Skip to main content

Cdk1, Plks, Auroras, and Neks: The Mitotic Bodyguards

  • Chapter
Hormonal Carcinogenesis V

“Omnis cellula e cellula,” in 1858, an important dogma in cell biology was born, when Rudolf Virchow established that every cell must derive from a preexisting cell. And indeed cell division is the only way for life to expend, it is also the way for immortalization, and unfortunately when uncontrolled also the way for cancer. But unrevealing mechanisms leading to cell division took quite a while. How does a mother cell divide to give two daughters? This is known as the cell cycle, which describes a series of events that insures faithfully transition of the genetic information from one cell generation to the next. These dividing mechanisms have been conserved throughout evolution; they underlie growth and development in all living organisms and are central to their heredity and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fisher DL, Nurse P (1996) A single fission yeast mitotic cyclin B p34cdc2 kinase promotes both S-phase and mitosis in the absence of G1 cyclins. EMBO J 15(4):850–60.

    PubMed  CAS  Google Scholar 

  2. Durkacz B, Carr A, Nurse P (1986) Transcription of the cdc2 cell cycle control gene of the fission yeast Schizosaccharomyces pombe. EMBO J 5(2):369–373.

    PubMed  CAS  Google Scholar 

  3. Draetta G, Beach D (1988) Activation of cdc2 protein kinase during mitosis in human cells: cell cycle-dependent phosphorylation and subunit rearrangement. Cell 54(1):17–26.

    Article  PubMed  CAS  Google Scholar 

  4. Draetta G, Luca F, Westendorf J, et al. (1989) Cdc2 protein kinase is complexed with both cyclin A and B: evidence for proteolytic inactivation of MPF. Cell 56(5):829–38.

    Article  PubMed  CAS  Google Scholar 

  5. Karaiskou A, Perez LH, Ferby I, et al. (2001) Differential regulation of Cdc2 and Cdk2 by RINGO and cyclins. J Biol Chem 276(38):36028–34.

    Article  PubMed  CAS  Google Scholar 

  6. Nigg EA (1998) Polo-like kinases: positive regulators of cell division from start to finish. Curr Opin Cell Biol 10:776–783.

    Article  PubMed  CAS  Google Scholar 

  7. Habedanck R, Stierhof YD, Wilkinson CJ, Nigg EA (2005) The Polo kinase Plk4 functions in centriole duplication. Nat Cell Biol 7(11):1140–6.

    Article  PubMed  CAS  Google Scholar 

  8. Chan CS, Botstein D (1993) Isolation and characterization of chromosome-gain and increase-in-ploidy mutants in yeast. Genetics 135(3):677–91.

    PubMed  CAS  Google Scholar 

  9. Glover DM, Leibowitz MH, McLean DA, et al. (1995) Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 81(1):95–105.

    Article  PubMed  CAS  Google Scholar 

  10. Nigg EA (2001) Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2(1):21–32.

    Article  PubMed  CAS  Google Scholar 

  11. Brown JR, Koretke KK, Birkeland ML, et al. (2004) Evolutionary relationships of Aurora kinases: implications for model organism studies and the development of anti-cancer drugs. BMC Evol Biol 4(1):39.

    Article  PubMed  CAS  Google Scholar 

  12. O'Connell MJ, Krien MJ, Hunter T (2003) Never say never. The NIMA-related protein kinases in mitotic control. Trends Cell Biol 13(5):221–8.

    Article  PubMed  CAS  Google Scholar 

  13. Osmani SA, May GS, Morris NR (1987) Regulation of the mRNA levels of nimA, a gene required for the G2-M transition in Aspergillus nidulans. J Cell Biol 104(6):1495–504.

    Article  PubMed  CAS  Google Scholar 

  14. Belham C, Roig J, Caldwell JA, et al. (2003) Mitotic cascade of NIMA family kinases. Nercc1/Nek9 activates the Nek6 and Nek7 kinases. J Biol Chem 278(37):34897–909.

    Article  PubMed  CAS  Google Scholar 

  15. Fry AM (2002) The Nek2 protein kinase: a novel regulator of centrosome structure. Oncogene 21:6184–6194.

    Article  PubMed  CAS  Google Scholar 

  16. Prigent C, Glover DM, Giet R (2005) Drosophila Nek2 protein kinase knockdown leads to centrosome maturation defects while overexpression causes centrosome fragmentation and cytokinesis failure. Exp Cell Res 303(1):1–13.

