Skip to main content

Androgen-Regulated Genes in the Prostate

  • Chapter
  • First Online:
Androgen Action in Prostate Cancer

Abstract

The androgen receptor (AR) and attendant signaling program regulates key components of prostate organogenesis, contributes to normal physiological functions, and influences organ-specific pathologies that include benign prostate hypertrophy and carcinoma. AR signaling regulates genetic programs in both epithelium and in cells comprising the stromal compartment of the prostate. Given that multiple cellular and tissue effects are attributable to AR signaling, increased knowledge of the AR-regulated gene expression network is central to an understanding of prostate function in health and disease. Androgen-responsive gene expression can be regulated at the level of transcription, RNA processing, RNA stability, protein translation, or protein stability. The products of these genes form part of a network of biochemical interactions leading to physiological consequences for prostate development and pathology. This review focuses on recent advances in the identification of genes regulated by androgens and the AR and provides context for their potential influence on normal prostate physiology and mechanisms of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abate-Shen, C., Banach-Petrosky, W.A., Sun, X., Economides, K.D., Desai, N., Gregg, J.P., Borowsky, A.D., Cardiff, R.D., and Shen, M.M. (2003). Nkx3.1; Pten mutant mice develop invasive prostate adenocarcinoma and lymph node metastases. Cancer Research 63, 3886–3890

    PubMed  CAS  Google Scholar 

  • Abbott, D.E., Pritchard, C., Clegg, N.J., Ferguson, C., Dumpit, R., Sikes, R.A., and Nelson, P.S. (2003). Expressed sequence tag profiling identifies developmental and anatomic partitioning of gene expression in the mouse prostate. Genome Biology 4, R79

    PubMed  Google Scholar 

  • Abdulkadir, S.A., Magee, J.A., Peters, T.J., Kaleem, Z., Naughton, C.K., Humphrey, P.A., and Milbrandt, J. (2002). Conditional loss of Nkx3.1 in adult mice induces prostatic intraepithelial neoplasia. Molecular and Cellular Biology 22, 1495–1503

    PubMed  CAS  Google Scholar 

  • Adams, M.D., Kelley, J.M., Gocayne, J.D., Dunnick, M., Polymeropoulos, M.H., Xiao, H., Merril, C.R., Wu, A., Olde, B., Moreno, R.F., et al. (1991). Complementary DNA Sequencing: Expressed Sequence Tags and Human Genome  Project. Science 252, 1651–1656

    PubMed  CAS  Google Scholar 

  • Agoulnik, I.U., and Weigel, N.L. (2006). Androgen receptor action in hormone-dependent and recurrent prostate cancer. Journal of Cellular Biochemistry 99, 362–372

    PubMed  CAS  Google Scholar 

  • Amler, L.C., Agus, D.B., LeDuc, C., Sapinoso, M.L., Fox, W.D., Kern, S., Lee, D., Wang, V., Leysens, M., Higgins, B., et al. (2000). Dysregulated expression of androgen-responsive and nonresponsive genes in the androgen-independent prostate cancer xenograft model CWR22-R1. Cancer Research 60, 6134–6141

    PubMed  CAS  Google Scholar 

  • Anderson, L., and Seilhamer, J. (1997). A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18, 533–537

    PubMed  CAS  Google Scholar 

  • Arnold, J.T., Le, H., McFann, K.K., and Blackman, M.R. (2005). Comparative effects of DHEA vs. testosterone, dihydrotestosterone, and estradiol on proliferation and gene expression in human LNCaP prostate cancer cells. American Journal of Physiology 288, E573–584

    PubMed  CAS  Google Scholar 

  • Asirvatham, A.J., Schmidt, M., Gao, B., and Chaudhary, J. (2006). Androgens regulate the immune/inflammatory response and cell survival pathways in rat ventral prostate epithelial cells. Endocrinology 147, 257–271

    PubMed  CAS  Google Scholar 

  • Barent, R.L., Nair, S.C., Carr, D.C., Ruan, Y., Rimerman, R.A., Fulton, J., Zhang, Y., and Smith, D.F. (1998). Analysis of FKBP51/FKBP52 chimeras and mutants for Hsp90 binding and association with progesterone receptor complexes. Molecular Endocrinology (Baltimore, Md) 12, 342–354

    PubMed  CAS  Google Scholar 

  • Bebermeier, J.H., Brooks, J.D., DePrimo, S.E., Werner, R., Deppe, U., Demeter, J., Hiort, O., and Holterhus, P.M. (2006). Cell-line and tissue-specific signatures of androgen receptor-coregulator transcription. Journal of Molecular Medicine 84, 919–931

    PubMed  CAS  Google Scholar 

  • Ben Aicha, S., Lessard, J., Pelletier, M., Fournier, A., Calvo, E., and Labrie, C. (2007). Transcriptional profiling of genes that are regulated by the endoplasmic reticulum-bound transcription factor AIbZIP/CREB3L4 in prostate cells. Physiological Genomics 31, 295–305

