Skip to main content

Solubility Issues in Early Discovery and HTS

  • Chapter

Part of the book series: Biotechnology: Pharmaceutical Aspects ((PHARMASP,volume VI))

Abstract

Drug discovery programs begin with target identification and validation for diseases with unmet medical needs (Figure 1). Drug discovery targets that are currently available mostly fall into two categories, with 45% being receptors and 28% being enzymes (Table 1) (Drews, 2000). There are only 483 targets addressed by all drugs in the pharmaceutical industry, which is a relatively small number compared to the estimated 3000–10,000 disease relevant genes (Meisner et al., 2004). It is evident that the drug target universe is far from being fully exploited.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreani A, Cavalli A, Granaiola M, Guardigli M, Leoni A, Locatelli A, Morigi R, Rambaldi M, Recanatini M, and Roda A. Synthesis and Screening for Antiacetylcholinesterase Activity of (1-Benzyl-4-oxopiperidin-3-ylidene)methylindoles and -pyrroles Related to Donepezil. J Med Chem. 2001; 44: 4011–4014.

    Article  PubMed  CAS  Google Scholar 

  • Avdeef A. Physicochemical Profiling (Solubility, Permeability and Charge State). Curr Top Med Chem 2001; 1: 277–351.

    Article  PubMed  CAS  Google Scholar 

  • Balakin KV. DMSO Solubility and Bioscreening. Curr Drug Discov 2003; 27–30.

    Google Scholar 

  • Balakin KV, Ivanenkov YA, Skorenko AV, Nikolsky YV, Savchuk NP, and Ivashchenko AA. In Silico Estimation of DMSO Solubility of Organic Compounds for Bioscreening. J Biomol Screen 2004; 9: 22–31.

    Article  PubMed  CAS  Google Scholar 

  • Benson N, Boyd HF, Everett JR, Fries J, Gribbon P, Haque N, Henco K, Jessen T, Martin WH, Mathewson TJ, Sharp RE, Spencer RW, Stuhmeier F, Wallace MS, and Winkler D. NanoStore: A Concept for Logistical Improvements of Compound Handling in High-Throughput Screening. J Biomol Screen 2005; 10: 573–580.

    Article  PubMed  CAS  Google Scholar 

  • Bevan CD and Lloyd RS. A High-Throughput Screening Method for the Determination of Aqueous Drug Solubility Using Laser Nephelometry in Microtiter Plates. Anal Chem 2000; 72: 1781–1787.

    Article  PubMed  CAS  Google Scholar 

  • Blackman MJ, Corrie JET, Croney JC, Kelly G, Eccleston JF, and Jameson DM. Structural and Biochemical Characterization of a Fluorogenic Rhodamine-Labeled Malarial Protease Substrate. Biochemistry 2002; 41: 12244–12252.

    Article  PubMed  CAS  Google Scholar 

  • Bleicher KH, Bohm H-J, Muller K, and Alanine AI. Hit and Lead Generation: Beyond High-Throughput Screening. Nat Rev Drug Discov 2003; 2: 369–378.

    Article  PubMed  CAS  Google Scholar 

  • Buchli R, VanGundy RS, Hickman-Miller HD, Giberson CF, Bardet W, and Hildebrand WH, Development and Validation of a Fluorescence Polarization-Based Competitive Peptide-Binding Assay for HLA-A*0201-A New Tool for Epitope Discovery. Biochemistry 2005; 44: 12491–12507.

    Article  PubMed  CAS  Google Scholar 

  • Cheng X, Hochlowski J, Tang H, Hepp D, Beckner C, Kantor S, and Schmitt R. Studies on Repository Compound Stability in DMSO under Various Conditions. J Biomol Screen 2003; 8: 292–304.

    Article  PubMed  CAS  Google Scholar 

  • Dalvit C, Flocco M, Knapp S, Mostardini M, Perego R, Stockman BJ, Veronesi M, and Varasi M. High-Throughput NMR-Based Screening with Competition Binding Experiments. J Am Chem Soc 2002; 124: 7702–7709.

    Article  PubMed  CAS  Google Scholar 

  • Davidson W, Frego L, Peet GW, Kroe RR, Labadia ME, Lukas SM, Snow RJ, Jakes S, Grygon CA, Pargellis C, and Werneburg BG. Discovery and Characterization of a Substrate Selective p38 Inhibitor. Biochemistry 2004; 43: 11658–11671.

