Skip to main content

Advertisement

SpringerLink
  • Log in
Book cover

Reviews of Environmental Contamination and Toxicology pp 23–45Cite as

  1. Home
  2. Reviews of Environmental Contamination and Toxicology
  3. Chapter
Silver as a Disinfectant

Silver as a Disinfectant

  • Nadia Silvestry-Rodriguez12,
  • Enue E. Sicairos-Ruelas13,
  • Charles P. Gerba13 &
  • …
  • Kelly R. Bright13 
  • Chapter
  • 2957 Accesses

  • 152 Citations

  • 21 Altmetric

Part of the Reviews of Environmental Contamination and Toxicology book series (RECT,volume 191)

Abstract

The antimicrobial effects of silver (Ag) have been recognized for thousands of years. In ancient times, it was used in water containers (Grier 1983) and to prevent putrefaction of liquids and foods. In ancient times in Mexico, water and milk were kept in silver containers (Davis and Etris 1997). Silver was also mentioned in the Roman pharmacopoeia of 69 b.c. (Davis and Etris 1997).

Keywords

  • Water Distribution System
  • Cool Tower
  • Free Chlorine
  • Silver Sulfadiazine
  • Drinking Water Disinfection

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Communicated by Dr. Charles P. Gerba.

Download chapter PDF

References

  • Albright LJ, Wentworth W, Wilson EM (1972) Technique for measuring metallic salt effects upon the indigenous heterotrophic microflora of a natural water. Water Res 6:1589–1596.

    CrossRef  CAS  Google Scholar 

  • Anonymous (2006) Australian pesticides and veterinary medicines authority. http://www.apvm.gov.au/qa/poolspa_Q&A.shtml. Retrieved Feb. 1, 2006.

  • Antelman MS (1992) Anti-pathogenic multivalent silver molecular semiconductors. Precious Metals 16:141–149.

    Google Scholar 

  • Armon R, Laot N, Lev O, Shuval H, Fattal B (2000) Controlling biofilm formation by hydrogen peroxide and silver combined disinfectant. Water Sci Technol 42:187–192.

    CAS  Google Scholar 

  • Auer J, Berent R, Ng CK, Punzengruber C, Mayr H, Lassnig E, Schwarz C, Puschmann R, Hartl P, Eber B (2001) Early investigation of silver-coated Silzone heart valves prosthesis in 126 patients. J Heart Valve Dis 10:717–723.

    CAS  Google Scholar 

  • Beer CW, Guilmartin LE, McLoughlin TF, White TJ (1999) Swimming pool disinfection. J Environ Health 61:9–13.

    CAS  Google Scholar 

  • Bell FA (1991) Review of effects of silver impregnated carbon filters on microbial water quality. J Am Water Works Assoc 83:74–76.

    CAS  Google Scholar 

  • Bellantone M, Williams HD, Hench LL (2002) Broad-spectrum bactericidal activity of Ag2O-doped bioactive glass. Antimicrob Agents Chemother 46:1940–1945.

    CrossRef  CAS  Google Scholar 

  • Bentham RH, Broadbent CR (1993) A model for autumn outbreaks of Legionnaires’ disease associated with cooling-towers, linked to system operation and size. Epidemiol Infect 111:287–295.

    CAS  Google Scholar 

  • Blaker JJ, Boccaccini AR, Nazhat SN (2005) Thermal characterizations of silver-containing bioactive glass-coated sutures. J Biomater Appl 20:81–98.

    CrossRef  CAS  Google Scholar 

  • Blanc DS, Carrara P, Zanetti G, Francioli P (2005) Water disinfection with ozone, copper and silver ions, and temperature increase to control Legionella: seven years of experience in a university teaching hospital. J Hosp Infect 60:69–72.

    CrossRef  CAS  Google Scholar 

  • Borgmann SR (2003) Comparative assessment of different biocides in swimming pool water. Int Biodeterior Biodegrad 51:291–297.

