, February 2004.
D. Johns and K.Martin, Analog Integrated Circuit Design.hskip 1em plus 0.5em minus 0.4emrelax New York: John Wiley & Sons, Inc., 1997.
W. Black and D. Hodges, “Time Interleaved Converter Arrays,” IEEE Journal of Solid-State Circuits, vol.15, no.6, pp.929–938, December 1980.
J. Yuan and C. Svensson, “A 10-bit 5-MS/s Successive Approximation ADC Cell Used in a 70-MS/s ADC Array in 1.2-μm CMOS,” IEEE Journal of Solid-State Circuits, vol.29, no.8, pp.866–872, August 1994.
Y. Suzuki, K. Odagawa, and T. Abe, “Clocked CMOS Capacitor Circuitry,” IEEE Journal of Solid-State Circuits, vol.8, no.6, pp.462–469, December 1973.
G. Promitzer, “12-bit Low-Power Fully Differential Switched Capacitor Noncalibrating Successive Approximation ADC with 1MS/s,” IEEE Journal of Solid-State Circuits, vol.36, no.7, pp.1138–1143, July 2001.
G. D. Forney, “Maximum Likelihood Sequence Estimation of Digital Sequences in the Presence of Intersymbol Interference,” IEEE Transactions on Information Theory, vol.18, pp.363–378, May 1972.
H. Meyr and G. Ascheid, Synchronization in Digital Communications, Volume 1: Phase-Frequency-Locked Loops and Amplitude Control. New York: Wiley Interscience, 1990.
M. Win, G. Chrisikos, and N. Sollenberger, “Performance of Rake Reception in Dense Multipath Channels: Implications of Spreading Bandwidth and Selection Diversity Order,” IEEE Journal on Selected Areas in Communications, vol.18, pp.1516–1525, August 2000.
M. Win, “Effects of Chip Rate on Selective Rake Combining,” IEEE Communication Letters, vol.4, pp.233–235, July 2000.
M. Z. Win and J. H. Winters, “Analysis of Hybrid Selection/Maximal-Ratio Combining in Rayleigh Fading,” in Proceedings of the IEEE International Conference on Communications, June 1999.
M. Z. Win, “Analysis of Hybrid Selection/Maximal-Ratio Combining of DiversityBranches with Unequeal SNR in Rayleigh Fading,” in Proceedings of the 49th Annual International Vehicular Technology Conference, May 1999.
V. Lottici, A. D’Andrea, and U. Mengali, “Channel Estimation for Ultra-Wideband Communications,” IEEE Journal on Selected Areas in Communications, vol.20, pp.1638–1645, December 2002.
S. Honda, M.Ito, H.Seki, and Y.Jingo, “A Disc Monopole Antenna with 1:8 Impedance Bandwidth and Omnidirectional Radiation Pattern,” in Proceedings of the International Symposium on Antennas and Propagation, pp.1145–1148, September 1992.
M. Hammoud, “Matching the Input Impedance of a Broadband Disc Monopole,” in Electronics Letters, vol.29, pp.406–407, February 1993.
N. P. Agrawall, G.Kumar, and K.P. Ray, “Wideband Planar Monopole Antennas,” in IEEE Transactions on Antennas and Propagation, 1998.
G. Kumar and K.P. Ray, Broadband Microstrip Antennas. Boston: Artech House, 2003.
E. R. Green and B.Manny, “Ultra-Wideband: A Disruptive RF Technology,” in Intel Developer Conference, 2002.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Lee, F.S., Blázquez, R., Ginsburg, B.P., Powell, J.D., Wentzloff, D.D., Chandrakasan, A.P. (2008). Pulse-Based, 100 Mbps UWB Transceiver. In: Gharpurey, R., Kinget, P. (eds) Ultra Wideband. Series on Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-69278-4_5
Download citation
DOI: https://doi.org/10.1007/978-0-387-69278-4_5
Publisher Name: Springer, Boston, MA
Print ISBN: 978-0-387-37238-9
Online ISBN: 978-0-387-69278-4
eBook Packages: EngineeringEngineering (R0)