    Article  PubMed  CAS  Google Scholar 

  • Dean KES, Klein G, Renaudet O, and Reymond J-L. A Green Fluorescent Chemosensor for Amino Acids Provides a Versatile High-throughput Screening (HTS) Assay for Proteases. Bioorg Med Chem Lett 2003; 13: 1653–1656.

    Article  PubMed  CAS  Google Scholar 

  • Delaney JS. Predicting Aqueous Solubility from Structure. Drug Discov Today 2005; 10: 289–295.

    Article  PubMed  CAS  Google Scholar 

  • Di L and Kerns EH. Application of Pharmaceutical Profiling Assays for Optimization of Drug-like Properties. Curr Opin Drug Discov & Devel 2005; 8: 495–504.

    CAS  Google Scholar 

  • Dickson M and Gagnon JP. Key Factors in the Rising Cost of New Drug Discovery and Development. Nat Rev Drug Discov 2004; 3: 417–429.

    Article  PubMed  CAS  Google Scholar 

  • Drews J. Drug Discovery: A Historical Perspective. Science 2000; 287: 1960–1964.

    Article  PubMed  CAS  Google Scholar 

  • Faria TN, Timoszyk JK, Stouch TR, Vig BS, Landowski CP, Amidon GL, Weaver CD, Wall DA, and Smith RL. A Novel High-Throughput PepT1 Transporter Assay Differentiates between Substrates and Antagonists. Mol Pharm 2004; 1: 67–76.

    Article  PubMed  CAS  Google Scholar 

  • Feng BY, Shelat A, Doman TN, Guy RK, and Shoichet BK. High-throughput assays for promiscuous inhibitors. Nat Chem Biol 2005; 1: 146–148.

    Article  PubMed  CAS  Google Scholar 

  • Fillers WS. Compound Libraries—Cost of Ownership. Drug Discov World 2004; 5: 86–90.

    Google Scholar 

  • Gezginci MH, Martin AR, and Franzblau SG. Antimycobacterial Activity of Substituted Isosteres of Pyridine- and Pyrazinecarboxylic Acids. J Med Chem 2001; 44: 1560–1563.

    Article  PubMed  CAS  Google Scholar 

  • Glomme A, März J, and Dressman JB. Comparison of a Miniaturized Shake-Flask Solubility Method with Automated Potentiometric Acid/Base Titrations and Calculated Solubilities. J Pharm Sci 2005; 94: 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin JJ. Flow Cell System for Solubility Testing, in p 12 pp, (Becton, Dickinson and Company, USA). Application: EP, 2003.

    Google Scholar 

  • Gribbon P and Andreas S. High-throughput Drug Discovery: What Can We Expect from HTS? Drug Discov Today 2005; 10: 17–22.

    Article  PubMed  Google Scholar 

  • Hertzberg RP and Pope AJ. High-throughput Screening: New Technology for the 21st Century. Curr Opin Chem Biol 2000; 4: 445–451.

    Article  PubMed  CAS  Google Scholar 

  • Hoever M and Zbinden P. The Evolution of Microarrayed Compound Screening. Drug Discov Today 2004; 9: 358–365.

    Article  PubMed  CAS  Google Scholar 

  • Japertas P, Verheij H, and Petrauskas A. DMSO Solubility Prediction. LogP 2004, Zurich, Switzerland, 2004.

    Google Scholar 

  • Johnston PA and Johnston PA. Cellular Platforms for HTS: Three Case Studies. Drug Discov Today 2002; 7: 353–363.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen WL and Duffy EM. Prediction of Drug Solubility from Structure. Adv Drug Deliv Rev 2002; 54: 355–366.

    Article  PubMed  CAS  Google Scholar 

  • Kerns EH. High Throughput Physicochemical Profiling for Drug Discovery. J Pharm Sci 2001; 90: 1838–1858.

    Article  PubMed  CAS  Google Scholar 

  • Kerns EH and Di L. Physicochemical Profiling: Overview of the Screens. Drug Discovery Today: Technologies 2004; 1: 343–348.

    Article  CAS  Google Scholar 

  • Kerns EH and Di L. Automation in Pharmaceutical Profiling. J Association for Laboratory Automation 2005; 10: 114–123.

    Article  CAS  Google Scholar 

  • Kerns EH, Di L, Bourassa J, Gross J, Huang N, Liu H, Kleintop T, Nogle L, Mallis L, Petucci C, Petusky S, Tischler M, Sabus C, Sarkahian A, Young M, Zhang M-y, Huryn D, McConnell O, and Carter G. Integrity Profiling of High Throughput Screening Hits Using LC-MS and Related Techniques. Comb Chem High Throughput Screen 2005; 8: 459–466.

    Article  PubMed  CAS  Google Scholar 

  • Kozikowski BA, Burt TM, Tirey DA, Williams LE, Kuzmak BR, Stanton DT, Morand KL, and Nelson SL. The Effect of Freeze/Thaw Cycles on the Stability of Compounds in DMSO. J Biomol Screen 2003a; 8: 210–215.

    Article  CAS  Google Scholar 

  • Kozikowski BA, Burt TM, Tirey DA, Williams LE, Kuzmak BR, Stanton DT, Morand KL, and Nelson SL. The Effect of Room-Temperature Storage on the Stability of Compounds in DMSO. J Biomol Screen 2003b; 8: 205–209.

    Article  CAS  Google Scholar 

  • Lipinski C. Solubility in the Design of Combinatorial Libraries. Chem Anal, New York 2004a; 163: 407–434.

    CAS  Google Scholar 

  • Lipinski CA. Avoiding Investment in Doomed Drugs. Curr Drug Discov 2001; 17–19.

    Google Scholar 

  • Lipinski CA. Solubility in Water and DMSO: Issues and Potential Solutions. Biotechnology: Pharmaceutical Aspects 2004b; 1: 93–125.

    CAS  Google Scholar 

  • Lipinski CA and Hoffer E. Compound Properties and Drug Quality. Practice of Medicinal Chemistry (2nd Edition) 2003, pp. 341–349.

    Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW and Feeney PJ. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Advanced Drug Delivery Reviews 1997; 23:3–25.

    Article  CAS  Google Scholar 

  • Lombardino JG and Lowe JA. The Role of the Medicinal Chemist in Drug Discovery—Then and Now. Nat Rev Drug Discov 2004; 3: 853–862.

    Article  PubMed  CAS  Google Scholar 

  • Lu J and Bakken GA. Building Classification Models for DMSO Solubility: Comparison of Five Methods. Abstracts of Papers, 228th ACS National Meeting, Philadelphia, PA, United States, August 22–26, 2004, CINF-045.

    Google Scholar 

  • McGovern SL, Caselli E, Grigorieff N, and Shoichet BK. A Common Mechanism Underlying Promiscuous Inhibitors from Virtual and High-Throughput Screening. J Med Chem 2002; 45: 1712–1722.

    Article  PubMed  CAS  Google Scholar 

  • McGovern SL, Helfand BT, Feng B, and Shoichet BK. A Specific Mechanism of Nonspecific Inhibition. J Med Chem 2003; 46: 4265–4272.

    Article  PubMed  CAS  Google Scholar 

  • McGovern SL and Shoichet BK. Kinase Inhibitors: Not Just for Kinases Anymore. J Med Chem 2003; 46: 1478–1483.

    Article  PubMed  CAS  Google Scholar 

  • Meisner N-C, Hintersteiner M, Uhl V, Weidemann T, Schmied M, Gstach H, and Auer M. The Chemical Hunt for the Identification of Drugable Targets. Curr Opin Chem Biol 2004; 8: 424–431.

    Article  PubMed  CAS  Google Scholar 

  • Miller KA, SureshKumar EVK, Wood SJ, Cromer JR, Datta A, and David SA. Lipopolysaccharide Sequestrants: Structural Correlates of Activity and Toxicity in Novel Acylhomospermines. J Med Chem 2005; 48: 2589–2599.

    Article  PubMed  CAS  Google Scholar 

  • Moore K and Rees S. Cell-Based Versus Isolated Target Screening: How Lucky Do You Feel? J Biomol Screen 2001; 6: 69–74.

    PubMed  CAS  Google Scholar 

  • Oldenburg K, Pooler D, Scudder K, Lipinski C, and Kelly M. High Throughput Sonication: Evaluation for Compound Solubilization. Comb Chem High Throughput Screen 2005; 8: 499–512.

    Article  PubMed  CAS  Google Scholar 

  • Oprea TI, Bologa CG, Edwards BS, Prossnitz ER, and Sklar LA. Post-High-Throughput Screening Analysis: An Empirical Compound Prioritization Scheme. J Biomol Screen 2005; 10: 419–426.

    Article  PubMed  CAS  Google Scholar 

  • Popa-Burke IG, Issakova O, Arroway JD, Bernasconi P, Chen M, Coudurier L, Galasinski S, Jadhav AP, Janzen WP, Lagasca D, Liu D, Lewis RS, Mohney RP, Sepetov N, Sparkman DA, and Hodge CN. Streamlined System for Purifying and Quantifying a Diverse Library of Compounds and the Effect of Compound Concentration Measurements on the Accurate Interpretation of Biological Assay Results. Anal Chem 2004; 76: 7278–7287.

    Article  PubMed  CAS  Google Scholar 

  • Roche O, Schneider P, Zuegge J, Guba W, Kansy M, Alanine A, Bleicher K, Danel F, Gutknecht E-M, Rogers-Evans M, Neidhart W, Stalder H, Dillon M, Sjogren E, Fotouhi N, Gillespie P, Goodnow R, Harris W, Jones P, Taniguchi M, Tsujii S, von der Saal W, Zimmermann G, and Schneider G. Development of a Virtual Screening Method for Identification of “Frequent Hitters” in Compound Libraries. J Med Chem 2002; 45: 137–142.

    Article  PubMed  CAS  Google Scholar 

  • Roehrl MHA, Wang JY, and Wagner G. Discovery of Small-Molecule Inhibitors of the NFAT-Calcineurin Interaction by Competitive High-Throughput Fluorescence Polarization Screening. Biochemistry 2004; 43: 16067–16075.

    Article  PubMed  CAS  Google Scholar 

  • Ryan AJ, Gray NM, Lowe PN, and Chung C-W. Effect of Detergent on “Promiscuous” Inhibitors. J Med Chem 2003; 46: 3448–3451.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M and Bornscheuer UT. High-throughput Assays for Lipases and Esterases. Biomol Eng 2005; 22: 51–56.

    Article  PubMed  CAS  Google Scholar 

  • Schopfer U, Engeloch C, Stanek J, Girod M, Schuffenhauer A, Jacoby E, and Acklin P. The Novartis Compound Archive—From Concept to Reality. Comb Chem High Throughput Screen 2005; 8: 513–519.

    Article  PubMed  CAS  Google Scholar 

  • Seidler J, McGovern SL, Doman TN, and Shoichet BK. Identification and Prediction of Promiscuous Aggregating Inhibitors among Known Drugs. J Med Chem 2003; 46: 4477–4486.

    Article  PubMed  CAS  Google Scholar 

  • Topp A, Zbinden P, Wehner HU, and Regenass U. A Novel Storage and Retrieval Concept for Compound Collections on Dry Film. J Association for Laboratory Automation 2005; 10: 88–97.

    Article  CAS  Google Scholar 

  • Walters WP and Namchuk M. Designing Screens: How To Make Your Hits a Hit. Nat Rev Drug Discov 2003; 2: 259–266.

    Article  PubMed  CAS  Google Scholar 

  • Yan B, Collins N, Wheatley J, Irving M, Leopold K, Chan C, Shornikov A, Fang L, Lee A, Stock M, and Zhao J. High-Throughput Purification of Combinatorial Libraries I: A High-Throughput Purification System Using an Accelerated Retention Window Approach. J Comb Chem 2004; 6: 255–261.

    Article  PubMed  CAS  Google Scholar 

  • Yan B, Fang L, Irving M, Zhang S, Boldi AM, Woolard F, Johnson CR, Kshirsagar T, Figliozzi GM, Krueger CA, and Collins N. Quality Control in Combinatorial Chemistry: Determination of the Quantity, Purity, and Quantitative Purity of Compounds in Combinatorial Libraries. J Comb Chem 2003; 5: 547–559.

    Article  PubMed  CAS  Google Scholar 

  • Yurek DA, Branch DL, and Kuo M-S. Development of a System To Evaluate Compound Identity, Purity, and Concentration in a Single Experiment and Its Application in Quality Assessment of Combinatorial Libraries and Screening Hits. J Comb Chem 2002; 4: 138–148.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

DI, L., KERNS, E.H. (2007). Solubility Issues in Early Discovery and HTS. In: Augustijns, P., Brewster, M.E. (eds) Solvent Systems and Their Selection in Pharmaceutics and Biopharmaceutics. Biotechnology: Pharmaceutical Aspects, vol VI. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69154-1_4

Download citation

Publish with us

Policies and ethics