    PubMed  CAS  Google Scholar 

  17. Scrittori L, Skoufias DA, Hans F, et al. (2005) A small C-terminal sequence of Aurora B is responsible for localization and function. Mol Biol Cell 16(1):292–305.

    Article  PubMed  CAS  Google Scholar 

  18. Clute P, Pines J (1999) Temporal and spatial control of cyclin B1 destruction in metaphase. Nat Cell Biol 1(2):82–7.

    Article  PubMed  CAS  Google Scholar 

  19. Blangy A, Lane HA, d'Herin P, et al. (1995) Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell 83(7):1159–69.

    Article  PubMed  CAS  Google Scholar 

  20. Peter M, Nakagawa J, Doree M, et al. (1990) In vitro disassembly of the nuclear lamina and M phase-specific phosphorylation of lamins by cdc2 kinase. Cell 61(4):591–602.

    Article  PubMed  CAS  Google Scholar 

  21. Kimura K, Hirano M, Kobayashi R, et al. (1998) Phosphorylation and activation of 13S condensin by Cdc2 in vitro. Science 282(5388):487–90.

    Article  PubMed  CAS  Google Scholar 

  22. Rudner AD, Murray AW (2000) Phosphorylation by Cdc28 activates the Cdc20-dependent activity of the anaphase-promoting complex. J Cell Biol 149(7):1377–90.

    Article  PubMed  CAS  Google Scholar 

  23. Elia AE, Rellos P, Haire LF, et al. (2003) The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain. Cell 115(1):83–95.

    Article  PubMed  CAS  Google Scholar 

  24. Qian YW, Erikson E, Maller JL (1998) Purification and cloning of a protein kinase that phosphorylates and activates the polo-like kinase Plx1. Science 282(5394):1701–4.

    Article  PubMed  CAS  Google Scholar 

  25. Kumagai, A, Dunphy WG (1996) Purification and molecular cloning of Plx1, a Cdc25-regulatory kinase from Xenopus egg extracts. Science 273:1377–1380.

    Article  PubMed  CAS  Google Scholar 

  26. Nakajima H, Toyoshima-Morimoto F, Taniguchi E, et al. (2003) Identification of a consensus motif for Plk (Polo-like kinase) phosphorylation reveals Myt1 as a Plk1 substrate. J Biol Chem 278(28):25277–80.

    Article  PubMed  CAS  Google Scholar 

  27. Nakajima Toyoshima-Morimoto F, Taniguchi E, Shinya N, et al. (2001) Polo-like kinase 1 phosphorylates cyclin B1 and targets it to the nucleus during prophase. Nature 410(6825):215–20.

    Article  CAS  Google Scholar 

  28. Lane, Ham, Nigg, EA (1996) Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J. Cell Biol 135:1701–1713.

    Article  PubMed  CAS  Google Scholar 

  29. do Carmo Avides M, Tavares A, Glover DM (2001) Polo kinase and Asp are needed to promote the mitotic organizing activity of centrosomes. Nature Cell Biol 3:421–424.

    Article  PubMed  Google Scholar 

  30. Arnaud L, Pines J, Nigg EA (1998) GFP tagging reveals human Polo-like kinase 1 at the kinetochore/centromere region of mitotic chromosomes. Chromosoma 107(6–7):424–9.

    Article  PubMed  CAS  Google Scholar 

  31. Golan A, Yudkovsky Y, Hershko A (2002) The cyclin-ubiquitin ligase activity of cyclosome/APC is jointly activated by protein kinases Cdk1-cyclin B and Plk. J Biol Chem 277(18):15552–7.

    Article  PubMed  CAS  Google Scholar 

  32. Kraft C, Herzog F, Gieffers C, et al. (2003) Mitotic regulation of the human anaphase-promoting complex by phosphorylation. EMBO J 22(24):6598–609.

    Article  PubMed  CAS  Google Scholar 

  33. Hansen DV, Loktev AV, Ban KH, et al. (2004) Plk1 regulates activation of the anaphase promoting complex by phosphorylating and triggering SCFbetaTrCP-dependent destruction of the APC Inhibitor Emi1. Mol Biol Cell (12):5623–34.

    Article  CAS  Google Scholar 

  34. Moshe Y, Boulaire J, Pagano M, et al. (2004) Role of Polo-like kinase in the degradation of early mitotic inhibitor 1, a regulator of the anaphase promoting complex/cyclosome. Proc Natl Acad Sci USA 101(21):7937–42.

    Article  PubMed  CAS  Google Scholar 

  35. Ohkura H, Hagan IM, Glover DM (1995) The conserved Schizosaccharomyces pombe kinase plo1, required to form a bipolar spindle, the actin ring, and septum, can drive septum formation in G1 and G2 cells. Genes Dev 9(9):1059–73.

    Article  PubMed  CAS  Google Scholar 

  36. Bahler J, Steever AB, Wheatley S, et al. (1998) Role of polo kinase and Mid1p in determining the site of cell division in fission yeast. J Cell Biol 143(6):1603–16.

    Article  PubMed  CAS  Google Scholar 

  37. Carmena M, Riparbelli MG, Minestrini G, et al. (1998) Drosophila polo kinase is required for cytokinesis. J Cell Biol 143(3):659–71.

    Article  PubMed  CAS  Google Scholar 

  38. Qian YW, Erikson E, Maller JL (1999) Mitotic effects of a constitutively active mutant of the Xenopus polo-like kinase Plx1. Mol Cell Biol (12):8625–32.

    Google Scholar 

  39. Neef R, Preisinger C, Stucliffe J, et al. (2003) Phosphorylation of mitotic kinesin-like protein 2 by polo-like kinase 1 is required for cytokinesis. J Cell Biol 162:863–875.

    Article  PubMed  CAS  Google Scholar 

  40. Tsai MY, Wiese C, Cao K, et al. (2003) A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nat Cell Biol 5(3):242–8.

    Article  PubMed  CAS  Google Scholar 

  41. Dutertre S, Cazales M, Quaranta M, et al. (2004) Phosphorylation of CDC25B by Aurora A at the centrosome contributes to the G2-M transition. J Cell Sci 117(Pt 12):2523–31.

    Article  PubMed  CAS  Google Scholar 

  42. Marumoto T, Hirota T, Morisaki T, et al. (2002) Roles of Aurora A kinase in mitotic entry and G2 checkpoint in mammalian cells. Genes Cells 7(11):1173–82.

    Article  PubMed  CAS  Google Scholar 

  43. Giet R, Uzbekov R, Cubizolles F, et al. (1999) The Xenopus laevis aurora-related protein kinase pEg2 associates with and phosphorylates the kinesin-related protein XlEg5. J Biol Chem 274(21):15005–13.

    Article  PubMed  CAS  Google Scholar 

  44. Giet R, McLean D, Descamps S, et al. (2002) Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J Cell Biol 156(3):437–51.

    Article  PubMed  CAS  Google Scholar 

  45. Anand S, Penrhyn-Lowe S, Venkitaraman AR (2003) AURORA A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell 3(1):51–62.

    Article  PubMed  CAS  Google Scholar 

  46. Meraldi P, Honda R, Nigg EA (2002) Aurora A overexpression reveals tetraploidization as a major route to centrosome amplification in p53?/? cells. EMBO J 21(4):483–92.

    Article  PubMed  CAS  Google Scholar 

  47. Castro A, Arlot-Bonnemains Y, Vigneron S, et al. (2002a) APC/Fizzy-Related targets Aurora A kinase for proteolysis. EMBO Rep 3(5):457–62.

    Article  PubMed  CAS  Google Scholar 

  48. Castro A, Vigneron S, Bernis C, et al. (2002b) The D-Box-activating domain (DAD) is a new proteolysis signal that stimulates the silent D-Box sequence of Aurora A. EMBO Rep 3(12):1209–14.

    Article  PubMed  CAS  Google Scholar 

  49. Giet R, Petretti C, Prigent C (2006) Aurora kinases, aneuploidy and cancer, a coincidence or a real link? Trends in Cell Biol 15(5):241–50.

    Article  CAS  Google Scholar 

  50. Adams RR, Wheatley SP, Gouldsworthy AM, et al. (2000) INCENP binds the Aurora-related kinase AIRK2 and is required to target it to chromosomes, the central spindle and cleavage furrow. Curr Biol 10(17):1075–8.

    Article  PubMed  CAS  Google Scholar 

  51. Hsu JY, Sun ZW, Li X, et al. (2000) Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102(3):279–91.

    Article  PubMed  CAS  Google Scholar 

  52. Giet R, Glover DM (2001) Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J Cell Biol 152(4):669–82.

    Article  PubMed  CAS  Google Scholar 

  53. Zeitlin SG, Shelby RD, Sullivan KF (2001) CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis. J Cell Biol 155(7):1147–57.

    Article  PubMed  CAS  Google Scholar 

  54. Prigent C, Dimitrov S (2003) Phosphorylation of serine 10 in histone H3, what for? J Cell Sci 116(Pt 18):3677–85.

    Article  PubMed  CAS  Google Scholar 

  55. Ohi R, Sapra T, Howard J, et al. (2004) Differentiation of cytoplasmic and meiotic spindle assembly MCAK functions by Aurora B-dependent phosphorylation. Mol Biol Cell 15(6):2895–906.

    Article  PubMed  CAS  Google Scholar 

  56. Goto H, Yasui Y, Kawajiri A, et al. (2003) Aurora B regulates the cleavage furrow-specific vimentin phosphorylation in the cytokinetic process. J Biol Chem 278(10):8526–30.

    Article  PubMed  CAS  Google Scholar 

  57. Minoshima Y, Kawashima T, Hirose K, et al. (2003) Phosphorylation by aurora B converts MgcRacGAP to a RhoGAP during cytokinesis. Dev Cell 4(4):549–60.

    Article  PubMed  CAS  Google Scholar 

  58. Guse A, Mishima M, Glotzer M (2005) Phosphorylation of ZEN-4/MKLP1 by aurora B regulates completion of cytokinesis. Curr Biol 15(8):778–86.

    Article  PubMed  CAS  Google Scholar 

  59. Hu HM, Chuang CK, Lee MJ, et al. (2000) Genomic organization, expression, and chromosome localization of a third aurora-related kinase gene, Aie1. DNA Cell Biol 19(11):679–88.

    Article  PubMed  CAS  Google Scholar 

  60. Kimura M, Matsuda Y, Yoshioka T, et al. (1999) Cell cycle-dependent expression and centrosome localization of a third human aurora/Ipl1-related protein kinase, AIK3. J Biol Chem 274(11):7334–40.

    Article  PubMed  CAS  Google Scholar 

  61. Ulisse S, Delcros JG, Baldini E, et al. (2006) Expression of Aurora kinases in human thyroid carcinoma cell lines and tissues. Int J Cancer 119(2):275–82.

    Article  PubMed  CAS  Google Scholar 

  62. Dutertre S, Hamard-Peron E, Cremet JY, et al. (2005) The absence of p53 aggravates polyploidy and centrosome number abnormality induced by Aurora C overexpression. Cell Cycle 4(12):1783–7.

    PubMed  CAS  Google Scholar 

  63. Sasai K, Katayama H, Stenoien DL, et al. (2004) Aurora C kinase is a novel chromosomal passenger protein that can complement Aurora B kinase function in mitotic cells. Cell Motil Cytoskeleton 59(4):249–63.

    Article  PubMed  CAS  Google Scholar 

  64. Osmani AH, McGuire SL, Osmani SA (1991) Parallel activation of the NIMA and p34cdc2 cell cycle-regulated protein kinases is required to initiate mitosis in A. nidulans. Cell 67(2):283–91.

    Article  PubMed  CAS  Google Scholar 

  65. Fry AM, Mayor T, Meraldi P, et al. (1998) C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle-regulated protein kinase Nek2. J Cell Biol 141(7):1563–74.

    Article  PubMed  CAS  Google Scholar 

  66. Fry AM, Arnaud L, Nigg EA (1999) Activity of the human centrosomal kinase, Nek2, depends on an unusual leucine zipper dimerization motif. J Biol Chem 274:16304–10.

    Article  PubMed  CAS  Google Scholar 

  67. Helps NR, Luo X, Barker HM, et al. (2000) NIMA-related kinase 2 (Nek2), a cell-cycle-regulated protein kinase localized to centrosomes, is complexed to protein phosphatase 1. Biochem J 349(Pt 2):509–18.

    Article  PubMed  CAS  Google Scholar 

  68. Belham C, Roig J, Caldwell JA, et al. (2003) A mitotic cascade of NIMA family kinases. Nercc1/Nek9 activates the Nek6 and Nek7 kinases. J Biol Chem 278:34897–909.

    Article  PubMed  CAS  Google Scholar 

  69. Yin MJ, Shao L, Voehringer D, et al. (2003). The serine/threonine kinase Nek6 is required for cell cycle progression through mitosis. J Biol Chem 278:52454–60.

    Article  PubMed  CAS  Google Scholar 

  70. Roig J, Groen A, Caldwell J, et al. (2005). Active Nercc1 protein kinase concentrates at centrosomes early in mitosis, and is necessary for proper spindle assembly. Mol Biol Cell 16:4827–40.

    Article  PubMed  CAS  Google Scholar 

  71. Lingle WL, Barrett SL, Negron VC, et al. (2002) Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci USA 99(4):1978–83.

    Article  PubMed  CAS  Google Scholar 

  72. Hahn WC, Counter CM, Lundberg AS, et al. (1999) Creation of human tumour cells with defined genetic elements. Nature 400(6743):464–8.

    Article  PubMed  CAS  Google Scholar 

  73. Yamamoto H, Monden T, Miyoshi H, et al. (1998) Cdk2/cdc2 expression in colon carcinogenesis and effects of cdk2/cdc2 inhibitor in colon cancer cells. Int J Oncol 13(2):233–9.

    PubMed  CAS  Google Scholar 

  74. Kim JH, Kang MJ, Park CU, et al. (1999) Amplified CDK2 and cdc2 activities in primary colorectal carcinoma. Cancer 85(3):546–53.

    Article  PubMed  CAS  Google Scholar 

  75. Sherr CJ (1996) Cancer cell cycles. Science 274(5293):1672–7.

    Article  PubMed  CAS  Google Scholar 

  76. McDonald ER 3rd, El-Deiry WS (2000) Cell cycle control as a basis for cancer drug development. Int J Oncol 16(5):871–86.

    PubMed  CAS  Google Scholar 

  77. Dobashi Y, Shoji M, Jiang SX, et al. (1998) Active cyclin A-CDK2 complex, a possible critical factor for cell proliferation in human primary lung carcinomas. Am J Pathol 153(3):963–72.

    PubMed  CAS  Google Scholar 

  78. Matushansky I, Radparvar F, Skoultchi AI (2000) Reprogramming leukemic cells to terminal differentiation by inhibiting specific cyclin-dependent kinases in G1. Proc Natl Acad Sci USA 97:14317–22.

    Article  PubMed  CAS  Google Scholar 

  79. Damiens E, Baratte B, Marie D, et al. (2001) Anti-mitotic properties of indirubin-3-monoxime, a CDK/GSK-3 inhibitor: induction of endoreplication following prophase arrest. Oncogene 20:3786–97.

    Article  PubMed  CAS  Google Scholar 

  80. Edamatsu H, Gau CL, Nemoto T, et al. (2000) Cdk inhibitors, roscovitine and olomoucine, synergize with farnesyl transferase inhibitor (FTI) to induce efficient apoptosis of human cancer cell lines. Oncogene 19:3059–68.

    Article  PubMed  CAS  Google Scholar 

  81. Sen S, Zhou H, Zhang RD, et al. (2002). Amplification/overexpression of a mitotic kinase gene in human bladder cancer. J Natl Cancer Inst 94:1320–9.

    PubMed  CAS  Google Scholar 

  82. Bischoff JR, Anderson L, Zhu Y, et al. (1998) A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. Embo J 17:3052–65.

    Article  PubMed  CAS  Google Scholar 

  83. Zhou H, Kuang J, Zhong L, et al. (1998). Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20:189–93.

    Article  PubMed  CAS  Google Scholar 

  84. Tanaka T, Kimura M, Matsunaga K, et al. (1999) Centrosomal kinase AIK1 is overexpressed in invasive ductal carcinoma of the breast. Cancer Res 59:2041–4.

    PubMed  CAS  Google Scholar 

  85. Han H, Bearss DJ, Browne LW, et al. (2002). Identification of differentially expressed genes in pancreatic cancer cells using cDNA microarray. Cancer Res 62:2890–6.

    PubMed  CAS  Google Scholar 

  86. Miyoshi Y, Iwao K, Egawa C, et al. (2001) Association of centrosomal kinase STK15/BTAK mRNA expression with chromosomal instability in human breast cancers. Int J Cancer 92:370–3.

    Article  PubMed  CAS  Google Scholar 

  87. Ewart-Toland A, Briassouli P, de Koning JP, et al. (2003) Identification of Stk6/STK15 as a candidate low-penetrance tumor-susceptibility gene in mouse and human. Nat Genet 34(4):403–12.

    Article  PubMed  CAS  Google Scholar 

  88. Wang X, Zhou YX, Qiao W, et al. (2006) Overexpression of aurora kinase A in mouse mammary epithelium induces genetic instability preceding mammary tumor formation. Oncogene 25:7148–58.

    Article  PubMed  CAS  Google Scholar 

  89. Katayama H, Sasai K, Kawai H, et al. (2004) Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet 36:55–62.

    Article  PubMed  CAS  Google Scholar 

  90. Liu Q, KaNeko S, Yang I, et al. (2004) Aurora A abrogation of p53 dna binding and transactivation activity by phosphorylation of serine 215. J Biol Chem 279:52175–82.

    Article  PubMed  CAS  Google Scholar 

  91. Gigoux V, L'Hoste S, Raynaud F, et al. (2002) Identification of Aurora kinases as RasGAP Src homology 3 domain-binding proteins. J Biol Chem 277:23742–6.

    Article  PubMed  CAS  Google Scholar 

  92. Katayama H, Ota T, Jisaki F, et al. (1999) Mitotic kinase expression and colorectal cancer progression. J Natl Cancer Inst 91:1160–2.

    Article  PubMed  CAS  Google Scholar 

  93. Takahashi T, Futamura M, Yoshimi N, et al. (2000) Centrosomal kinases, HsAIRK1 and HsAIRK3, are overexpressed in primary colorectal cancers. Jpn J Cancer Res 91:1007–14.

    PubMed  CAS  Google Scholar 

  94. Adams RR, Eckley DM, Vagnarelli P, et al. (2001) Human INCENP colocalizes with the Aurora-B/AIRK2 kinase on chromosomes and is overexpressed in tumour cells. Chromosoma 110:65–74.

    Article  PubMed  CAS  Google Scholar 

  95. Chieffi P, Cozzolino L, Kisslinger A, et al. (2006) Aurora B expression directly correlates with prostate cancer malignancy and influence prostate cell proliferation. Prostate 66(3):326–33.

    Article  PubMed  CAS  Google Scholar 

  96. Ota T, Suto S, Katayama H, et al. (2002) Increased mitotic phosphorylation of histone H3 attributable to AIM-1/Aurora-B overexpression contributes to chromosome number instability. Cancer Res 62:5168–77.

    PubMed  CAS  Google Scholar 

  97. Smith SL, Bowers NL, Betticher DC, et al. (2005) Overexpression of aurora B kinase (AURKB) in primary non-small cell lung carcinoma is frequent, generally driven from one allele, and correlates with the level of genetic instability. Br J Cancer 93(6):719–29.

    Article  PubMed  CAS  Google Scholar 

  98. Harrington EA, Bebbington D, Moore J, et al. (2004) VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nat Med 10(3):262–7.

    Article  PubMed  CAS  Google Scholar 

  99. Smith MR, Wilson ML, Hamanaka R, et al. (1997) Malignant transformation of mammalian cells initiated by constitutive expression of the polo-like kinase. Biochem Biophys Res Commun 234:397–405.

    Article  PubMed  CAS  Google Scholar 

  100. Eckerdt F, Yuan J, Strebhardt K (2005) Polo-like kinases and oncogenesis. Oncogene 24(2):267–76.

    Article  PubMed  CAS  Google Scholar 

  101. Weichert W, Denkert C, Schmidt M, et al. (2004). Polo-like kinase isoform expression is a prognostic factor in ovarian carcinoma. Br J Cancer 90:815–21.

    Article  PubMed  CAS  Google Scholar 

  102. Tokumitsu Y, Mori M, Tanaka S, et al. (1999) Prognostic significance of polo-like kinase expression in esophageal carcinoma. Int J Oncol 15:687–92.

    PubMed  CAS  Google Scholar 

  103. Knecht R, Oberhauser C, Strebhardt K (2000) PLK (polo-like kinase), a new prognostic marker for oropharyngeal carcinomas. Int J Cancer 89:535–6.

    Article  PubMed  CAS  Google Scholar 

  104. Kneisel L, Strebhardt K, Bernd A, et al. (2002) Expression of polo-like kinase (PLK1) in thin melanomas: a novel marker of metastatic disease. J Cutan Pathol 29(6):354–8.

    Article  PubMed  Google Scholar 

  105. Yamada S, Ohira M, Horie H, et al. (2004) Expression profiling and differential screening between hepatoblastomas and the corresponding normal livers: identification of high expression of the PLK1 oncogene as a poor-prognostic indicator of hepatoblastomas. Oncogene 23(35):5901–11.

    Article  PubMed  CAS  Google Scholar 

  106. Simizu, S, Osada H (2000) Mutations in the Plk gene lead to instability of Plk protein in human tumour cell lines. Nat Cell Biol 2:852–4.

    Article  PubMed  CAS  Google Scholar 

  107. Mundt KE, Golsteyn RM, Lane HA, et al. (1997) On the regulation and function of human polo-like kinase 1 (PLK1): effects of overexpression on cell cycle progression. Biochem Biophys Res Commun 239(2):377–85.

    Article  PubMed  CAS  Google Scholar 

  108. Yamamoto Y, Matsuyama H, Kawauchi S, et al. (2006) Overexpression of polo-like kinase 1 (PLK1) and chromosomal instability in bladder cancer. Oncology 70(3):231–7.

    Article  PubMed  Google Scholar 

  109. Spankuch-Schmitt B, Wolf G, Solbach C, et al. (2002) Downregulation of human polo-like kinase activity by antisense oligonucleotides induces growth inhibition in cancer cells. Oncogene 21(20):3162–71.

    Article  PubMed  CAS  Google Scholar 

  110. Spankuch B, Matthess Y, Knecht R, et al. (2004) Cancer inhibition in nude mice after systemic application of U6 promoter-driven short hairpin RNAs against PLK1. J Natl Cancer Inst 96(11):862–72.

    Article  PubMed  CAS  Google Scholar 

  111. Weiss MM, Kuipers EJ, Postma C, et al. (2004) Genomic alterations in primary gastric adenocarcinomas correlate with clinicopathological characteristics and survival. Cell Oncol 26(5–6):307–17.

    PubMed  CAS  Google Scholar 

  112. Schultz SJ, Fry AM, Sutterlin C, et al. (1994) Cell cycle-dependent expression of Nek2, a novel human protein kinase related to the NIMA mitotic regulator of Aspergillus nidulans. Cell Growth Differ 5(6):625–35.

    PubMed  CAS  Google Scholar 

  113. Loo LW, Grove DI, Williams EM, et al. (2004) Array comparative genomic hybridization analysis of genomic alterations in breast cancer subtypes. Cancer Res 64(23):8541–9.

    Article  PubMed  CAS  Google Scholar 

  114. Bettencourt-Dias M, Giet R, Sinka R, et al. 2004 Genome-wide survey of protein kinases required for cell cycle progression. Nature 432:23–30.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Salaun, P., Rannou, Y., Claude, P. (2008). Cdk1, Plks, Auroras, and Neks: The Mitotic Bodyguards. In: Li, J.J., Li, S.A., Mohla, S., Rochefort, H., Maudelonde, T. (eds) Hormonal Carcinogenesis V. Advances in Experimental Medicine and Biology, vol 617. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69080-3_4

Download citation

Publish with us

Policies and ethics