Skip to main content

Incorporation of Genomics and Proteomics in Drug and Biomarker Development

  • Chapter
Pancreatic Cancer

Part of the book series: M. D. Anderson Solid Tumor Oncology Series ((MDA))

  • 1543 Accesses

Pancreatic cancer is resistant to standard surgical and non-selective antimetabolite therapy, with median survival of patients with resectable disease and adjuvant therapy remaining around 20 months and those with unresectable disease at <6 months with the most effective currently available therapy (1, 2). Innovations in genomics and proteomics have led to the identification of numerous potential targets for the development of novel antineoplastic agents and early detection biomarkers. This chapter looks at the history of targeted approaches to drug design, recent developments in the fields of genomics and proteomics, and the potential application of these approaches to pancreatic cancer treatment and early detection.

Molecular targeting by pharmaceuticals was made possible in the middle of the last century by the discovery of specific biochemical pathways. Early examples of targeted drugs included propranolol, allopurinol, and cimetidine. Black, Hutchings, and Elion received the Nobel Prize in 1988 for their work on developing these compounds ( 3, 4 ). Identification of similarly specific targets in cancer has noticeably lagged behind, with the exception of antimetabolites. Only recently have targeted therapies such as trastuzumab (anti-HER2 neu antibody effective against breast cancer) and imatinib mesylate (a BCR-ABL tyrosine kinase inhibitor for treatment of chronic myeloid leukemia and gastrointestinal stromal tumors) become available. For pancreatic cancer, bevacizumab (Avastin), a recombinant humanized antivascular endothelial growth factor (VEGF) monoclonal antibody, showed promising results in phase II trials ( 5 ), but was subsequently shown to provide no survival benefit ( 6 ). The push to identify specific molecular targets for the rational design of antineoplastics (in particular cancer cell signaling molecules and molecules that can affect the cancer cell microenvironment) has led to rapid development of techniques in genomics and proteomics. These techniques hold promise in identifying novel and effective targets for the treatment of pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burris HA, 3rd Moore MJ, Andersen J, 1997, Improvement in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreatic cancer: A rand-omized trial. J Clin Oncol 15:2403–2413.

    CAS  PubMed  Google Scholar 

  2. 2. et al. Resected adenocarcinoma of the pancreas-616 patients: results, outcomes, and prognostic indicators. J Gastrointest Surg 2000, 4:567-79.

    Google Scholar 

  3. Black JW, Duncan WAM, Durant CJ, 1972, Definition and antagonism of H2-receptors. Nature 236:385–390.

    Article  CAS  PubMed  Google Scholar 

  4. Rundles RW, Wyngaarden JB, Hitchings GH, 1969, Drugs and uric acid. Rev Ann Pharmacol 9:345–362.

    Article  CAS  Google Scholar 

  5. Kindler HL, Friberg G Singh DA, 2005, Phase II trial of bevacizumab plus gemcitabine in patients with advanced pancreatic cancer. J Clin Oncol 23 (31): 8033–8040.

    Article  CAS  PubMed  Google Scholar 

  6. Kindler HL, Niedzwiecki D, Hollis D, 2007, A double-blind, placebo-controlled, randomized phase III trial of gemcitabine (G) plus bevacizumab (B) versus gemcitabine plus placebo (P) in patients (pts) with advanced pancreatic cancer (PC): A preliminary analysis of Cancer and Leukemia Group B (CALGB). J Clin Oncol 25( 18S): 4508.

    Google Scholar 

  7. Liang P, Pardee AB, 1992, Differential display of eukaryotic mRNA by means of the polymerase chain reaction. Science 257:967–971.

    Article  CAS  PubMed  Google Scholar 

  8. Caldas C, Hahn SA, Costa LT, da 1994, Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet 8:27–32.

    Article  CAS  PubMed  Google Scholar 

  9. Hahn SA, Schutte M, Hoque AT, 1996, DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271:350–353.

    Article  CAS  PubMed  Google Scholar 

  10. Cerny WL, Mangold KA, Scarpelli DG. 1992, K-ras mutation is an early event in pancreatic duct carcinogenesis in the Syrian golden hamster. Cancer Res 15:4507–4513.

    Google Scholar 

  11. Schena M, Shalon D, Davis RW, 1995, Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470.

    Article  CAS  PubMed  Google Scholar 

  12. Chee M, Yang R, Hubbell E, 1996, Accessing genetic information with high-density DNA arrays. Science 274:610–614.

    Article  CAS  PubMed  Google Scholar 

  13. Misek DE, Kuick R, Hanash SM, 1997, Oligonucleotide-directed microarray gene profiling of pancreatic adenocarcinoma. In: Su G (ed.) Methods in molecular medicine, Pancreatic cancer: methods and protocols. NJ. Humana Press, Totowa, vol. 103. 175–188.