    PubMed  CAS  Google Scholar 

  • Bhatia-Gaur, R., Donjacour, A.A., Sciavolino, P.J., Kim, M., Desai, N., Young, P., Norton, C.R., Gridley, T., Cardiff, R.D., Cunha, G.R., et al. (1999). Roles for Nkx3.1 in prostate development and cancer. Genes & Development 13, 966–977

    CAS  Google Scholar 

  • Bolton, E.C., So, A.Y., Chaivorapol, C., Haqq, C.M., Li, H., and Yamamoto, K.R. (2007). Cell- and gene-specific regulation of primary target genes by the androgen receptor. Genes & Development 21, 2005–2017

    CAS  Google Scholar 

  • Bourdeau, V., Deschenes, J., Metivier, R., Nagai, Y., Nguyen, D., Bretschneider, N., Gannon, F., White, J.H., and Mader, S. (2004). Genome-wide identification of high-affinity estrogen response elements in human and mouse. Molecular Endocrinology (Baltimore, Md) 18, 1411–1427

    PubMed  CAS  Google Scholar 

  • Bova, G.S., Carter, B.S., Bussemakers, M.J., Emi, M., Fujiwara, Y., Kyprianou, N., Jacobs, S.C., Robinson, J.C., Epstein, J.I., Walsh, P.C., et al. (1993). Homozygous deletion and frequent allelic loss of chromosome 8p22 loci in human prostate cancer. Cancer Research 53, 3869–3873

    PubMed  CAS  Google Scholar 

  • Cai, C., Chen, S.Y., Zheng, Z., Omwancha, J., Lin, M.F., Balk, S.P., and Shemshedini, L. (2007a). Androgen regulation of soluble guanylyl cyclasealpha1 mediates prostate cancer cell proliferation. Oncogene 26, 1606–1615

    CAS  Google Scholar 

  • Cai, C., Hsieh, C.L., Omwancha, J., Zheng, Z., Chen, S.Y., Baert, J.L., and Shemshedini, L. (2007b). ETV1 is a novel androgen receptor-regulated gene that mediates prostate cancer cell invasion. Molecular Endocrinology (Baltimore, Md) 21, 1835–1846

    CAS  Google Scholar 

  • Carroll, J.S., Liu, X.S., Brodsky, A.S., Li, W., Meyer, C.A., Szary, A.J., Eeckhoute, J., Shao, W., Hestermann, E.V., Geistlinger, T.R., et al. (2005). Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122, 33–43

    PubMed  CAS  Google Scholar 

  • Carroll, J.S., Meyer, C.A., Song, J., Li, W., Geistlinger, T.R., Eeckhoute, J., Brodsky, A.S., Keeton, E.K., Fertuck, K.C., Hall, G.F., et al. (2006). Genome-wide analysis of estrogen receptor binding sites. Nature Genetics 38, 1289–1297

    PubMed  CAS  Google Scholar 

  • Ci, M., Mayumi, Y., Andre, B., Pascal, B., Lin, G., Yasukazu, T., Fernand, L., and St-Amand, J. (2008). Prostate-specific genes and their regulation by dihydrotestosterone. Prostate 68, 241–254

    PubMed  Google Scholar 

  • Claessens, F., Alen, P., Devos, A., Peeters, B., Verhoeven, G., and Rombauts, W. (1996). The androgen-specific probasin response element 2 interacts differentially with androgen and glucocorticoid receptors. The Journal of biological chemistry 271, 19013–19016

    PubMed  CAS  Google Scholar 

  • Clegg, N., Eroglu, B., Ferguson, C., Arnold, H., Moorman, A., and Nelson, P.S. (2002). Digital expression profiles of the prostate androgen-response program. The Journal of Steroid Biochemistry and Molecular Biology 80, 13–23

    PubMed  CAS  Google Scholar 

  • Cleutjens, K.B., van der Korput, H.A., van Eekelen, C.C., van Rooij, H.C., Faber, P.W., and Trapman, J. (1997). An androgen response element in a far upstream enhancer region is essential for high, androgen-regulated activity of the prostate-specific antigen promoter. Molecular Endocrinology (Baltimore, Md) 11, 148–161

    PubMed  CAS  Google Scholar 

  • Cleutjens, K.B., van Eekelen, C.C., van der Korput, H.A., Brinkmann, A.O., and Trapman, J. (1996). Two androgen response regions cooperate in steroid hormone regulated activity of the prostate-specific antigen promoter. The Journal of Biological Chemistry 271, 6379–6388

    PubMed  CAS  Google Scholar 

  • Corey, E., Quinn, J.E., Buhler, K.R., Nelson, P.S., Macoska, J.A., True, L.D., and Vessella, R.L. (2003). LuCaP 35: a new model of prostate cancer progression to androgen independence. Prostate 55, 239–246

    PubMed  CAS  Google Scholar 

  • Coutinho-Camillo, C.M., Salaorni, S., Sarkis, A.S., and Nagai, M.A. (2006). Differentially expressed genes in the prostate cancer cell line LNCaP after exposure to androgen and anti-androgen. Cancer Genetics and Cytogenetics 166, 130–138

    PubMed  CAS  Google Scholar 

  • Cunha, G.R., Ricke, W., Thomson, A., Marker, P.C., Risbridger, G., Hayward, S.W., Wang, Y.Z., Donjacour, A.A., and Kurita, T. (2004). Hormonal, cellular, and molecular regulation of normal and neoplastic prostatic development. The Journal of Steroid Biochemistry and Molecular Biology 92, 221–236

    PubMed  CAS  Google Scholar 

  • Dai, J.L., and Burnstein, K.L. (1996). Two androgen response elements in the androgen receptor coding region are required for cell-specific up-regulation of receptor messenger RNA. Molecular Endocrinology (Baltimore, Md) 10, 1582–1594

    CAS  Google Scholar 

  • Davies, T.H., Ning, Y.M., and Sanchez, E.R. (2002). A new first step in activation of steroid receptors: hormone-induced switching of FKBP51 and FKBP52 immunophilins. The Journal of Biological Chemistry 277, 4597–4600

    PubMed  CAS  Google Scholar 

  • de Launoit, Y., Veilleux, R., Dufour, M., Simard, J., and Labrie, F. (1991). Characteristics of the biphasic action of androgens and of the potent antiproliferative effects of the new pure antiestrogen EM-139 on cell cycle kinetic parameters in LNCaP human prostatic cancer cells. Cancer Research 51, 5165–5170

    PubMed  CAS  Google Scholar 

  • de Wildt, S.N., Kearns, G.L., Leeder, J.S., and van den Anker, J.N. (1999). Cytochrome P450 3A: ontogeny and drug disposition. Clinical Pharmacokinetics 37, 485–505

    PubMed  CAS  Google Scholar 

  • Dehm, S.M., and Tindall, D.J. (2006). Molecular regulation of androgen action in prostate cancer. Journal of Cellular Biochemistry 99, 333–344

    PubMed  CAS  Google Scholar 

  • DePrimo, S.E., Diehn, M., Nelson, J.B., Reiter, R.E., Matese, J., Fero, M., Tibshirani, R., Brown, P.O., and Brooks, J.D. (2002). Transcriptional programs activated by exposure of human prostate cancer cells to androgen. Genome Biology 3, RESEARCH0032

    Google Scholar 

  • Desai, K.V., Michalowska, A.M., Kondaiah, P., Ward, J.M., Shih, J.H., and Green, J.E. (2004) Gene expression profiling identifies a unique androgen-mediated inflammatory/immune signature and a PTEN (phosphatase and tensin homolog deleted on chromosome 10)-mediated apoptotic response specific to the rat ventral prostate. Molecular Endocrinology (Baltimore, Md) 18, 2895–2907

    CAS  Google Scholar 

  • Eder, I.E., Haag, P., Basik, M., Mousses, S., Bektic, J., Bartsch, G., and Klocker, H. (2003). Gene expression changes following androgen receptor elimination in LNCaP prostate cancer cells. Molecular Carcinogenesis 37, 181–191

    PubMed  CAS  Google Scholar 

  • Evans, G.S., and Chandler, J.A. (1987). Cell proliferation studies in the rat prostate: II. The effects of castration and androgen-induced regeneration upon basal and secretory cell proliferation. The Prostate 11, 339–351

    PubMed  CAS  Google Scholar 

  • Febbo, P.G., Lowenberg, M., Thorner, A.R., Brown, M., Loda, M., and Golub, T.R. (2005). Androgen mediated regulation and functional implications of fkbp51 expression in prostate cancer. The Journal of Urology 173, 1772–1777

    PubMed  CAS  Google Scholar 

  • Feldman, B.J., and Feldman, D. (2001). The development of androgen-independent prostate cancer. Nature Reviews 1, 34–45

    PubMed  CAS  Google Scholar 

  • Firth, S.M., and Baxter, R.C. (2002). Cellular actions of the insulin-like growth factor binding proteins. Endocrine Reviews 23, 824–854

    PubMed  CAS  Google Scholar 

  • Geck, P., Szelei, J., Jimenez, J., Lin, T.M., Sonnenschein, C., and Soto, A.M. (1997). Expression of novel genes linked to the androgen-induced, proliferative shutoff in prostate cancer cells. The Journal of steroid biochemistry and molecular Biology 63, 211–218

    PubMed  CAS  Google Scholar 

  • Goossens, K., Esquenet, M., Swinnen, J.V., Manin, M., Rombauts, W., and Verhoeven, G. (1999). Androgens decrease and retinoids increase the expression of insulin-like growth factor-binding protein-3 in LNcaP prostatic adenocarcinoma cells. Molecular and Cellular Endocrinology 155, 9–18

    PubMed  CAS  Google Scholar 

  • Grad, J.M., Lyons, L.S., Robins, D.M., and Burnstein, K.L. (2001). The androgen receptor (AR) amino-terminus imposes androgen-specific regulation of AR gene expression via an exonic enhancer. Endocrinology 142, 1107–1116

    PubMed  CAS  Google Scholar 

  • Gygi, S.P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M.H., and Aebersold, R. (1999). Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nature Biotechnology 17, 994–999

    PubMed  CAS  Google Scholar 

  • Haynes, P.A., Gygi, S.P., Figeys, D., and Aebersold, R. (1998). Proteome analysis: biological assay or data archive? Electrophoresis 19, 1862–1871

    PubMed  CAS  Google Scholar 

  • He, W.W., Sciavolino, P.J., Wing, J., Augustus, M., Hudson, P., Meissner, P.S., Curtis, R.T., Shell, B.K., Bostwick, D.G., Tindall, D.J., et al. (1997). A novel human prostate-specific, androgen-regulated homeobox gene (NKX3.1) that maps to 8p21, a region frequently deleted in prostate cancer. Genomics 43, 69–77

    PubMed  CAS  Google Scholar 

  • Heemers, H.V., Verhoeven, G., and Swinnen, J.V. (2006). Androgen activation of the sterol regulatory element-binding protein pathway: current insights. Molecular Endocrinology (Baltimore, Md) 20, 2265–2277

    PubMed  CAS  Google Scholar 

  • Horie-Inoue, K., Bono, H., Okazaki, Y., and Inoue, S. (2004). Identification and functional analysis of consensus androgen response elements in human prostate cancer cells. Biochemical and Biophysical Research Communications 325, 1312–1317

    PubMed  CAS  Google Scholar 

  • Horoszewicz, J.S., Leong, S.S., Kawinski, E., Karr, J.P., Rosenthal, H., Chu, T.M., Mirand, E.A., and Murphy, G.P. (1983). LNCaP model of human prostatic carcinoma. Cancer Research 43, 1809–1818

    PubMed  CAS  Google Scholar 

  • Hsu, T., Trojanowska, M., and Watson, D.K. (2004). Ets proteins in biological control and cancer. Journal of Cellular Biochemistry 91, 896–903

    PubMed  CAS  Google Scholar 

  • Isaacs, J.T., Lundmo, P.I., Berges, R., Martikainen, P., Kyprianou, N., and English, H.F. (1992). Androgen regulation of programmed death of normal and malignant prostatic cells. Journal of Andrology 13, 457–464

    PubMed  CAS  Google Scholar 

  • Jariwala, U., Prescott, J., Jia, L., Barski, A., Pregizer, S., Cogan, J.P., Arasheben, A., Tilley, W.D., Scher, H.I., Gerald, W.L., et al. (2007). Identification of novel androgen receptor target genes in prostate cancer. Molecular Cancer 6, 39

    PubMed  Google Scholar 

  • Jiang, F., and Wang, Z. (2003). Identification of androgen-responsive genes in the rat ventral prostate by complementary deoxyribonucleic acid subtraction and microarray. Endocrinology 144, 1257–1265

    PubMed  CAS  Google Scholar 

  • Johnson, D.S., Mortazavi, A., Myers, R.M., and Wold, B. (2007). Genome-wide mapping of in vivo protein-DNA interactions. Science (New York, NY) 316, 1497–1502

    PubMed  CAS  Google Scholar 

  • Kasper, S. (2005). Survey of genetically engineered mouse models for prostate cancer: analyzing the molecular basis of prostate cancer development, progression, and metastasis. Journal of Cellular Biochemistry 94, 279–297

    PubMed  CAS  Google Scholar 

  • Kim, K.H., Dobi, A., Shaheduzzaman, S., Gao, C.L., Masuda, K., Li, H., Drukier, A., Gu, Y., Srikantan, V., Rhim, J.S., et al. (2007). Characterization of the androgen receptor in a benign prostate tissue-derived human prostate epithelial cell line: RC-165N/human telomerase reverse transcriptase. Prostate Cancer and Prostatic Diseases 10, 30–38

    PubMed  CAS  Google Scholar 

  • Kim, M.J., Bhatia-Gaur, R., Banach-Petrosky, W.A., Desai, N., Wang, Y., Hayward, S.W., Cunha, G.R., Cardiff, R.D., Shen, M.M., and Abate-Shen, C. (2002). Nkx3.1 mutant mice recapitulate early stages of prostate carcinogenesis. Cancer Research 62, 2999–3004

    PubMed  CAS  Google Scholar 

  • Klein, K.A., Reiter, R.E., Redula, J., Moradi, H., Zhu, X.L., Brothman, A.R., Lamb, D.J., Marcelli, M., Belldegrun, A., Witte, O.N., et al. (1997). Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice. Nature Medicine 3, 402–408

    PubMed  CAS  Google Scholar 

  • Kojima, S., Mulholland, D.J., Ettinger, S., Fazli, L., Nelson, C.C., and Gleave, M.E. (2006). Differential regulation of IGFBP-3 by the androgen receptor in the lineage-related androgen-dependent LNCaP and androgen-independent C4-2 prostate cancer models. The Prostate 66, 971–986

    PubMed  CAS  Google Scholar 

  • Kousteni, S., Bellido, T., Plotkin, L.I., O'Brien, C.A., Bodenner, D.L., Han, L., Han, K., DiGregorio, G.B., Katzenellenbogen, J.A., Katzenellenbogen, B.S., et al. (2001). Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104, 719–730

    PubMed  CAS  Google Scholar 

  • Kulik, G., and Weber, M.J. (1998). Akt-dependent and -independent survival signaling pathways utilized by insulin-like growth factor I. Molecular and cellular biology 18, 6711–6718.

    PubMed  CAS  Google Scholar 

  • Kyprianou, N., and Isaacs, J.T. (1988). Activation of programmed cell death in the rat ventral prostate after castration. Endocrinology 122, 552–562

    PubMed  CAS  Google Scholar 

  • Lefstin, J.A., and Yamamoto, K.R. (1998). Allosteric effects of DNA on transcriptional regulators. Nature 392, 885–888

    PubMed  CAS  Google Scholar 

  • Lexander, H., Franzen, B., Hirschberg, D., Becker, S., Hellstrom, M., Bergman, T., Jornvall, H., Auer, G., and Egevad, L. (2005). Differential protein expression in anatomical zones of the prostate. Proteomics 5, 2570–2576

    PubMed  CAS  Google Scholar 

  • Li, B.Y., Liao, X.B., Fujito, A., Thrasher, J.B., Shen, F.Y., and Xu, P.Y. (2007). Dual androgen-response elements mediate androgen regulation of MMP-2 expression in prostate cancer cells. Asian Journal of Andrology 9, 41–50

    PubMed  Google Scholar 

  • Louro, R., Nakaya, H.I., Amaral, P.P., Festa, F., Sogayar, M.C., da Silva, A.M., Verjovski-Almeida, S., and Reis, E.M. (2007). Androgen responsive intronic non-coding RNAs. BMC Biology 5, 4

    PubMed  Google Scholar 

  • Macoska, J.A., Trybus, T.M., Benson, P.D., Sakr, W.A., Grignon, D.J., Wojno, K.D., Pietruk, T., and Powell, I.J. (1995). Evidence for three tumor suppressor gene loci on chromosome 8p in human prostate cancer. Cancer Research 55, 5390–5395

    PubMed  CAS  Google Scholar 

  • Magee, J.A., Abdulkadir, S.A., and Milbrandt, J. (2003). Haploinsufficiency at the Nkx3.1 locus. A paradigm for stochastic, dosage-sensitive gene regulation during tumor initiation. Cancer Cell 3, 273–283

    PubMed  CAS  Google Scholar 

  • Magee, J.A., Chang, L.W., Stormo, G.D., and Milbrandt, J. (2006). Direct, androgen receptor-mediated regulation of the FKBP5 gene via a distal enhancer element. Endocrinology 147, 590–598

    PubMed  CAS  Google Scholar 

  • Marker, P.C., Donjacour, A.A., Dahiya, R., and Cunha, G.R. (2003). Hormonal, cellular, and molecular control of prostatic development. Developmental Biology 253, 165–174

    PubMed  CAS  Google Scholar 

  • Martin, D.B., Gifford, D.R., Wright, M.E., Keller, A., Yi, E., Goodlett, D.R., Aebersold, R., and Nelson, P.S. (2004). Quantitative proteomic analysis of proteins released by neoplastic prostate epithelium. Cancer Research 64, 347–355

    PubMed  CAS  Google Scholar 

  • Martin, J.L., and Pattison, S.L. (2000). Insulin-like growth factor binding protein-3 is regulated by dihydrotestosterone and stimulates deoxyribonucleic acid synthesis and cell proliferation in LNCaP prostate carcinoma cells. Endocrinology 141, 2401–2409

    PubMed  CAS  Google Scholar 

  • Massie, C.E., Adryan, B., Barbosa-Morais, N.L., Lynch, A.G., Tran, M.G., Neal, D.E., and Mills, I.G. (2007). New androgen receptor genomic targets show an interaction with the ETS1 transcription factor. EMBO Reports 8, 871–878

    PubMed  CAS  Google Scholar 

  • Masuda, K., Werner, T., Maheshwari, S., Frisch, M., Oh, S., Petrovics, G., May, K., Srikantan, V., Srivastava, S., and Dobi, A. (2005). Androgen receptor binding sites identified by a GREF_GATA model. Journal of Molecular Biology 353, 763–771

    PubMed  CAS  Google Scholar 

  • McNeal, J.E. (1981a). Normal and pathologic anatomy of prostate. Urology 17, 11–16

    CAS  Google Scholar 

  • McNeal, J.E. (1981b). The zonal anatomy of the prostate. The Prostate 2, 35–49

    CAS  Google Scholar 

  • Meehan, K.L., and Sadar, M.D. (2004). Quantitative profiling of LNCaP prostate cancer cells using isotope-coded affinity tags and mass spectrometry. Proteomics 4, 1116–1134

    PubMed  CAS  Google Scholar 

  • Migliaccio, A., Castoria, G., Di Domenico, M., de Falco, A., Bilancio, A., Lombardi, M., Barone, M.V., Ametrano, D., Zannini, M.S., Abbondanza, C., et al. (2000). Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation. The EMBO Journal 19, 5406–5417

    PubMed  CAS  Google Scholar 

  • Mitchell, S.H., Murtha, P.E., Zhang, S., Zhu, W., and Young, C.Y. (2000). An androgen response element mediates LNCaP cell dependent androgen induction of the hK2 gene. Molecular and Cellular Endocrinology 168, 89–99

    PubMed  CAS  Google Scholar 

  • Moilanen, A.M., Hakkola, J., Vaarala, M.H., Kauppila, S., Hirvikoski, P., Vuoristo, J.T., Edwards, R.J., and Paavonen, T.K. (2007). Characterization of androgen-regulated expression of CYP3A5 in human prostate. Carcinogenesis 28, 916–921

    PubMed  CAS  Google Scholar 

  • Mostaghel, E.A., Page, S.T., Lin, D.W., Fazli, L., Coleman, I.M., True, L.D., Knudsen, B., Hess, D.L., Nelson, C.C., Matsumoto, A.M., et al. (2007). Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res 67, 5033–5041

    PubMed  CAS  Google Scholar 

  • Mousses, S., Wagner, U., Chen, Y., Kim, J.W., Bubendorf, L., Bittner, M., Pretlow, T., Elkahloun, A.G., Trepel, J.B., and Kallioniemi, O.P. (2001). Failure of hormone therapy in prostate cancer involves systematic restoration of androgen responsive genes and activation of rapamycin sensitive signaling. Oncogene 20, 6718–6723

    PubMed  CAS  Google Scholar 

  • Murtha, P.E., Zhu, W., Zhang, J., Zhang, S., and Young, C.Y. (1997). Effects of Ca++ mobilization on expression of androgen-regulated genes: interference with androgen receptor-mediated transactivation by AP-I proteins. The Prostate 33, 264–270

    PubMed  CAS  Google Scholar 

  • Nagaraj, S.H., Gasser, R.B., and Ranganathan, S. (2007). A hitchhiker's guide to expressed sequence tag (EST) analysis. Briefings in Bioinformatics 8, 6–21

    PubMed  CAS  Google Scholar 

  • Nantermet, P.V., Xu, J., Yu, Y., Hodor, P., Holder, D., Adamski, S., Gentile, M.A., Kimmel, D.B., Harada, S., Gerhold, D., et al. (2004). Identification of genetic pathways activated by the androgen receptor during the induction of proliferation in the ventral prostate gland. The Journal of Biological Chemistry 279, 1310–1322

    PubMed  CAS  Google Scholar 

  • Nelson, P.S., Clegg, N., Arnold, H., Ferguson, C., Bonham, M., White, J., Hood, L., and Lin, B. (2002). The program of androgen-responsive genes in neoplastic prostate epithelium. Proceedings of the National Academy of Sciences of the United States of America 99, 11890–11895

    Google Scholar 

  • Ness, S.A. (2007). Microarray analysis: basic strategies for successful experiments. Molecular biotechnology 36, 205–219

    PubMed  CAS  Google Scholar 

  • Nickerson, T., Pollak, M., and Huynh, H. (1998). Castration-induced apoptosis in the rat ventral prostate is associated with increased expression of genes encoding insulin-like growth factor binding proteins 2,3,4 and 5. Endocrinology 139, 807–810

    PubMed  CAS  Google Scholar 

  • Nickols, N.G., and Dervan, P.B. (2007). Suppression of androgen receptor-mediated gene expression by a sequence-specific DNA-binding polyamide. Proceedings of the National Academy of Sciences of the United States of America 104, 10418-10424

    Google Scholar 

  • Oosterhoff, J.K., Grootegoed, J.A., and Blok, L.J. (2005). Expression profiling of androgen-dependent and -independent LNCaP cells: EGF versus androgen signalling. Endocrine-related Cancer 12, 135–148

    PubMed  CAS  Google Scholar 

  • Pang, S.T., Dillner, K., Wu, X., Pousette, A., Norstedt, G., and Flores-Morales, A. (2002). Gene expression profiling of androgen deficiency predicts a pathway of prostate apoptosis that involves genes related to oxidative stress. Endocrinology 143, 4897–4906

    PubMed  CAS  Google Scholar 

  • Peng, L., Malloy, P.J., Wang, J., and Feldman, D. (2006). Growth inhibitory concentrations of androgens up-regulate insulin-like growth factor binding protein-3 expression via an androgen response element in LNCaP human prostate cancer cells. Endocrinology 147, 4599–4607

    PubMed  CAS  Google Scholar 

  • Pfundt, R., Smit, F., Jansen, C., Aalders, T., Straatman, H., van der Vliet, W., Isaacs, J., van Kessel, A.G., and Schalken, J. (2005). Identification of androgen-responsive genes that are alternatively regulated in androgen-dependent and androgen-independent rat prostate tumors. Genes, Chromosomes & Cancer 43, 273–283

    CAS  Google Scholar 

  • Pinthus, J.H., Bryskin, I., Trachtenberg, J., Lu, J.P., Singh, G., Fridman, E., and Wilson, B.C. (2007). Androgen induces adaptation to oxidative stress in prostate cancer: implications for treatment with radiation therapy. Neoplasia (New York, NY) 9, 68–80

    PubMed  CAS  Google Scholar 

  • Porter, D., Yao, J., and Polyak, K. (2006). SAGE and related approaches for cancer target identification. Drug Discovery Today 11, 110–118

    PubMed  CAS  Google Scholar 

  • Qi, H., Fillion, C., Labrie, Y., Grenier, J., Fournier, A., Berger, L., El-Alfy, M., and Labrie, C. (2002). AIbZIP, a novel bZIP gene located on chromosome 1q21.3 that is highly expressed in prostate tumors and of which the expression is up-regulated by androgens in LNCaP human prostate cancer cells. Cancer Research 62, 721–733

    PubMed  CAS  Google Scholar 

  • Rae, J.M., Johnson, M.D., Cordero, K.E., Scheys, J.O., Larios, J.M., Gottardis, M.M., Pienta, K.J., and Lippman, M.E. (2006). GREB1 is a novel androgen-regulated gene required for prostate cancer growth. The Prostate 66, 886–894

    PubMed  CAS  Google Scholar 

  • Rhee, H.J., Kim, E.J., and Lee, J.K. (2007). Physiological polyamines: simple primordial stress molecules. Journal of Cellular and Molecular Medicine 11, 685–703

    PubMed  CAS  Google Scholar 

  • Riegman, P.H., Vlietstra, R.J., van der Korput, J.A., Brinkmann, A.O., and Trapman, J. (1991). The promoter of the prostate-specific antigen gene contains a functional androgen responsive element. Molecular Endocrinology (Baltimore, Md) 5, 1921–1930

    PubMed  CAS  Google Scholar 

  • Ripple, M.O., Henry, W.F., Rago, R.P., and Wilding, G. (1997). Prooxidant-antioxidant shift induced by androgen treatment of human prostate carcinoma cells. Journal of the National Cancer Institute 89, 40–48

    PubMed  CAS  Google Scholar 

  • Rowland, J.G., Robson, J.L., Simon, W.J., Leung, H.Y., and Slabas, A.R. (2007). Evaluation of an in vitro model of androgen ablation and identification of the androgen responsive proteome in LNCaP cells. Proteomics 7, 47–63

    Google Scholar 

  • Sato, N., Sadar, M.D., Bruchovsky, N., Saatcioglu, F., Rennie, P.S., Sato, S., Lange, P.H., and Gleave, M.E. (1997). Androgenic induction of prostate-specific antigen gene is repressed by protein-protein interaction between the androgen receptor and AP-1/c-Jun in the human prostate cancer cell line LNCaP. The Journal of Biological Chemistry 272, 17485–17494

    PubMed  CAS  Google Scholar 

  • Schena, M., Shalon, D., Davis, R.W., and Brown, P.O. (1995). Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray. Science 270, 467–470

    PubMed  CAS  Google Scholar 

  • Schoenmakers, E., Alen, P., Verrijdt, G., Peeters, B., Verhoeven, G., Rombauts, W., and Claessens, F. (1999). Differential DNA binding by the androgen and glucocorticoid receptors involves the second Zn-finger and a C-terminal extension of the DNA-binding domains. The Biochemical Journal 341 ( Pt 3), 515–521

    PubMed  CAS  Google Scholar 

  • Segawa, T., Nau, M.E., Xu, L.L., Chilukuri, R.N., Makarem, M., Zhang, W., Petrovics, G., Sesterhenn, I.A., McLeod, D.G., Moul, J.W., et al. (2002). Androgen-induced expression of endoplasmic reticulum (ER) stress response genes in prostate cancer cells. Oncogene 21, 8749–8758

    PubMed  CAS  Google Scholar 

  • Shi, X.B., Ma, A.H., Tepper, C.G., Xia, L., Gregg, J.P., Gandour-Edwards, R., Mack, P.C., Kung, H-J., and deVere White, R.W. (2004). Molecular alterations associated with LNCaP cell progression to androgen independence. Prostate 60, 257–271

    PubMed  CAS  Google Scholar 

  • Shi, X.B., Xue, L., Yang, J., Ma, A.H., Zhao, J., Xu, M., Tepper, C.G., Evans, C.P., Kung, H.J., and deVere White, R.W. (2007). An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proceedings of the National Academy of Sciences of the United States of America 104, 19983–19988

    Google Scholar 

  • Shou, J., Ross, S., Koeppen, H., de Sauvage, F.J., and Gao, W.Q. (2001). Dynamics of notch expression during murine prostate development and tumorigenesis. Cancer research 61, 7291–7297

    PubMed  CAS  Google Scholar 

  • Sun, C., Shi, Y., Xu, L.L., Nageswararao, C., Davis, L.D., Segawa, T., Dobi, A., McLeod, D.G., and Srivastava, S. (2006). Androgen receptor mutation (T877A) promotes prostate cancer cell growth and cell survival. Oncogene 25, 3905–3913

    PubMed  CAS  Google Scholar 

  • Takayama, K., Kaneshiro, K., Tsutsumi, S., Horie-Inoue, K., Ikeda, K., Urano, T., Ijichi, N., Ouchi, Y., Shirahige, K., Aburatani, H., et al. (2007). Identification of novel androgen response genes in prostate cancer cells by coupling chromatin immunoprecipitation and genomic microarray analysis. Oncogene 26, 4453–4463

    PubMed  CAS  Google Scholar 

  • Tonge, R., Shaw, J., Middleton, B., Rowlinson, R., Rayner, S., Young, J., Pognan, F., Hawkins, E., Currie, I., and Davison, M. (2001). Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1, 377–396

    PubMed  CAS  Google Scholar 

  • Trevino, V., Falciani, F., and Barrera-Saldana, H.A. (2007). DNA microarrays: a powerful genomic tool for biomedical and clinical research. Molecular Medicine (Cambridge, Mass) 13, 527–541

    PubMed  CAS  Google Scholar 

  • van der Heul-Nieuwenhuijsen, L., Hendriksen, P.J., van der Kwast, T.H., and Jenster, G. (2006). Gene expression profiling of the human prostate zones. BJU International 98, 886–897

    PubMed  CAS  Google Scholar 

  • Velasco, A.M., Gillis, K.A., Li, Y., Brown, E.L., Sadler, T.M., Achilleos, M., Greenberger, L.M., Frost, P., Bai, W., and Zhang, Y. (2004). Identification and validation of novel androgen-regulated genes in prostate cancer. Endocrinology 145, 3913–3924

    PubMed  CAS  Google Scholar 

  • Velculescu, V.E., Zhang, L., Vogelstein, B., and Kinzler, K.W. (1995). Serial analysis of gene expression. Science 270, 384–387

    Google Scholar 

  • Waghray, A., Feroze, F., Schober, M.S., Yao, F., Wood, C., Puravs, E., Krause, M., Hanash, S., and Chen, Y.Q. (2001). Identification of androgen-regulated genes in the prostate cancer cell line LNCaP by serial analysis of gene expression and proteomic analysis. Proteomics 1, 1327–1338

    PubMed  CAS  Google Scholar 

  • Wang, Q., Li, W., Liu, X.S., Carroll, J.S., Janne, O.A., Keeton, E.K., Chinnaiyan, A.M., Pienta, K.J., and Brown, M. (2007a). A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Molecular Cell 27, 380–392

    Google Scholar 

  • Wang, X.D., Wang, B.E., Soriano, R., Zha, J., Zhang, Z., Modrusan, Z., Cunha, G.R., and Gao, W.Q. (2007b). Expression profiling of the mouse prostate after castration and hormone replacement: implication of H-cadherin in prostate tumorigenesis. Differentiation; Research in Biological Diversity 75, 219–234

    CAS  Google Scholar 

  • Whitaker, H.C., Stanbury, D.P., Brinham, C., Girling, J., Hanrahan, S., Totty, N., and Neal, D.E. (2007). Labeling and identification of LNCaP cell surface proteins: a pilot study. Prostate 67, 943–954

    PubMed  CAS  Google Scholar 

  • Wright, M.E., Eng, J., Sherman, J., Hockenbery, D.M., Nelson, P.S., Galitski, T., and Aebersold, R. (2003). Identification of androgen-coregulated protein networks from the microsomes of human prostate cancer cells. Genome Biology 5, R4

    PubMed  Google Scholar 

  • Wu, J., Smith, L.T., Plass, C., and Huang, T.H. (2006). ChIP-chip comes of age for genome-wide functional analysis. Cancer Research 66, 6899–6902

    PubMed  CAS  Google Scholar 

  • Wu, Y., Zhao, W., Zhao, J., Pan, J., Wu, Q., Zhang, Y., Bauman, W.A., and Cardozo, C.P. (2007). Identification of androgen response elements in the insulin-like growth factor I upstream promoter. Endocrinology 148, 2984–2993

    PubMed  CAS  Google Scholar 

  • Xu, L.L., Su, Y.P., Labiche, R., Segawa, T., Shanmugam, N., McLeod, D.G., Moul, J.W., and Srivastava, S. (2001). Quantitative expression profile of androgen-regulated genes in prostate cancer cells and identification of prostate-specific genes. International Journal of Cancer 92, 322–328

    CAS  Google Scholar 

  • Yuan, X.J., and Whang, Y.E. (2002). PTEN sensitizes prostate cancer cells to death receptor-mediated and drug-induced apoptosis through a FADD-dependent pathway. Oncogene 21, 319–327

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter S. Nelson .

Editor information

James Mohler Donald Tindall

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Clegg, N., Nelson, P.S. (2009). Androgen-Regulated Genes in the Prostate. In: Mohler, J., Tindall, D. (eds) Androgen Action in Prostate Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69179-4_27

Download citation

Publish with us

Policies and ethics