Computability and Computable Models

Part of the International Mathematical Series book series (IMAT, volume 5)


The intuitive notion of computability was formalized in the XXth century, which strongly affected the development of mathematics and applications, new computational technologies, various aspects of the theory of knowledge, etc. A rigorous mathematical definition of computability and algorithm generated new approaches to understanding a solution to a problem and new mathematical disciplines such as computer science, algorithmical complexity, linear programming, computational modeling and simulation databases and search algorithms, automatical cognition, program languages and semantics, net security, coding theory, cryptography in open systems, hybrid control systems, information systems, etc.


Computable Model Computable Function Countable Model Constructive Model Predicate Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. J. Ash, Categoricity in hyperarithmetical degrees, Ann. Pure Appl. Logic 34 (1987), 1–14.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    C. J. Ash and J. F. Knight, Pairs of computable structures, Ann. Pure Appl. Logic 46 (1990), 211–234.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    C. J. Ash and J. F. Knight, Possible degrees in computable copies, Ann. Pure Appl. Logic 75 (1995), no. 3, 215–221.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    C. J. Ash and J. F. Knight, Possible degrees in computable copies II, Ann. Pure Appl. Logic 87 (1997), no. 2, 151–165.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    C. J. Ash and J. F. Knight, Computable Structures and the Hyperarithmetical Hierarchy, Elsevier, 2000.Google Scholar
  6. 6.
    C. J. Ash, J. F. Knight, M. Manasse, and T. Slaman, Generic copies of countable structures, Ann. Pure Appl. Logic 42 (1989), no. 3, 195–205.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    C. J. Ash and T. S. Millar, Persistently finite, persistently arithmetic theories, Proc. Am. Math. Soc. 89 (1983), no. 3, 487–492.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    C. J. Ash and A. Nerode, Intrinsically computable relations, In: Aspects of Effective Algebra, J. N. Crossley (Ed.), Upside Down A Book Co., Steel’s Creek, Australia, pp. 26–41.Google Scholar
  9. 9.
    E. Baldwin and A. Lachlan, The quantity of non-autoequivalent constructivizations, J. Symb. Log. 36 (1971), 79–96.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    E. Barker, Intrinsically Σα0 relations, Ann. Pure Appl. Logic 39 (1988), 105–130zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    K. J. Barwise, Infinitary logic and admissible sets, J. Symb. Log. 34 (1969), 226–252.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    I. Bucur and A. Deleanu, Introduction to the Theory of Categories and Functors, John Wiley & Sons, London-New York-Sydney, 1968.zbMATHGoogle Scholar
  13. 13.
    W. Calvert, S. S. Goncharov, and J. F. Knight, Computable Structures of Scott Rank ω 1CK in Familiar Classes, Preprint.Google Scholar
  14. 14.
    W. Calvert, J. F. Knight, and J. M. Young [Millar], Computable Trees of Scott Rank ω 1CK and Computable Approximation, Preprint.Google Scholar
  15. 15.
    R. Camerlo and S. Gao, The completeness of the isomorphism relation for countable Boolean algebras, Trans. Am. Math. Soc. 353 (2000), 491–518.CrossRefMathSciNetGoogle Scholar
  16. 16.
    C. C. Chang and H.-J. Keisler, Model Theory, North-Holland, Amsterdam, 1990.zbMATHGoogle Scholar
  17. 17.
    J. Chisholm, Effective model theory versus computable model theory, J. Symb. Log. 55 (1990), 1168–1191.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    P. Cholak, S. S. Goncharov, B. Khoussainov, and R. A. Shore, Computably categorical structures and expansions by constants, J. Symb. Log. 64 (1999), 13–37.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    R. Downey and C. Jockusch, Array noncomputable degrees and genericity, In: Computability, Enumerability, Unsolvability, London Math. Soc. Lect. Notes Ser. 224, Cambridge Univ. Press, 1996, pp. 93–104.Google Scholar
  20. 20.
    D. Deutsch, The Fabric of Reality, The Penguin Press, New York, 2000.Google Scholar
  21. 21.
    V. P. Dobritsa, Recursively numbered classes of constructive extentions and autostability of algebras, Sib. Math. J. 16 (1975), no. 6, 879–883.CrossRefGoogle Scholar
  22. 22.
    V. P. Dobritsa, Computability of certain classes of constructive algebras, Sib. Math. J. 18 (1977), no. 3, 406–413.CrossRefMathSciNetGoogle Scholar
  23. 23.
    V. D. Dzgoev and S. S. Goncharov, Autostable models, Algebra Log. 19 (1980), 28–37.zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Yu. L. Ershov and E. A. Palutin, Mathematical Logic [in Russian], Mir Publisher, Moscow, 1984.Google Scholar
  25. 25.
    Yu. L. Ershov, On a hierarchy of sets. I, Algebra Log. 7 (1968), no. 1, 47–74.zbMATHGoogle Scholar
  26. 26.
    Yu. L. Ershov, On a hierarchy of sets. II, Algebra Log. 7 (1968), no. 4, 15–47.zbMATHGoogle Scholar
  27. 27.
    Yu. L. Ershov, Computable enumerations, Algebra Log. 7 (1968) no. 5, 71–99.Google Scholar
  28. 28.
    Yu. L. Ershov, Numbered fields In: Logic, Methodology Philos. Sci. III (Proc. Third Internat. Congr., Amsterdam, 1967), North-Holland, Amsterdam, 1968, pp. 31–34Google Scholar
  29. 29.
    Yu. L. Ershov, On a hierarchy of sets. III, Algebra Log. 9 (1970), no. 1, 20–31.zbMATHCrossRefGoogle Scholar
  30. 30.
    Yu. L. Ershov, On index sets, Sib. Math. J. 11 (1970), no. 2, 246–258.zbMATHCrossRefGoogle Scholar
  31. 31.
    Yu. L. Ershov, Existence of constructivizations, Soviet Math. Dokl. 13 (1972), no. 5, 779–783.zbMATHGoogle Scholar
  32. 32.
    Yu. L. Ershov, Constructive models [in Russian], In: Selected Questions of Algebra and Logic, Novosibirsk, 1973, pp. 111–130.Google Scholar
  33. 33.
    Yu. L. Ershov, Skolem functions and constructive models, Algebra Log. 12 (1973), no. 6, 368–373.CrossRefGoogle Scholar
  34. 34.
    Yu. L. Ershov, Numbering Theory. 3 [in Russian], In: Constructive Models, Novosibirsk State Univ., Novosibirsk, 1974.Google Scholar
  35. 35.
    Yu. L. Ershov, Theorie der Numerierungen. III, Z. Logik Grundlag. Math. 23 (1977), 289–371.zbMATHCrossRefGoogle Scholar
  36. 36.
    Yu. L. Ershov, Theory of Numberings [in Russian], Nauka, Moscow, 1977.Google Scholar
  37. 37.
    Yu. L. Ershov, The Decidability Problems and Constructive Models, Nauka, Moscow, 1980.Google Scholar
  38. 38.
    Yu. L. Ershov, Definability and Computability, Consultants Bureau, New York, 1996.Google Scholar
  39. 39.
    Yu. L. Ershov, S. S. Goncharov, A. Nerode, J. B. Remmel, and V. W. Marek, Handbook of Recursive Mathematics, Elsevier, Amsterdam, 1998.Google Scholar
  40. 40.
    Yu. L. Ershov and S. S. Goncharov, Constructive Models, Kluwer Academic/Plenum Press, New York, 2000.zbMATHGoogle Scholar
  41. 41.
    Yu. L. Ershov and I. A. Lavrov, Upper semilattice L(S). Algebra Log. 12 (1973), no. 2, 167–189.Google Scholar
  42. 42.
    H. Friedman, Computableness in Π11 paths through O, Proc. Am. Math. Soc. 54 (1976), 311–315.zbMATHCrossRefGoogle Scholar
  43. 43.
    E. Fokina, About complexity of categorical theories with computable models [in Russian], Vestnik NGU 5 (2005), no. 2, 78–86.Google Scholar
  44. 44.
    A. Fröhlich and J. Shepherdson, Effective procedures in field theory, Philos. Trans. Roy. Soc. London, Ser. A 248 (1956), 407–432.CrossRefzbMATHGoogle Scholar
  45. 45.
    S. S. Goncharov, Autostability and computable families of constructivizations, Algebra Log. 14 (1975), 392–408.CrossRefGoogle Scholar
  46. 46.
    S. S. Goncharov, The quantity of non-autoequivalent constructivizations, Algebra Log. 16 (1977), 257–282.zbMATHMathSciNetGoogle Scholar
  47. 47.