    Google Scholar 

  14. Aragani P, Rosty C, Reiter RE, 2001, Discovery of new markers of cancer through serial analysis of gene expression: prostate stem cell antigen is overexpressed in pancreatic adenocarcinoma. Cancer Res 61:4320–4324.

    Google Scholar 

  15. Iacobuzio-Donahue CA, Ryu B, Hruban RH, 2002, Exploring the host desmoplastic response to pancreatic adenocarcinoma: gene expression of stromal and neoplastic cells at the site of primary invasion. Am J Pathol 160:91–99.

    PubMed  Google Scholar 

  16. Zhang L, Zhou W, Velculescu VE, 1997, Gene expression profiles normal and cancer cells. Science 276:1268–1272.

    Article  CAS  PubMed  Google Scholar 

  17. Zhou W, Sokoll LJ, Bruzek DJ, 1998, Identifying markers for pancreatic cancer by gene expression analysis. Cancer Epidemiol Biomark Prev 7:109–112.

    CAS  Google Scholar 

  18. Gress TM Muller-Pillasch F, Geng M, 1998, A pancreatic cancer-specific expression profile. Oncogene 13:1819–1830.

    Google Scholar 

  19. Logsdon CD, Simeone DM, Binkley C, 2003, Molecular profiling of pancreatic adenocarci-noma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Res 63:2649–2657.

    CAS  PubMed  Google Scholar 

  20. Crnogorac-Jurcevic T, Gangeswaran R, Bhakta V, 2005, Proteomic analysis of chronic pan-creatitis and pancreatic adenocarcinoma. Gastroenterology 129:1454–1463.

    Article  CAS  PubMed  Google Scholar 

  21. Guerreiro DS, Hu YF, Russo IH, 2000, S100P calcium-binding protein overexpression is associated with immortalization of human breast epithelial cells in vitro and early stages of breast cancer development in vivo. I nt J Oncol 16:231–240.

    Google Scholar 

  22. Bertram J, Palfner K, Hiddemann W, 1998, Elevated expression of S100P, CAPL and MAGE 3 in doxorubicin-resistant cell lines: comparison of mRNA differential display reverse tran-scription-polymerase chain reaction and subtractive suppressive hybridization for the analysis of differential gene expression. Anticancer Drugs 9:311–317.

    Article  CAS  PubMed  Google Scholar 

  23. Beer DG, Kardia SL, Huang CC, 2002, Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat Med 8:816–824.

    CAS  PubMed  Google Scholar 

  24. Arumugam T, Ramachandran V, Logsdon CD. 2006, Effect of cromolyn on S100P interac-tions with RAGE and pancreatic cancer growth and invasion in mouse models. J Natl Cancer Inst 98:1806–1818.

    Article  CAS  PubMed  Google Scholar 

  25. Koopman J, Zhang Z, White N, 2004, Serum diagnosis of pancreatic adenocarcinoma using surface-enhanced laser desorption and ionization mass spectrometry. Clin. Cancer Res 10:860–868.

    Article  Google Scholar 

  26. Koopmann J, Rosenzweig NW, Zhang Z, 2006, Serum markers in patients with resectable pancreatic adenocarcinoma: macrophage inhibitory cytokine 1 versus CA19-9. Clin Can Res 12:442–446.

    Article  CAS  Google Scholar 

  27. Hwang TL, Liang Y, Chien KY, 2006, Overexpression and elevated serum levels of phos-phoglycerate kinase 1 in pancreatic ductal adenocarcinoma. Proteomics 6:2259–2272.

    Article  CAS  PubMed  Google Scholar 

  28. Simeone DM, Ji B, Banerjee M, 2007, CEACAM1, a novel serum biomarker for pancreatic cancer. Pancreas 34:436–443.

    Article  CAS  PubMed  Google Scholar 

  29. Linzer DI, Levine AJ. 1979, Characterization of a 54K Dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17:43–52.

    Article  CAS  PubMed  Google Scholar 

  30. O’Farrell PH. 1975, High-resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007–4021.

    PubMed  Google Scholar 

  31. Croy RG, Pardee AB. 1983, Enhanced synthesis and stabilization of Mr 68,000 protein in transformed BALB/c-3T3cells: candidate for restriction point control of cell growth. Proc Natl Acad Sci U S A 80:4699–4703.