    CrossRef  CAS  Google Scholar 

  • Brady MJ, Lisay CM, Yurkovetskiy AV, Sawan SP (2003) Persistent silver disinfectant for the environmental control of pathogenic bacteria. Am J Infect Control 31:208–214.

    CrossRef  Google Scholar 

  • Bragg PD, Rainnie DJ (1973) The effect of silver ions on the respiratory chain of Echerichia coli. Can J Microbiol 20:883–889.

    Google Scholar 

  • Breiman RF, Cozen W, Fields BS, Mastro TD, Carr SJ, Spika JS, Mascola L (1990) Role of air sampling in investigation of an outbreak of Legionnaires’ disease associated with exposure to aerosols from an evaporative condensor. J Infect Dis 161:1257–1261.

    CAS  Google Scholar 

  • Bright KR, Gerba CP, Rusin PA (2002) Rapid reduction of Staphylococcus aureus populations on stainless steel surfaces by zeolite ceramic coatings containing silver and zinc ions. J Hosp Infect 52:307–309.

    CrossRef  CAS  Google Scholar 

  • Broadbent CR (1993) Legionella in cooling towers: practical research, design, treatment, and control guidelines. In: Barbaree JM, Breiman RF, Dufour AP (eds) Legionella: Current Status and Emerging Perspectives. American Society for Microbiology, Washington, DC, pp 217–222.

    Google Scholar 

  • Brown CM, Nuorti PJ, Breiman RF, Hathcock L, Fields BS, Lipman HB, Llewellyn GC, Hofmann J, Cetron M (1999) A community outbreak of Legionnaires’ disease linked to hospital cooling towers; an epidemiological method to calculate dose of exposure. Int J Epidemiol 28:353–359.

    CrossRef  CAS  Google Scholar 

  • Butkus MA, Labare MP, Starke JA, Moon K, Talbot M (2004) Use of aqueous silver to enhance inactivation of coliphage MS-2 by UV disinfection. Appl Environ Microbiol 70:2848–2853.

    CrossRef  CAS  Google Scholar 

  • Cassells JM, Yahya MT, Gerba CP, Rose JB (1995) Efficacy of a combined system of copper and silver and free chlorine for inactivation of Naegleria fowleri amoebas in water. Water Sci Technol 31:119–122.

    CrossRef  CAS  Google Scholar 

  • CDC (Centers for Disease Control and Prevention) (1994) Legionnaires’ disease associated with cooling-towers. MMWR 43:491–493, 499.

    Google Scholar 

  • Chopra H (2007) The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J Antimicrob Chemother Feb 19, 2007 (Epub ahead of print).

    Google Scholar 

  • Cicalini S, Palmieri F, Petrosillo N (2004) Clinical review: new technologies for prevention of intravascular catheter-related infections. Crit Care 8:157–162.

    CrossRef  Google Scholar 

  • Cowan MM, Abshire KZ, Houk SL, Evans SM (2003) Antimicrobial efficacy of a silver-zeolite matrix coating on stainless steel. J Ind Microbiol Biotechnol 30:102–106.

    CAS  Google Scholar 

  • Craun GF (1988) Surface water supplies and health. J Am Water Works Assoc 80:40–52.

    CAS  Google Scholar 

  • Darouiche RO (1999) Anti-infective efficacy of silver-coated medical prostheses. Clin Infect Dis 29:1371–1377.

    CrossRef  CAS  Google Scholar 

  • Davis RI, Etris SF (1997) Development and functions of silver in water-purification and disease-control. Catalysis Today 36:107–114.

    CrossRef  Google Scholar 

  • Deshpande LM, Chopade BA (1994) Plasmid mediated silver resistance in Acinetobacter baumannii. Biometals 7:49–56.

    CrossRef  CAS  Google Scholar 

  • Dibrov P, Dzioba J, Gosink KK, Hase CC (2002) Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob Agents Chemother 46:2668–2670.

    CrossRef  CAS  Google Scholar 

  • Efrima S, Bronk BV (1998) Silver colloids impregnating or coating bacteria. J Phys Chem B 102:5947–5950.

    CrossRef  CAS  Google Scholar 

  • Environmental Protection Agency (2002) National Secondary Drinking Water Regulations. http://www.epa.gov/safewater/mcl.html. Retrieved July 7, 2006.

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668.

    CrossRef  CAS  Google Scholar 

  • Fliermans CB, Cherry WB, Orrison LH, Smith SJ, Tison DL, Pope DH (1981) Ecological distribution of Legionella pneumophila. Appl Environ Microbiol 41:9–16.

    CAS  Google Scholar 

  • Foegeding PM, Busta FF (1991) Chemical food preservatives. In: Block SS (ed) Disinfection, Sterilization, and Preservation, 4th Ed. Lea & Febiger, Philadelphia, p 842.

    Google Scholar 

  • Fox CL, Modak SM (1974) Mechanisms of silver sulfadiazine action on burn wound infections. Antimicrob Agents Chemother 5:582–588.

    CAS  Google Scholar 

  • Furr JR, Russell AD, Turner TD, Andrews A (1994) Antibacterial activity of Actisorb Plus, Actisorb and silver nitrate. J Hosp Infect 27:201–208.

    CrossRef  CAS  Google Scholar 

  • Galeano B, Korff E, Nicholson WL (2003) Inactivation of vegetative cells, but not spores, of Bacillus anthracis, B. cereus, and B. subtilis on stainless steel surfaces coated with an antimicrobial silver-and zinc-containing zeolite formulation. Appl Environ Microbiol 69:4329–4331.

    CrossRef  CAS  Google Scholar 

  • Gentry H, Cope S (2005) Using silver to reduce catheter-associated urinary tract infections. Nurs Stand 19:51–54.

    Google Scholar 

  • George N, Faoagali J, Muller M (1997) Silvazine (silver sulfadiazine and chlorhexidine) activity against 200 clinical isolates. Burns 23:493–495.

    CrossRef  CAS  Google Scholar 

  • Ghandour W, Hubbard JA, Diestrung J, Hughes MN, Poole PK (1988) The uptake of silver ions by Escherichia coli K12: toxic effects and interaction with copper ions. Appl Microbiol Biotechnol 28:559–565.

    CrossRef  CAS  Google Scholar 

  • Goddard PA, Bull TA (1989) Accumulation of silver by growing and non-growing populations of Citrobacter intermedius B6. Appl Microbiol Biotechnol 31:314–319.

    CAS  Google Scholar 

  • Grier N (1983) Silver and its compounds. In: Block SS (ed) Disinfection, Sterilization, and Preservation, 3rd Ed. Lea & Febiger, Philadelphia, pp 375–389.

    Google Scholar 

  • Gupta A, Maynes M, Silver S (1998) Effects of halides on plasmid-mediated silver resistance in Escherichia coli. Appl Environ Microbiol 64:5042–5045.

    CAS  Google Scholar 

  • Han J, Duan S, Yang Q, Gao C, Zhang B, He H, Dong X (2005) Efficient and quick inactivation of SARS coronavirus and others microbes exposed to the surfaces of some metals catalysts. Biomed Environ Sci 18:176–180.

    CAS  Google Scholar 

  • Heggers J, Goodheart RE, Washington J, McCoy L, Carino E, Dang T, Edgar P, Maness C, Chinkes D (2005) Therapeutic efficacy of three silver dressings in an infected animal model. J Burn Care Rehabil 26:53–56.

    CrossRef  Google Scholar 

  • Heining CF Jr (1993) Catalyst-assisted oxidative sanitation. Ozone Sci Eng 12:533.

    Google Scholar 

  • Hotta M, Nakamima H, Yamamoto K, Aono M (1998) Antibacterial temporary filling materials: the effect of adding various ratios of Ag-Zn-zeolite. J Oral Rehabil 25:485–489.

    CrossRef  CAS  Google Scholar 

  • Ibarluzea J, Moreno B, Zigorraga C, Castilla T, Martinez M, Santamaria J (1998) Determinants of the microbiological water quality of indoor swimming-pools in relation to disinfection. Water Res 32:865–871.

    CrossRef  CAS  Google Scholar 

  • Innes ME, Umraw N, Fish JS, Gomez M, Cartotto RC (2001) The use of silver coated dressings on donor site wounds: a prospective, controlled matched pair study. Burns 27:621–627.

    CrossRef  CAS  Google Scholar 

  • Inoue Y, Hoshino M, Takahashi H, Noguchi T, Murata T, Kanzaki Y, Hamashima H, Sasatsu M (2002) Bactericidal activity of Ag-zeolite mediated by reactive oxygen species under aerated conditions. J Inorg Biochem 92:37–42.

    CrossRef  CAS  Google Scholar 

  • Ionescu A, Payne N, Fraser AG, Giddings J, Grunkemeier GL, Butchart EG (2003) Incidence of embolism and paravalvar leak after St Jude Silzone valve implantation: experience from the Cardiff Embolic Risk Factor Study. Heart 89:1055–1061.

    CrossRef  CAS  Google Scholar 

  • Isenberg SJ (1990) The dilemma of neonatal ophthalmic prophylaxis. West J Med 153:190–191.

    CAS  Google Scholar 

  • Kadar M, Janossy L, Nagy G, Takatsy ZS, Koller M, Simon M, Pohl Ö (1993) Antiviral effect of a new disinfectant containing a silver complex and hydrogen peroxide as active agents. Wien Mitteil Wasser-Abwasser-Gewaesser 112: 62–64.

    CAS  Google Scholar 

  • Kawahara K, Tsuruda K, Morishita M, Uchida M (2000) Antibacterial effect of silver-zeolite on oral bacteria under anaerobic conditions. Dent Mater 16:452–455.

    CrossRef  CAS  Google Scholar 

  • Kebabjian RS (1995) Disinfection of public pools and management of fecal accidents. J Environ Health 58:8–12.

    Google Scholar 

  • Kim H, Shim J, Lee S (2002) Formation of disinfection by-products in chlorinated swimming pool water. Chemosphere 46:123–130.

    CrossRef  CAS  Google Scholar 

  • Kim J, Cho M, Oh B, Choi S, Yoon J (2004) Control of bacterial growth in water using synthesized inorganic disinfectant. Chemosphere 55:775–780.

    CrossRef  CAS  Google Scholar 

  • Kim TN, Feng QL, Kim JO, Wu J, Wang H, Chen GC, Cui FZ (1998) Antimicrobial effects of metal ions (Ag+,Cu2+, Zn2+) in hydroxyapatite. J Mater Sci Mater Med 9:129–134.

    CrossRef  Google Scholar 

  • Klueh U, Wagner V, Kelly S, Johnson A, Bryers JD (2000) Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. J Biomed Mater Res 53:621–631.

    CrossRef  CAS  Google Scholar 

  • Krause GA (1928) Neue Wege zur Wasserterilisierung. Bermann, München.

    Google Scholar 

  • Landeen LK, Yahya MT, Gerba CP (1989) Efficacy of copper and silver ions and reduced levels of free chlorine in inactivation of Legionella pneumophila. Appl Environ Microbiol 55:3045–3050.

    CAS  Google Scholar 

  • Li XZ, Nikaido H, Williams KE (1997) Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J Bacteriol 179:6127–6132.

    CAS  Google Scholar 

  • Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Interaction of silver-nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett Appl Microbiol 25:279–283.

    CrossRef  CAS  Google Scholar 

  • Liedberg H, Lundeberg T, Ekman P (1990) Refinements in the coating of urethral catheters reduces the incidence of catheter-associated bacteriuria. An experimental and clinical study. Eur Urol 17:236–240.

    CAS  Google Scholar 

  • Lin YS, Stout JE, Yu VL, Vidic RD (1998) Disinfection of water distribution systems for Legionella. Semin Respir Infect 13:147–159.

    CAS  Google Scholar 

  • Lin YS, Vidic RD, Stout JE, Yu VL (2002) Negative effect of high pH on biocidal efficacy of copper and silver ions in controlling Legionella pneumophila. Appl Environ Microbiol 68:2711–2715.

    CrossRef  CAS  Google Scholar 

  • Liu Z, Stout JE, Tedesco L, Boldin M, Hwang C, Diven WF, Yu VL (1994) Controlled evaluation of copper-silver ionization in eradicating Legionella pneumophila from a hospital water distribution system. J Infect Dis 169:919–922.

    CAS  Google Scholar 

  • Lundeberg T (1986) Prevention of catheter-associated urinary-tract infections by use of silver-impregnated catheters. Lancet 2:1031.

    CrossRef  CAS  Google Scholar 

  • Manal MG, Mayo MS, May LL, Simmons RB, Ahearn DG (1996) In vitro evaluation of the efficacy of a silver-coated catheter. Curr Microbiol 33:1–5.

    CrossRef  Google Scholar 

  • Martinez SS, Alvarez AG, Esteban M (2004) Electrolytically generated silver and copper ions to treat cooling water: an environmentally friendly novel alternative. Int J Hydrogen Energy 29:921–932.

    CrossRef  CAS  Google Scholar 

  • Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69:4278–4281.

    CrossRef  CAS  Google Scholar 

  • Mietzner S, Schwille RC, Farley A, Wald ER, Ge JH, States SJ, Libert T, Wadowsky RM, Miuetzner S (1997) Efficacy of thermal treatment and copper-silver ionization for controlling Legionella pneumophila in high-volume hot water plumbing systems in hospitals. Am J Infect Control 25:452–457.

    CrossRef  CAS  Google Scholar 

  • Modak SM, Fox CL Jr (1973) Binding of silver sulfadiazine to the cellular components of Pseudomonas aeruginosa. Biochem Pharmacol 22:2391–2404.

    CrossRef  CAS  Google Scholar 

  • Modak SM, Sampath L, Fox CL Jr (1988) Combined topical use of silver sulfadiazine and antibiotics as a possible solution to bacterial resistance in burn wounds. J Burn Care Rehabil 9:359–363.

    CrossRef  CAS  Google Scholar 

  • Moudgal CJ, Lipscomb JC, Bruce RM (2000) Potential health effects of drinking water disinfection by-products using quantitative structure toxicity relationship. Toxicology 147:109–131.

    CrossRef  CAS  Google Scholar 

  • Nover L, Scharf KD, Neuman D (1983) Formation of cytoplasmic heat shock protein granules in tomato cell cultures and leaves. Mol Cell Biol 3:1648–1655.

    CAS  Google Scholar 

  • Pedahzur R, Katzenelson D, Barnea N, Lev O, Shuval H, Ulitzur S (2000) The efficacy of long-lasting residual drinking water disinfectants based on hydrogen peroxide and silver. Water Sci Technol 42:293–298.

    CAS  Google Scholar 

  • Poon VK, Burd A (2004) In vitro cytotoxity of silver: implication for clinical wound care. Burns 30:140–147.

    CrossRef  Google Scholar 

  • Quintavalla S, Vicini L (2002) Antimicrobial food packaging in meat industry. Meat Sci 62:373–380.

    CrossRef  CAS  Google Scholar 

  • Rafter J, Grenier J, Denkewicz R (1999) US Patent #5,858,246. January 12, 1999; US Patent #5,935,609. August 10, 1999.

    Google Scholar 

  • Reasoner DJ, Blannon JC, Geldreich EE (1987) Microbial characteristics of third faucet point-of-use devices. J Am Water Works Assoc 79:60–66.

    CAS  Google Scholar 

  • Richards RM (1981) Antimicrobial action of silver nitrate. Microbios 31:83–91.

    CAS  Google Scholar 

  • Rohr U, Senger M, Selenka F, Turley R, Wilhelm M (1999) Four years of experience with silver-copper ionization for control of Legionella in a German university hospital hot water plumbing system. Clin Infect Dis 29:1507–1511.

    CrossRef  CAS  Google Scholar 

  • Rohr U, Weber S, Selenka F, Wilhelm M (2000) Impact of silver and copper on the survival of amoebae and ciliated protozoa in vitro. Int J Hyg Environ Health 203:87–89.

    CrossRef  CAS  Google Scholar 

  • Rosenkranz HS, Carr HS (1972) Silver sulfadiazine: effect on the growth and metabolism of bacteria. Antimicrob Agents Chemother 2:367–372.

    CAS  Google Scholar 

  • Rusin P, Gerba C (2001) Association of chlorination and UV irradiation to increasing antibiotic resistance in bacteria. Rev Environ Contam Toxicol 171:1–52.

    CAS  Google Scholar 

  • Rusin P, Bright K, Gerba C (2003) Rapid reduction of Legionella pneumophila on stainless steel with zeolite coatings containing silver and zinc ions. Lett Appl Microbiol 36:69–72.

    CrossRef  CAS  Google Scholar 

  • Russell AD, Hugo WB (1994) Antimicrobial activity and action of silver. Prog Med Chem 31:351–370.

    CrossRef  CAS  Google Scholar 

  • Samuni A, Aronovitch J, Chevio M, Czapski G (1984) In: Rottilio G, Bannister JV (eds) Life Chemistry Reports (Supplement), 2nd Ed. Harwood Academic, New York, pp 39–47.

    Google Scholar 

  • Schreurs WJ, Rosenberg H (1982) Effect of silver ions on transport and retention of phosphate by Escherichia coli. J Bacteriol 152:7–13.

    CAS  Google Scholar 

  • Shakibaie MR, Kapadnis BP, Dhakephalker P, Chopade BA (1999) Removal of silver from photographic wastewater effluent using Acinetobacter baumannii BL54. Can J Microbiol 45:995–1000.

    CrossRef  CAS  Google Scholar 

  • Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353.

    CrossRef  CAS  Google Scholar 

  • Singer M (1990) The role of antimicrobial agents in swimming pools. Int Biodeterior 26:159–168.

    CrossRef  CAS  Google Scholar 

  • Slawson RM, Lee H, Trevors JT (1990) Bacterial interactions with silver. Biol Metals 3:151–154.

    CrossRef  CAS  Google Scholar 

  • Slawson RM, Van Dyke MI, Lee H, Trevors JT (1992) Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid 27:72–79.

    CrossRef  CAS  Google Scholar 

  • Solioz M, Odermatt A (1995) Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J Biol Chem 270:9217–9221.

    CrossRef  CAS  Google Scholar 

  • Spacciapoli P, Buxton D, Rothstein D, Friden P (2001) Antimicrobial activity of silver nitrate against periodontal pathogens. J Periodontal Res 36:108–113.

    CrossRef  CAS  Google Scholar 

  • Starodub ME, Trevors JT (1990) Silver accumulation and resistance in Escherichia coli R1. J Inorg Biochem 39:317–325.

    CrossRef  CAS  Google Scholar 

  • Stout JE, Yu VL (1997) Legionellosis. N Engl J Med 337:682–687.

    CrossRef  CAS  Google Scholar 

  • Stout JE, Yu VL (2003) Experiences of the first 16 hospitals using copper-silver ionization for Legionella control: implications for the evaluation of other disinfection modalities. Infect Control Hosp Epidemiol 24:563–568.

    CrossRef  Google Scholar 

  • Stout JE, Lin YS, Goetz AM, Muder RR (1998) Controlling Legionella in hospital water systems: experience with the superheat-and-flush method and coppersilver ionization. Infect Control Hosp Epidemiol 19:911–914.

    CAS  Google Scholar 

  • Straub TM, Gerba CP, Zhou X, Price R, Yahya MT (1995) Synergistic inactivaction of Escherichia coli and MS-2 coliphage by chloramine and cupric chloride. Water Res 29:811–818.

    CrossRef  CAS  Google Scholar 

  • Takai KT, Ohtsuka T, Senda Y, Nakao M, Yamamoto K, Matsuoka-Junji J, Hirai Y (2002) Antibacterial properties of antimicrobial-finished textile products. Microbiol Immunol 46:75–81.

    CAS  Google Scholar 

  • Thurman RB, Gerba CP (1989) The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. CRC Crit Rev Environ Control 18:295–315.

    CrossRef  Google Scholar 

  • Tzagoloff H, Pratt D (1964) The initial steps in infection with coliphage M13. Virology 24:372–380.

    CrossRef  CAS  Google Scholar 

  • Uchida M (1995) Antimicrobial zeolite and its application. Chem Ind 46:48–54.

    Google Scholar 

  • Ulkur E, Oncul O, Karagoz H, Celikoz B, Cavuslu S (2005) Comparison of silvercoated dressing (Acticoat), chlorhexidine acetate 0.5% (Bactigrass), and silver sulfadiazine 1% (Silverdin) for topical antibacterial effect in Pseudomonas aeruginosa-contaminated, full-skin thickness burn wounds in rats. J Burn Care Rehabil 26:430–433.

    CrossRef  Google Scholar 

  • Von Gunten U, Driedger A, Gallard H, Salhi E (2001) By-products formation during drinking water disinfection: a tool to assess disinfection efficiency? Water Res 35:2095–2099.

    CrossRef  Google Scholar 

  • Wahlberg V (1982) Reconsideration of Credé prophylaxis. A study of maternity and neonatal care. Acta Paediatr Scand Suppl 295:1–73.

    CAS  Google Scholar 

  • Water Quality Association (2001) Use/Purchase of Home Water Treatment Systems. National Consumer Water Quality Survey, Naperville, IL.

    Google Scholar 

  • Williams RL, Grashoff GJ, Williams DF (1989) The biocompatibility of silver. Crit Rev Biocompat 5:221–243.

    CAS  Google Scholar 

  • Wood JM (1984) Microbiological strategies in resistance to metal ion toxicity. In: Sigel H (ed) Metal Ions in Biological Systems, vol 18. Marcel Dekker, New York, pp 333–351.

    Google Scholar 

  • World Health Organization (1996) Guidelines for Drinking-Water Quality, 2nd Ed. WHO, Geneva, Switzerland.

    Google Scholar 

  • Yahya MT, Landeen LK, Messina MC, Kutz SM, Schulze R, Gerba CP (1990) Disinfection of bacteria in water systems by using electrolytically generated copper: silver and reduced levels of free chlorine. Can J Microbiol 36:109–116.

    CAS  Google Scholar 

  • Yahya MT, Straub TM, Gerba CP (1992) Inactivation of coliphage MS-2 and poliovirus by copper, silver and chlorine. Can J Microbiol 38:430–435.

    CrossRef  CAS  Google Scholar 

  • Yoshida K, Tanagawa M, Matsumoto S, Yamada T, Atsuta M (1999) Antibacterial activity of resin composites with silver-containing materials. Eur J Oral Sci 107:290–296.

    CrossRef  CAS  Google Scholar 

  • Zacheus OM, Martikainen PJ (1994) Occurrence of Legionellae in hot water distribution systems of Finnish apartment buildings. Can J Microbiol 40:993–999.

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Agricultural and Biosystems Engineering, University of Arizona, Tucson, AZ, 85721, USA

    Nadia Silvestry-Rodriguez

  2. Department of Soil, Water and Environmental Science, University of Arizona, Building 38, Room 429, Tucson, AZ, 85721, USA

    Enue E. Sicairos-Ruelas, Dr. Charles P. Gerba & Kelly R. Bright

Authors
  1. Nadia Silvestry-Rodriguez
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Enue E. Sicairos-Ruelas
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Dr. Charles P. Gerba
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Kelly R. Bright
    View author publications

    You can also search for this author in PubMed Google Scholar

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Silvestry-Rodriguez, N., Sicairos-Ruelas, E.E., Gerba, C.P., Bright, K.R. (2007). Silver as a Disinfectant. In: Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 191. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69163-3_2

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-0-387-69163-3_2

  • Received: 17 July 2006

  • Accepted: 19 July 2006

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-69162-6

  • Online ISBN: 978-0-387-69163-3

  • eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 44.201.94.236

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.