    S. S. Goncharov, Constructive models of ℵ 1-categorical theories, Math. Notes 23 (1978), no. 6, 486–487.zbMATHMathSciNetGoogle Scholar
  48. 48.
    S. S. Goncharov, Problem of the number of non-self-equivalent constructivizations, Algebra Log. 19 (1980), 401–414.zbMATHCrossRefGoogle Scholar
  49. 49.
    S. S. Goncharov, Problem of the number of non-self-equivalent constructivizations, Soviet Math. Dokl. 21 (1980), 411–414.zbMATHGoogle Scholar
  50. 50.
    S. S. Goncharov, Computable single-valued numerations, Algebra Log. 19 (1980), 325–356.zbMATHCrossRefGoogle Scholar
  51. 51.
    S. S. Goncharov, The quantity of non-autoequivalent constructivizations, Algebra Log. 16 (1977) 169–185.CrossRefMathSciNetGoogle Scholar
  52. 52.
    S. S. Goncharov, Strong constructivizability of homogeneous models, Algebra Log. 17 (1978), no. 4, 247–262.zbMATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    S. S. Goncharov, A totally transcendental decidable theory without constructivizable homogeneous models, Algebra Log. 19 (1980), no. 2, 85–93.zbMATHCrossRefMathSciNetGoogle Scholar
  54. 54.
    S. S. Goncharov, Countable Boolean Algebras [in Russian], Nauka, Novosibirsk, 1988.zbMATHGoogle Scholar
  55. 55.
    S. S. Goncharov, Computable classes of constructivizations for models of finite computability type, Sib. Math. J. 34 (1993), no. 5, 812–824.zbMATHCrossRefMathSciNetGoogle Scholar
  56. 56.
    S. S. Goncharov, Effectively infinite classes of weak constructivizations of models, Algebra Log. 32 (1993), no. 6, 342–360.CrossRefMathSciNetGoogle Scholar
  57. 57.
    S. S. Goncharov, Countable Boolean Algebras and Decidability, Consultants Bureau, New York, 1997.zbMATHGoogle Scholar
  58. 58.
    S. S. Goncharov, Computable models and computable numberings In: Proc. Logic Colloquium 2005, Athens, 2006. [To appear]Google Scholar
  59. 59.
    S. S. Goncharov and B. N. Drobotun, Numerations of saturated and homogeneous models, Sib. Math. J. 21 (1980), no. 2, 164–175.zbMATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    S. S. Goncharov and B. N. Drobotun, Algorithmic dimension of nilpotent groups, Sib. Math. J. 30 (1989), no. 2, 210–216.zbMATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    S. S. Goncharov, V. S. Harizanov, M. Laskowski, S. Lempp, and Ch. Mccoy, Trivial, strongly minimal theories are model complete after naming constants, Proc. Am. Math. Soc. 131 (2003), no. 12, 3901–3912.zbMATHCrossRefMathSciNetGoogle Scholar
  62. 62.
    S. S. Goncharov and B. Khoussainov, On the spectrum of the degrees of decidable relations, Dokl. Akad. Nauk 352 (1997), no. 3, 301–303.zbMATHMathSciNetGoogle Scholar
  63. 63.
    S. S. Goncharov, A. V. Molokov, and N. S. Romanovskii, Nilpotent groups of finite algorithmic dimension, Sib. Math. J. 30 (1989), no. 1, 63–67.zbMATHCrossRefMathSciNetGoogle Scholar
  64. 64.
    S. S. Goncharov and A. A. Novikov, Examples of nonautostable systems, Sib. Math. J. 25 (1984), no. 4, 538–544.zbMATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    S. S. Goncharov and A. T. Nurtazin, Constructive models of complete solvable theories, Algebra Log. 12 (1973), no. 2, 67–77.CrossRefGoogle Scholar
  66. 66.
    S. S. Goncharov and J. F. Knight, Computable structure/nonstructure theorems, Algebra Log. 41 (2002), 351–373.CrossRefMathSciNetGoogle Scholar
  67. 67.
    S. S. Goncharov, and B. Khoussainov, Open problems in the theory of constructive algebraic systems, Contemp. Math. (AMS) 257 (2000), 145–170.MathSciNetGoogle Scholar
  68. 68.
    S. S. Goncharov, and B. Khoussainov, Complexity of categorical theories with computable models, Algebra Log. 43 (2004), no. 6, 365–373.CrossRefMathSciNetGoogle Scholar
  69. 69.
    S. S. Goncharov, and B. N. Drobotun, Numerations of saturated and homogeneous models, Sib. Math. J. 30 (1989), 164–175.MathSciNetGoogle Scholar
  70. 70.
    S. S. Goncharov, V. S. Harizanov, J. F. Knight, and R. Shore, II11-relations and paths through, J. Symb. Log. 69 (2004), no. 2, 585–611.zbMATHCrossRefMathSciNetGoogle Scholar
  71. 71.
    S. S. Goncharov, V. S. Harizanov, J. F. Knight, A. Morozov, and A. Romina, On automorphic tuples of elements in computable models, Sib. Math. J. 46 (2005), no. 3, 405–412.CrossRefMathSciNetGoogle Scholar
  72. 72.
    S. S. Goncharov, V. S. Harizanov, J. F. Knight, C. McCoy, R. G. Miller, and R. Solomon, Enumerations in computable structure theory, Ann. Pure Appl. Logic 136 (2005), no. 3, 219–246.zbMATHCrossRefMathSciNetGoogle Scholar
  73. 73.
    S. S. Goncharov and A. Sorbi, Generalized computable numerations and nontrivial Rogers semilattices, Algebra Log. 36 (1997), no. 4, 359–369.CrossRefMathSciNetGoogle Scholar
  74. 74.
    L. Harrington, Recursively presentable prime models, J. Symb. Log. 39 (1974), no. 2, 305–309.zbMATHCrossRefMathSciNetGoogle Scholar
  75. 75.
    V. S. Harizanov, Some effects of Ash-Nerode and other decidability conditions on degree spectra, Ann. Pure Appl. Logic 55 (1991), 51–65.zbMATHCrossRefMathSciNetGoogle Scholar
  76. 76.
    J. Harrison, Computable pseudo well-orderings, Trans. Am. Math. Soc. 131 (1968), 526–543.zbMATHCrossRefMathSciNetGoogle Scholar
  77. 77.
    D. R. Hirschfeldt, B. Khoussainov, R. A. Shore, and A. M. Slinko, Degree spectra and computable dimensions in algebraic structures, Ann. Pure Appl. Logic 115 (2002), 71–113.zbMATHCrossRefMathSciNetGoogle Scholar
  78. 78.
    W. Hodges, What is a structure theory? Bull. London Math. Soc. 19 (1987), 209–237.zbMATHCrossRefMathSciNetGoogle Scholar
  79. 79.
    C. G. Jockusch, Computableness of initial segments of Kleene’s O, Fund. Math. 87 (1975), 161–167.zbMATHMathSciNetGoogle Scholar
  80. 80.
    C. G. Jockusch and T. G. McLaughlin, Countable retracing functions and II20 predicates, Pac. J. Math. 30 (1969), 67–93.zbMATHMathSciNetGoogle Scholar
  81. 81.
    C. G. Jockusch and R. I. Soare, Degrees of orderings not isomorphic to computable linear orderings, Ann. Pure Appl. Logic 52 (1991), 39–64.CrossRefzbMATHMathSciNetGoogle Scholar
  82. 82.
    I. Kaplansky, Infinite Abelian Groups, Univ. Michigan Press, 1954.Google Scholar
  83. 83.
    N. G. Khisamiev, Strongly constructive models, Izv. Akad. Nauk Kaz.SSR, Ser. Fiz-Mat. (1971), no. 3, 59–63.Google Scholar
  84. 84.
    N. G. Khisamiev, Strongly constructive models of a decidable theory, Izv. Akad. Nauk Kaz.SSR, Ser. Fiz-Mat. (1974), no. 1, 83–84.Google Scholar
  85. 85.
    B. Khoussainov and R. A. Shore, Computable isomorphisms, degree spectra of relations and Scott families, Ann. Pure Appl. Logic 93 (1998), 153–193.zbMATHCrossRefMathSciNetGoogle Scholar
  86. 86.
    B. Khoussainov, S. Lempp, and R. Solomon. PreprintGoogle Scholar
  87. 87.
    A. B. Khoutoretskii, On the cardinality of the upper semilattice of computable enumerations, Algebra Log. 10 (1971), no. 5, 348–352.CrossRefGoogle Scholar
  88. 88.
    H. J. Keisler, Model Theory for Infinitary Logic, North-Holland, 1971.Google Scholar
  89. 89.
    J. F. Knight, Degrees coded in jumps of orderings, J. Symb. Log. 51 (1986), 1034–1042.zbMATHCrossRefMathSciNetGoogle Scholar
  90. 90.
    J. F. Knight, Nonarithmetical ℵ 0-categorical theories with recursive models, J. Symb. Log. 59 (1994), no. 1, 106–112.zbMATHCrossRefMathSciNetGoogle Scholar
  91. 91.
    J. F. Knight, Effective transfer of invariants, J. Symb. Log. [To appear]Google Scholar
  92. 92.
    J. F. Knight and J. M. Young [Millar], Computable structures of rank ω 1CK, J. Math. Logic [To appear]Google Scholar
  93. 93.
    G. Kreisel, Set-theoretic problems In: Infinitistic Methods: Proc. of Symp. on Found. of Math. pergamon, Warsaw, 1961, pp. 103–140.Google Scholar
  94. 94.
    C. Karp, Languages with Expressions of Infinite Length, PhD Thesis, Univ. South. California, 1959.Google Scholar
  95. 95.
    A. H. Lachlan, Solution to a problem of Spector, Canad. J. Math. 23 (1971), 247–256.zbMATHMathSciNetGoogle Scholar
  96. 96.
    M. Lerman and J. H. Schmerl, Theories with recursive models, J. Symb. Log. 44 (1979), no. 1, 59–76.zbMATHCrossRefMathSciNetGoogle Scholar
  97. 97.
    Logic Notebook. Unsolved Problems in Mathematical Logic, Novosibirsk, 1986.Google Scholar
  98. 98.
    E. Lopez-Escobar, On definable well-orderings, Fund. Math. 57 (1966), 299–300.MathSciNetGoogle Scholar
  99. 99.
    M. Makkai, An example concerning Scott heights, J. Symb. Log. 46 (1981), 301–318.zbMATHCrossRefMathSciNetGoogle Scholar
  100. 100.
    A. I. Mal’tsev, Constructive algebras. I [in Russian], Usp. Mat. Nauk 16 (1961), no. 3, 3–60.Google Scholar
  101. 101.
    A. I. Mal’tsev, On recursive Abelian groups, Dokl. Akad. Nauk SSSR 146 (1962), no. 5, 1009–1012.MathSciNetGoogle Scholar
  102. 102.
    A. I. Mal’tsev, On the theory of computable families of objects, Algebra Log. 3 (1964), no. 4, 5–31.MathSciNetGoogle Scholar
  103. 103.
    A. I. Mal’tsev, Algorithms and Recursive Functions, Wolters-Noordhoff, Groningen, 1970.Google Scholar
  104. 104.
    A. I. Mal’tsev, Algebraic Systems, Springer, New York-Heidelberg, 1973.Google Scholar
  105. 105.
    A. I. Mal’tsev, Selected Works. Mathematical Logic and the General Theory of Algebraic Systems. Vol. 2 [in Russian], Nauka, Moscow, 1976.Google Scholar
  106. 106.
    M. S. Manasse, Techniques and Counterexamples in Almost Categorical computable Model Theory, PhD Thesis, Univ. Wisconsin-Madison, 1982.Google Scholar
  107. 107.
    T. S. Millar, Persistantly finite theories with hyperarithmetic models, Trans. Am. Math. Soc. 278 (1983), no. 1, 91–99.zbMATHCrossRefMathSciNetGoogle Scholar
  108. 108.
    T. S. Millar, Foundations of recursive model theory, Ann. Math. Logic 13 (1978), no. 1, 45–72.zbMATHCrossRefMathSciNetGoogle Scholar
  109. 109.
    T. S. Millar, A complete, decidable theory with two decidable models, J. Symb. Log. 44 (1979), no. 3, 307–312.zbMATHCrossRefMathSciNetGoogle Scholar
  110. 110.
    T. S. Millar, Homogeneous models and decidability, Pac. J. Math. 91 (1980), no. 2, 407–418.zbMATHMathSciNetGoogle Scholar
  111. 111.
    T. S. Millar, Vaught’s theorem recursively revisited, J. Symb. Log. 46 (1981), no. 2, 397–411.zbMATHCrossRefMathSciNetGoogle Scholar
  112. 112.
    T. S. Millar, Counterexamples via model completions, Lect. Notes Math. 859 Springer, 1981, pp. 215–229.CrossRefMathSciNetGoogle Scholar
  113. 113.
    T. S. Millar, Type structure complexity and decidability, Trans. Am. Math. Soc. 271 (1982), no. 1, 73–81.zbMATHCrossRefMathSciNetGoogle Scholar
  114. 114.
    T. S. Millar, Omitting types, type spectrums, and decidability, J. Symb. Log. 48 (1983), no. 1, 171–181.zbMATHCrossRefMathSciNetGoogle Scholar
  115. 115.
    T. S. Millar, Decidability and the number of countable models, Ann. Pure Appl. Logic 27 (1984), no. 2, 137–153.zbMATHCrossRefMathSciNetGoogle Scholar
  116. 116.
    T. S. Millar, Decidable Ehrenfeucht theories, Proc. Sympos. Pure Math. 42 (1985), 311–321.MathSciNetGoogle Scholar
  117. 117.
    T. S. Millar, Prime models and almost decidability, J. Symb. Log. 51 (1986), no. 2, 412–420.zbMATHCrossRefMathSciNetGoogle Scholar
  118. 118.
    T. S. Millar, Recursive categoricity and persistence, J. Symb. Log. 51 (1986), no. 2, 430–434.zbMATHCrossRefMathSciNetGoogle Scholar
  119. 119.
    T. S. Millar, Bad models in nice neighborhoods, J. Symb. Log. 51 (1986), no. 4, 1043–1055.zbMATHCrossRefMathSciNetGoogle Scholar
  120. 120.
    T. S. Millar, Finite extensions and the number of countable models, J. Symb. Log. 54 (1989), no. 1, 264–270.zbMATHCrossRefMathSciNetGoogle Scholar
  121. 121.
    T. S. Millar, Homogeneous models and almost decidability, J. Aust. Math. Soc. Ser. A 46 (1989), no. 3, 343–355.zbMATHMathSciNetCrossRefGoogle Scholar
  122. 122.
    T. S. Millar, Tame theories with hyperarithmetic homogeneous models, Proc. Am. Math. Soc. 105 (1989), no. 3, 712–726.zbMATHCrossRefMathSciNetGoogle Scholar
  123. 123.
    T. S. Millar, Model completions and omitting types, J. Symb. Log. 60 (1995), no. 2, 654–672.zbMATHCrossRefMathSciNetGoogle Scholar
  124. 124.
    F. Montagna and A. Sorbi, Universal recursion-theoretic properties of r.e. preordered structures, J. Symb. Log. 50 (1985), no. 2, 397–406.zbMATHCrossRefMathSciNetGoogle Scholar
  125. 125.
    M. Morley, Decidable models, Israel J. Math. 25 (1976), 233–240.zbMATHMathSciNetGoogle Scholar
  126. 126.
    M. Morley, Omitting classes of elements, In: The Theory of Models, M. Addison, L. Henkin, and A. Tarski (Eds.), North-Holland, 1965, pp. 265–273.Google Scholar
  127. 127.
    M. E. Nadel, Scott sentences for admissible sets, Ann. Math. Log. 7 (1974), 267–0294.zbMATHCrossRefMathSciNetGoogle Scholar
  128. 128.
    M. E. Nadel, \( L_{\omega _1 \omega } \) and admissible fragments, In: Model-Theoretic Logics, K. J. Barwise and S. Feferman (Eds.), Springer, 1985, pp. 271–316.Google Scholar
  129. 129.
    A. T. Nurtazin, Strong and weak constructivization and computable families, Algebra Log. 13 (1974), no. 3, 177–184.CrossRefMathSciNetGoogle Scholar
  130. 130.
    A. T. Nurtazin, Computable Models and Computable Classes, PhD Thesis, Novosibirsk, 1975.Google Scholar
  131. 131.
    R. Parikh, A note on paths through O, Proc. Am. Math. Soc. 39 (1973), 178–180.zbMATHCrossRefMathSciNetGoogle Scholar
  132. 132.
    M. G. Peretyat’kin, Strongly constructive models and numerations of the Boolean algebra of recursive sets, Algebra Log. 10 (1971), no. 5, 332–345.CrossRefMathSciNetGoogle Scholar
  133. 133.
    M. G. Peretyat’kin, Every recursively enumerable extension of a theory of linear order has a constructive model, Algebra Log. 12 (1973), no. 2, 120–124.CrossRefMathSciNetGoogle Scholar
  134. 134.
    M. G. Peretyat’kin, Strongly constructive model without elementary submodels and extensions, Algebra Log. 12 (1973), no. 3, 178–183.CrossRefMathSciNetGoogle Scholar
  135. 135.
    M. G. Peretyat’kin, On complete theories with a finite number of denumerable models, Algebra Log. 12 (1973), no. 5, 310–326.CrossRefMathSciNetGoogle Scholar
  136. 136.
    M. G. Peretyat’kin, Criterion for strong constructivizability of a homogeneous model, Algebra Log. 17 (1978), no. 4, 290–301.CrossRefMathSciNetGoogle Scholar
  137. 137.
    M. O. Rabin, Effective computability of winning strategies, In: Contributions to the Theory of Games, Vol. 3, Princeton Univ. Press, Princeton, 1957, 147–157.Google Scholar
  138. 138.
    R. Reed, A decidable Ehrenfeucht theory with exactly two hyperarithmetic models, Ann. Pure Appl. Logic 53 (1991), no. 2, 135–168.zbMATHCrossRefMathSciNetGoogle Scholar
  139. 139.
    J. P. Ressayre, Models with compactness properties relative to an admissible language, Ann. Math. Log. 11 (1977), 31–55.zbMATHCrossRefMathSciNetGoogle Scholar
  140. 140.
    H. Rogers, Jr., Theory of Computable Functions and Effective Computability, McGraw-Hill, New York, 1967.Google Scholar
  141. 141.
    G. E. Sacks, On the number of countable models, In: Southeast Asian Conference on Logic (Singapore, 1981), C. T. Chong and M. J. Wicks (Eds.), North-Holland, 1983, pp. 185–195.Google Scholar
  142. 142.
    G. E. Sacks, Higher Recursion Theory, Springer, 1990.Google Scholar
  143. 143.
    D. Scott, Logic with denumerably long formulas and finite strings of quantifiers, In: The Theory of Models, J. Addison, L. Henkin, and A. Tarski (Eds.), North-Holland, 1965, 329–341.Google Scholar
  144. 144.
    V. L. Selivanov, Enumerations of families of general computable functions, Algebra Log. 15 (1976), 205–226.zbMATHMathSciNetGoogle Scholar
  145. 145.
    T. Slaman, Relative to any non-computable set, Proc. Am. Math. Soc. 126 (1998), 2117–2122.zbMATHCrossRefMathSciNetGoogle Scholar
  146. 146.
    R. I. Soare, Recursively Enumerable Sets and Degrees, Springer, 1987.Google Scholar
  147. 147.
    I. N. Soskov, Intrinsically II11 relations, Math. Log Quart. 42 (1996), 109–126.zbMATHCrossRefMathSciNetGoogle Scholar
  148. 148.
    I. N. Soskov, Intrinsically Δ11 relations, Math. Log Quart. 42 (1996), 469–480.zbMATHCrossRefMathSciNetGoogle Scholar
  149. 149.
    C. Spector, Computable well-orderings, J. Symb. Log. 20 (1955), 151–163.zbMATHCrossRefMathSciNetGoogle Scholar
  150. 150.
    S. Tennenbaum, Non-archimedean models for arithmetic, Notices Am. Math. Soc. 6 (1959), 270.Google Scholar
  151. 151.
    R. L. Vaught, Non-recursive-enumerability of the set of sentences true in all constructive models, Bull. Am. Math. Soc. 63 (1957), no. 4, 230.Google Scholar
  152. 152.
    R. L. Vaught, Sentences true in all constructive models, J. Symb. Log. 25, (1960), no. 1, 39–58.zbMATHCrossRefMathSciNetGoogle Scholar
  153. 153.
    M. C. Venning, Type Structures of ω 0-Categorical Theories, Thesis, Cornell Univ., Ithaca, 1976.Google Scholar
  154. 154.
    S. Wehner, Enumerations, countable structures, and Turing degrees, Proc. Am. Math. Soc. 126 (1998), 2131–2139.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Sobolev Institute of Mathematics SB RASNovosibirsk State UniversityNovosibirskRussia

Personalised recommendations