    Article  CAS  PubMed  Google Scholar 

  32. Emmert-Buck MR, Bonner RF, Smith PD, 1996, Laser capture microdissection. Science 274:998–1001.

    Article  CAS  PubMed  Google Scholar 

  33. O’Neil KA, Miller FR, Lubman DM. 2003, Profiling the progression of cancer: the separation of microsomal proteins in MCF10 breast epithelial cell lines using nonporous chromatophore-sis, MALDI-TOF-MS and MALDI-QTOF-MS-MS. Proteomics 3:1256–1269.

    Article  PubMed  CAS  Google Scholar 

  34. Petricoin EF, Ornstein DK, Paweletz CP, 2002, Serum proteomic patterns for detection of prostate cancer. J Natl Cancer Inst 94:1576–1578.

    CAS  PubMed  Google Scholar 

  35. Merrill K, Southwick K, Graves SW, 2004, Analysis of low-abundance, low-molecular weight serum proteins using mass spectrometry. J Biomol Tech 15:238–248.

    Google Scholar 

  36. Zhang H, Yi EC, Li XJ, 2005, High throughput quantitative analysis of serum proteins using glycopeptide capture and liquid chromatography mass spectrometry. Mol Cell Proteomics 4:144–155.

    CAS  PubMed  Google Scholar 

  37. Jacobs IJ, Skates SJ, MacDonald N, 2002, Screening for ovarian cancer: a pilot randomised controlled trial. Lancet 359:572–577.

    Article  Google Scholar 

  38. Peracaula R, Royle L, Tabares G, 2003, Glycosylation of human pancreatic ribonuclease: dif-ferences between normal and tumor states. Glycobiology 13:227–244.

    Article  CAS  PubMed  Google Scholar 

  39. Drake RR, Schwegler EE, Malik G, 2006, Lectin capture strategies combined with mass spectrometry for the discovery of serum glycoprotein biomarkers. Mol Cell Proteomics 5:1957–1967.

    Article  CAS  PubMed  Google Scholar 

  40. Kasbaoui L, Harb J, Bernard S, 1989, Differences in glycosylation state of fibronectin from two rat colon carcinoma cell lines in relation to tumoral progressiveness. Cancer Res 49:5317–5322.

    CAS  PubMed  Google Scholar 

  41. Ng RC, Roberts AN, Wilson RG, 1987, Analyses of protein extracts of human breast cancers: changes in glycoprotein content linked to the malignant phenotype. Br J Cancer 55:249–254.

    CAS  PubMed  Google Scholar 

  42. 42. Zhao J, Patwa TH, Qiu W, et al. Glycoprotein microarrays with multi-lectin detection: unique lectin binding patterns as a tool for classifying normal, chronic pancreatitits and pancreatic cancer sera. J Proteome Res, in press.

    Google Scholar 

  43. Benson JD, Chen YP, Cornell-Kennon SA, 2004, Identification of in vitro protein biomarkers of idiosyncratic liver toxicity. Toxicol In Vitro 18:533–541.

    Article  CAS  Google Scholar 

  44. Meneses-Lorente G, Guest PC, Lawrence J, N. 2004, A proteomic investigation of drug-induced steatosis in rat liver. Chem Res Toxicol 17:605–612.

    Article  CAS  PubMed  Google Scholar 

  45. Arumugam T, Simeone DM, Golen K, Van 2005, S100P promotes pancreatic cancer growth, survival, and invasion. Clin Cancer Res 11:5356–5364.

    Article  CAS  PubMed  Google Scholar 

  46. Elrick MM, Walgren JL, Mitchell MD, 2006, Proteomics: recent applications and new technologies. Basic Clin Pharmacol Toxicol 98:432–441.

    CAS  PubMed  Google Scholar 

  47. Koopmann J, Fedarko NS, Jain A, 2004, Evaluation of osteopontin as biomarker for pancreatic adenocarcinoma. Cancer Epidemiol Biomarkers Prev 13:487–491.

    CAS  PubMed  Google Scholar 

  48. Koopmann J, Buckhaults P, Brown DA, 2004, Serum macrophage inhibitory cytokine 1 as a marker of pancreatic and other periampullary cancers. Clin Can Res 10:2386–2392.

    Article  CAS  Google Scholar 

  49. Saif  MW, 2006, Anti-angiogenesis therapy in pancreatic carcinoma. JOP 9:163–173.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Heidt, D.G., Misek, D., Lubman, D.M., Simeone, D.M. (2008). Incorporation of Genomics and Proteomics in Drug and Biomarker Development. In: Lowy, A.M., Leach, S.D., Philip, P.A. (eds) Pancreatic Cancer. M. D. Anderson Solid Tumor Oncology Series. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-69252-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-69252-4_43

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-69250-0

  • Online ISBN: 978-0-387-69252-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics