Skip to main content

Significance of Regional Draining Lymph Nodes in the Development of Tumor Immunity: Implications for Cancer Immunotherapy

  • Chapter
Cancer Metastasis And The Lymphovascular System: Basis For Rational Therapy

Part of the book series: Cancer Treatment and Research ((CTAR,volume 135))

For the majority of human solid cancer, regional draining lymph nodes (LNs) are the initial target of metastases and the LN status serves as the most important prognostic indicator for clinical outcome of patients. In patients with cutaneous melanoma who develop metastases, tumor most often first presents in the ipsilateral regional nodes and appears preferentially in the first LN on the direct lymphatic drainage pathway from a primary melanoma (1, 2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cochran AJ, Bhuta S, Paul E, Ribas A (2000) The shifting patterns of metastatic melanoma. Clin Lab Med 4:759–783.

    Google Scholar 

  2. Cochran AJ, Roberts AA, Saida T (2003) The place of lymphatic mapping and sentinel node biopsy in oncology. Int J Clin Oncol 8:139–150.

    Article  PubMed  Google Scholar 

  3. Morton DL, Wen D-R, Wong JH, Economou JS, Cagle LA, Storm FK, Foshag LJ, Cochran AJ (1992) Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg 127:392–399.

    PubMed  CAS  Google Scholar 

  4. Cochran AJ, Morton DL, Stern S, Lana AM, Essner R, Wen DR (2001) Sentinel lymph nodes show profound downregulation of antigen-presenting cells of the paracortex: Implications for tumor biology and treatment. Mod Pathol 14:604–608.

    Article  PubMed  CAS  Google Scholar 

  5. Lana A-M, Wen D-R, Cochran AJ (2001) The morphology, immunophenotype and distribution of paracortical dendritic leukocytes in lymph nodes regional to cutaneous melanoma. Melanoma Res 11:1–10.

    Article  Google Scholar 

  6. Lee JH, Essner R, Torisu-Itakura H, Wanek L, Wang H-J, Morton DL (2004) Factors predictive of tumor-positive nonsentinel lymph nodes after tumor-positive sentinel lymph node dissection for melanoma. J Clin Oncol 22:3677–3684.

    Article  PubMed  Google Scholar 

  7. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL, Sherry R, Restifo NP, Hubicki AM, Robinson MR, Raffeld M, Duray P, Seipp CA, Rogers-Freezer L, Morton KE, Mavroukakis SA, White DE, Rosenberg SA (2002) Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298:850–854.

    Article  PubMed  CAS  Google Scholar 

  8. Davies AJS, Carter RL, Leuchars E, Wallis V, Koller PC (1969) The morphology of immune reactions in normal, thymectomized and reconstituted mice I. The response to sheep erythrocytes. Immunol 16:57–69.

    CAS  Google Scholar 

  9. Landsteiner K, Chase MW (1939) Studies on the sensitization of animals with simple chemical compounds. VI. Experiments on the sensitization of guinea pig to poison ivy. J. Exp. Med. 69:767–784.

    Article  CAS  Google Scholar 

  10. Sell S, Weigle WO (1959) The relationship between delayed hypersensitivity and circulating antibody induced by protein antigens in guinea pigs. J Immunol 83:257–263.

    PubMed  CAS  Google Scholar 

  11. Turk JL, Stone SH (1963) Implications of the cellular changes in lymph nodes during the development and inhibition of delayed type hypersensitivity. In: Amos B, Koprowski H (eds) “Cell-bound Antibodies”. Wistar Institute Press, pp 51.

    Google Scholar 

  12. Frey JR, Wenk P (1957) Experimental studies on the pathogenesis of contact eczema in the guinea pig. Int Arch Allergy 11:81–100.

    Article  PubMed  CAS  Google Scholar 

  13. Hanna MG Jr, Bucana CD, Pollack VA (1980) Immunological stimulation in situ: the acute and chronic inflammatory responses in the induction of tumor immunity. Contemp Top Immunol 10:267–296.

    Google Scholar 

  14. Stephenson KR, Perry-Lalley D, Griffith KD, Shu S, Chang AE (1989) Development of antitumor reactivity in regional draining lymph nodes from tumor-immunized and tumor-bearing murine hosts. Surgery 105:523–528.

    PubMed  CAS  Google Scholar 

  15. Chou T, Chang AE, Shu S (1988) Generation of therapeutic T lymphocytes from tumor-bearing mice by in vitro sensitization: culture requirements and characterization of immunologic specificity. J Immunol 140:2453–2461.

    PubMed  CAS  Google Scholar 

  16. Shu S, Chou T, Rosenberg SA (1987) Generation from tumor-bearing mice of lymphoid cells with in vivo therapeutic efficacy. J Immunol 139:295–304.

    PubMed  CAS  Google Scholar 

  17. Chang AE, Yoshizawa H, Sakai K, Cameron MJ, Sondak VK, Shu S (1993) Clinical observations on adoptive immunotherapy with vaccine-primed T lymphocytes secondarily sensitized to tumor in vitro. Cancer Res 53:1043–1050.

    PubMed  CAS  Google Scholar 

  18. Yoshizawa H, Chang AE, Shu S (1992) Cellular interactions in effector cell generation and tumor regression mediated by anti-CD3/IL-2 activated tumor-draining lymph node cells. Cancer Research 52:1129–1136.

    PubMed  CAS  Google Scholar 

  19. Kagamu H, Shu S (1998) Purification of L-selectinlow cells promotes the generation of highly potent CD4 antitumor or effector T lymphocytes. J Immunol 160:3444–3452.

    PubMed  CAS  Google Scholar 

  20. Yoshizawa H, Chang AE, Shu S (1991) Specific adoptive immunotherapy mediated by tumor-draining lymph node cells sequentially activated with anti-CD3 and IL-2. J Immunol 147:729–737.

    PubMed  CAS  Google Scholar 

  21. Plautz GE, Barnett GH, Miller DW, Cohen BH, Prayson RA, Krauss JC, Luciano M, Kangisser DB, Shu S (1998) Systemic T cell adoptive immunotherapy of malignant gliomas. J Neurosurg 89:42–51.

    Article  PubMed  CAS  Google Scholar 

  22. Plautz GE, Miller DW, Barnett GH, Stevens GHJ, Maffett S, Kim J, Cohen PA, Shu S (2000) T cell immunotherapy of newly diagnosed gliomas. Clin Cancer Res 6:2209–2218.

    PubMed  CAS  Google Scholar 

  23. Plautz GE, Bukowski RM, Novick AC, Klein EA, Kursh ED, Olencki TE, Yetman RJ, Pienkny A, Sandstrom K, Shu S (1999) T cell adoptive immunotherapy of metastatic renal cell carcinoma. Urology 54:617–624.

    Article  PubMed  CAS  Google Scholar 

  24. To WC, Wood BG, Krauss JC, Strome M, Esclamado RM, Lavertu P, Dasko D, Kim JA, Plautz GE, Leff BE, Smith V, Sandstrom-Wakeling K, Shu S (2000) Systemic adoptive T cell immunotherapy in recurrent and metastatic carcinoma of head and neck: a phase I study. Arch Otolaryngol Head Neck Surg 126:1225–1231.

    PubMed  CAS  Google Scholar 

  25. Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296.

    Article  PubMed  CAS  Google Scholar 

  26. Hart DNJ (1997) Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 90:3245–3287.

    PubMed  CAS  Google Scholar 

  27. Steinman RM, Dhodapkar M (2001) Active immunization against cancer with dendritic cells: the near future. Int J Cancer 94:459–473.

    Article  PubMed  CAS  Google Scholar 

  28. Engleman EG (2003) Dendritic cell-based cancer immunotherapy. Seminars in Oncol 30:23–27.

    Article  CAS  Google Scholar 

  29. Ridway D (2003) The first 1000 dendritic cell vaccines. Cancer Invest 21:873–886.

    Article  Google Scholar 

  30. Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915.

    Article  PubMed  CAS  Google Scholar 

  31. Gong J, Chen D, Kashiwaba M, Kufe D (1997) Induction of antitumor activity by immunization with fusion of dendritic and carcinoma cells. Nat Med 3:558–561.

    Article  PubMed  CAS  Google Scholar 

  32. Gong J, Nikrui N, Chen D, Koido S, Wu Z, Tanaka Y, Cannistra S, Avigan D, Kufe D (2000) Fusions of human ovarian carcinoma cells with autologous or allogeneic dendritic cells induce antitumor immunity. J Immunol 165:1705–1711.

    PubMed  CAS  Google Scholar 

  33. Gong J, Avigan D, Chen D, Wu Z, Koido S, Kashiwaba M, Kufe D (2000) Activation of antitumor cytotoxic T lymphocytes by fusions of human dendritic cells and breast carcinoma cells. PNAS 97:2715–2718.

    Article  PubMed  CAS  Google Scholar 

  34. Kuriyama H, Shimizu K, Lee W, Kjaergaard J, Parkhurst MR, Cohen PA, Shu S (2004) Therapeutic vaccine generated by electrofusion of dendritic cells and tumour cells. Dev Biol (Basel) 116:157–166.

    Google Scholar 

  35. Hayashi T, Tanaka H, Tanaka J, Wang R, Averbook BJ, Cohen PA, Shu S (2002) Immunogenicity and therapeutic efficacy of dendritic-tumor hybrid cells generated by electrofusion. Clin Immunol 104:14–20.

    Article  PubMed  CAS  Google Scholar 

  36. Parkhurst MR, DePan C, Riley JP, Rosenberg SA, Shu S (2003) Hybrids of dendritic cells and tumor cells generated by electrofusion simultaneously present immunodominant epitopes from multiple human tumor-associated antigens in the context of MHC class I and class II molecules. J Immunol 170:5317–5325.

    PubMed  CAS  Google Scholar 

  37. Kjaergaard J, Shimizu K, Shu S (2003) Electrofusion of syngeneic dendritic cells and tumor generates potent therapeutic vaccine. Cell Immunol 225:65–74.

    Article  PubMed  CAS  Google Scholar 

  38. Shimizu K, Kuriyama H, Kjaergaard J, Lee W, Tanaka H, Shu S (2004) Comparative analysis of antigen loading strategies of dendritic cells for tumor immunotherapy. J Immunother 27:265–272.

    Article  PubMed  CAS  Google Scholar 

  39. Kjaergaard J, Wang L-X, Kuriyama H, Shu S, Plautz GE (2005) Active immunotherapy for advanced intracranial murine tumors by using dendritic cell-tumor cell fusion vaccines. J Neurosurg 103:156–164.

    Article  PubMed  CAS  Google Scholar 

  40. Boon T, Coulie PG, Van den Eynde B (1997) Tumor antigens recognized by T cells. Immunol Today 18:267–268.

    Article  PubMed  CAS  Google Scholar 

  41. Rosenberg SA (1999) A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity 10:281–287.

    Article  PubMed  CAS  Google Scholar 

  42. Cox AL, Skipper J, Chen Y, Henderson RA, Darrow TL, Shabanowitz J, Engelhard VH, Hunt DF, Slingluff Jr CL (1994) Identification of a peptide recognized by five melanoma-specific human cytotoxic T cells lines. Science 264:716–719.

    Article  PubMed  CAS  Google Scholar 

  43. Hunt DF, Henderson RA, Shabanowitz J, Sakaguchi K, Michel H, Sevilir N, Cox AL, Appella E, Engelhard VH (1992) Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 255:1261–1263.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zheng, R., Kjaergaard, J., Lee, W.T., Cohen, P.A., Shu, S. (2007). Significance of Regional Draining Lymph Nodes in the Development of Tumor Immunity: Implications for Cancer Immunotherapy. In: Leong, S.P.L. (eds) Cancer Metastasis And The Lymphovascular System: Basis For Rational Therapy. Cancer Treatment and Research, vol 135. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-69219-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-69219-7_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-69218-0

  • Online ISBN: 978-0-387-69219-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics