Skip to main content

Centromeres and Kinetochores: An Historical Perspective

  • Chapter
  • First Online:
  • 635 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allshire, R.C., J.P. Javerzat, N.J. Redhead, and G. Cranston. 1994. Position effect variegation at fission yeast centromeres. Cell. 76:157–69.

    PubMed  CAS  Google Scholar 

  • Basu, J., and H.F. Willard. 2006. Human artificial chromosomes: potential applications and clinical considerations. Pediatr Clin North Am. 53:843–53, viii.

    PubMed  Google Scholar 

  • Baum, M., V.K. Ngan, and L. Clarke. 1994. The centromeric K-type repeat and the central core are together sufficient to establish a functional Schizosaccharomyces pombe centromere. Mol Biol Cell. 5:747–61.

    PubMed  CAS  Google Scholar 

  • Blat, Y., and N. Kleckner. 1999. Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell. 98:249–59.

    PubMed  CAS  Google Scholar 

  • Bloom, K., E. Amaya, and E. Yeh. 1984. Centromeric DNA structure in yeast. Mol Biol Cytoskeleton. 175–84.

    Google Scholar 

  • Bloom, K., S. Sharma, and N.V. Dokholyan. 2006. The path of DNA in the kinetochore. Curr Biol. 16:R276–8.

    PubMed  CAS  Google Scholar 

  • Bloom, K.S., and J. Carbon. 1982. Yeast centromere DNA is in a unique and highly ordered structure in chromosomes and small circular minichromosomes. Cell. 29:305–17.

    PubMed  CAS  Google Scholar 

  • Brinkley, B.R., and E. Stubblefield. 1966. The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma. 19:28–43.

    PubMed  CAS  Google Scholar 

  • Britten, R.J., and D.E. Kohne. 1968. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science. 161:529–40.

    PubMed  CAS  Google Scholar 

  • Camahort, R., B. Li, L. Florens, S.K. Swanson, M.P. Washburn, and J.L. Gerton. 2007. Scm3 is essential to recruit the histone h3 variant cse4 to centromeres and to maintain a functional kinetochore. Mol Cell. 26:853–65.

    PubMed  CAS  Google Scholar 

  • Cameron, J.R., E.Y. Loh, and R.W. Davis. 1979. Evidence for transposition of dispersed repetitive DNA families in yeast. Cell. 16:739–51.

    PubMed  CAS  Google Scholar 

  • Carminati, J.L., and T. Stearns. 1997. Microtubules orient the mitotic spindle in yeast through dynein-dependent interactions with the cell cortex. J Cell Biol. 138:629–41.

    PubMed  CAS  Google Scholar 

  • Centola, M., and J. Carbon. 1994. Cloning and characterization of centromeric DNA from Neurospora crassa. Mol Cell Biol. 14:1510–9.

    PubMed  CAS  Google Scholar 

  • Chikashige, Y., N. Kinoshita, Y. Nakaseko, T. Matsumoto, S. Murakami, O. Niwa, and M. Yanagida. 1989. Composite motifs and repeat symmetry in S. pombe centromeres: direct analysis by integration of NotI restriction sites. Cell. 57:739–51.

    PubMed  CAS  Google Scholar 

  • Chinault, A.C., and J. Carbon. 1979. Overlap hybridization screening: isolation and characterization of overlapping DNA fragments surrounding the leu2 gene on yeast chromosome III. Gene. 5:111–26.

    PubMed  CAS  Google Scholar 

  • Clarke, L., H. Amstutz, B. Fishel, and J. Carbon. 1986. Analysis of centromeric DNA in the fission yeast Schizosaccharomyces pombe. Proc Natl Acad Sci USA. 83:8253–7.

    PubMed  CAS  Google Scholar 

  • Clarke, L., and J. Carbon. 1976. A colony bank containing synthetic Col El hybrid plasmids representative of the entire E. coli genome. Cell. 9:91–9.

    PubMed  CAS  Google Scholar 

  • Clarke, L., and J. Carbon. 1980. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature. 287:504–9.

    PubMed  CAS  Google Scholar 

  • Clarke, L., and J. Carbon. 1983. Genomic substitutions of centromeres in Saccharomyces cerevisiae. Nature. 305:23–8.

    PubMed  CAS  Google Scholar 

  • Cooke, C.A., D.P. Bazett-Jones, W.C. Earnshaw, and J.B. Rattner. 1993. Mapping DNA within the mammalian kinetochore. J Cell Biol. 120:1083–91.

    PubMed  CAS  Google Scholar 

  • Copenhaver, G.P., K. Nickel, T. Kuromori, M.I. Benito, S. Kaul, X. Lin, M. Bevan, G. Murphy, B. Harris, L.D. Parnell, W.R. McCombie, R.A. Martienssen, M. Marra, and D. Preuss. 1999. Genetic definition and sequence analysis of Arabidopsis centromeres. Science. 286:2468–74.

    PubMed  CAS  Google Scholar 

  • Doyle, T., and D. Botstein. 1996. Movement of yeast cortical actin cytoskeleton visualized in vivo. Proc Natl Acad Sci USA. 93:3886–91.

    PubMed  CAS  Google Scholar 

  • Earnshaw, W.C., and B.R. Migeon. 1985. Three related centromere proteins are absent from the inactive centromere of a stable isodicentric chromosome. Chromosoma. 92:290–6.

    PubMed  CAS  Google Scholar 

  • Earnshaw, W.C., and N. Rothfield. 1985. Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma. 91:313–21.

    PubMed  CAS  Google Scholar 

  • Earnshaw, W.C., K.F. Sullivan, P.S. Machlin, C.A. Cooke, D.A. Kaiser, T.D. Pollard, N.F. Rothfield, and D.W. Cleveland. 1987. Molecular cloning of cDNA for CENP-B, the major human centromere autoantigen. J Cell Biol. 104:817–29.

    PubMed  CAS  Google Scholar 

  • Fitzgerald-Hayes, M., L. Clarke, and J. Carbon. 1982. Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell. 29:235–44.

    PubMed  CAS  Google Scholar 

  • Fleig, U., M. Sen-Gupta, and J.H. Hegemann. 1996. Fission yeast mal2+ is required for chromosome segregation. Mol Cell Biol. 16:6169–77.

    PubMed  CAS  Google Scholar 

  • Folco, H.D., A.L. Pidoux, T. Urano, and R.C. Allshire. 2008. Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science. 319:94–7.

    PubMed  CAS  Google Scholar 

  • Gall, J.G. 1963. Kinetics of deoxyribonuclease action on chromosomes. Nature. 198:36–8.

    PubMed  CAS  Google Scholar 

  • Goh, P.Y., and J.V. Kilmartin. 1993. NDC10: a gene involved in chromosome segregation in Saccharomyces cerevisiae. J Cell Biol. 121:503–12.

    PubMed  CAS  Google Scholar 

  • Goshima, G., and M. Yanagida. 2000. Establishing biorientation occurs with precocious separation of the sister kinetochores, but not the arms, in the early spindle of budding yeast. Cell. 100:619–33.

    PubMed  CAS  Google Scholar 

  • Goshima, G., and M. Yanagida. 2001. Time course analysis of precocious separation of sister centromeres in budding yeast: continuously separated or frequently reassociated? Genes Cells. 6:765–73.

    PubMed  CAS  Google Scholar 

  • Gottschling, D.E., O.M. Aparicio, B.L. Billington, and V.A. Zakian. 1990. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell. 63:751–62.

    PubMed  CAS  Google Scholar 

  • Hartwell, L.H., J. Culotti, and B. Reid. 1970. Genetic control of the cell-division cycle in yeast. I. Detection of mutants. Proc Natl Acad Sci USA. 66:352–9.

    PubMed  CAS  Google Scholar 

  • He, X., S. Asthana, and P.K. Sorger. 2000. Transient sister chromatid separation and elastic deformation of chromosomes during mitosis in budding yeast. Cell. 101:763–75.

    PubMed  CAS  Google Scholar 

  • Hieter, P., C. Mann, M. Snyder, and R.W. Davis. 1985a. Mitotic stability of yeast chromosomes: a colony color assay that measures nondisjunction and chromosome loss. Cell. 40:381–92.

    Google Scholar 

  • Hieter, P., D. Pridmore, J.H. Hegemann, M. Thomas, R.W. Davis, and P. Philippsen. 1985b. Functional selection and analysis of yeast centromeric DNA. Cell. 42:913–21.

    Google Scholar 

  • Hill, A., and K. Bloom. 1987. Genetic manipulation of centromere function. Mol Cell Biol. 7:2397–405.

    PubMed  CAS  Google Scholar 

  • Hinnen, A., J.B. Hicks, and G.R. Fink. 1978. Transformation of yeast. Proc Natl Acad Sci USA. 75:1929–33.

    PubMed  CAS  Google Scholar 

  • Hitzeman, R.A., L. Clarke, and J. Carbon. 1980. Isolation and characterization of the yeast 3-phosphoglycerokinase gene (PGK) by an immunological screening technique. J Biol Chem. 255:12073–80.

    PubMed  CAS  Google Scholar 

  • Hsiao, C.L., and J. Carbon. 1981. Direct selection procedure for the isolation of functional centromeric DNA. Proc Natl Acad Sci USA. 78:3760–4.

    PubMed  CAS  Google Scholar 

  • Huang, C.E., M. Milutinovich, and D. Koshland. 2005. Rings, bracelet or snaps: fashionable alternatives for Smc complexes. Philos Trans R Soc Lond B Biol Sci. 360:537–42.

    PubMed  CAS  Google Scholar 

  • Inoue, S., and H. Ritter, Jr. 1978. Mitosis in Barbulanympha. II. Dynamics of a two-stage anaphase, nuclear morphogenesis, and cytokinesis. J Cell Biol. 77:655–84.

    PubMed  CAS  Google Scholar 

  • Jiang, W., J. Lechner, and J. Carbon. 1993. Isolation and characterization of a gene (CBF2) specifying a protein component of the budding yeast kinetochore. J Cell Biol. 121:513–9.

    PubMed  CAS  Google Scholar 

  • Joglekar, A.P., D.C. Bouck, J.N. Molk, K.S. Bloom, and E.D. Salmon. 2006. Molecular architecture of a kinetochore-microtubule attachment site. Nat Cell Biol. 8:581–5.

    PubMed  CAS  Google Scholar 

  • Jokelainen, P.T. 1967. The ultrastructure and spatial organization of the metaphase kinetochore in mitotic rat cells. J Ultrastruct Res. 19:19–44.

    PubMed  CAS  Google Scholar 

  • Kahana, J.A., B.J. Schnapp, and P.A. Silver. 1995. Kinetics of spindle pole body separation in budding yeast. Proc Natl Acad Sci USA. 92:9707–11.

    PubMed  CAS  Google Scholar 

  • Kingsman, A.J., R.L. Gimlich, L. Clarke, A.C. Chinault, and J. Carbon. 1981. Sequence variation in dispersed repetitive sequences in Saccharomyces cerevisiae. J Mol Biol. 145:619–32.

    PubMed  CAS  Google Scholar 

  • Koning, A.J., P.Y. Lum, J.M. Williams, and R. Wright. 1993. DiOC6 staining reveals organelle structure and dynamics in living yeast cells. Cell Motil Cytoskeleton. 25:111–28.

    PubMed  CAS  Google Scholar 

  • Kornberg, R.D., and J.O. Thomas. 1974. Chromatin structure; oligomers of the histones. Science. 184:865–8.

    PubMed  CAS  Google Scholar 

  • Koshland, D., and L.H. Hartwell. 1987. The structure of sister minichromosome DNA before anaphase in Saccharomyces cerevisiae. Science. 238:1713–6.

    PubMed  CAS  Google Scholar 

  • Koshland, D., J.C. Kent, and L.H. Hartwell. 1985. Genetic analysis of the mitotic transmission of minichromosomes. Cell. 40:393–403.

    PubMed  CAS  Google Scholar 

  • Lambie, E.J., and G.S. Roeder. 1986. Repression of meiotic crossing over by a centromere (CEN3) in Saccharomyces cerevisiae. Genetics. 114:769–89.

    PubMed  CAS  Google Scholar 

  • Lechner, J., and J. Carbon. 1991. A 240 kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere. Cell. 64:717–25.

    PubMed  CAS  Google Scholar 

  • Maiato, H., J. DeLuca, E.D. Salmon, and W.C. Earnshaw. 2004. The dynamic kinetochore-microtubule interface. J Cell Sci. 117:5461–77.

    PubMed  CAS  Google Scholar 

  • Maio, J.J. 1971. DNA strand reassociation and polyribonucleotide binding in the African green monkey, Cercopithecus aethiops. J Mol Biol. 56:579–95.

    PubMed  CAS  Google Scholar 

  • McClintock, B. 1939. The Behavior in Successive Nuclear Divisions of a Chromosome Broken at Meiosis. Proc Natl Acad Sci USA. 25:405–16.

    PubMed  CAS  Google Scholar 

  • McClintock, B. 1941. The Stability of Broken Ends of Chromosomes in Zea Mays. Genetics. 26:234–82.

    PubMed  CAS  Google Scholar 

  • McClintock, B. 1942. The Fusion of Broken Ends of Chromosomes Following Nuclear Fusion. Proc Natl Acad Sci U S A. 28:458–63.

    PubMed  CAS  Google Scholar 

  • McGrew, J., B. Diehl, and M. Fitzgerald-Hayes. 1986. Single base-pair mutations in centromere element III cause aberrant chromosome segregation in Saccharomyces cerevisiae. Mol Cell Biol. 6:530–8.

    PubMed  CAS  Google Scholar 

  • Meluh, P.B., P. Yang, L. Glowczewski, D. Koshland, and M.M. Smith. 1998. Cse4p is a component of the core centromere of Saccharomyces cerevisiae. Cell. 94:607–13.

    PubMed  CAS  Google Scholar 

  • Mishra, P.K., M. Baum, and J. Carbon. 2007. Centromere size and position in Candida albicans are evolutionarily conserved independent of DNA sequence heterogeneity. Mol Genet Genomics.

    Google Scholar 

  • Mizuguchi, G., H. Xiao, J. Wisniewski, M.M. Smith, and C. Wu. 2007. Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell. 129:1153–64.

    PubMed  CAS  Google Scholar 

  • Moore, L.L., M. Morrison, and M.B. Roth. 1999. HCP-1, a protein involved in chromosome segregation, is localized to the centromere of mitotic chromosomes in Caenorhabditis elegans. J Cell Biol. 147:471–80.

    PubMed  CAS  Google Scholar 

  • Moroi, Y., C. Peebles, M.J. Fritzler, J. Steigerwald, and E.M. Tan. 1980. Autoantibody to centromere (kinetochore) in scleroderma sera. Proc Natl Acad Sci USA. 77:1627–31.

    PubMed  CAS  Google Scholar 

  • Morris, C.A., and D. Moazed. 2007. Centromere assembly and propagation. Cell. 128:647–50.

    PubMed  CAS  Google Scholar 

  • Murray, A.W., and J.W. Szostak. 1983a. Construction of artificial chromosomes in yeast. Nature. 305:189–93.

    Google Scholar 

  • Murray, A.W., and J.W. Szostak. 1983b. Pedigree analysis of plasmid segregation in yeast. Cell. 34:961–70.

    Google Scholar 

  • Murray, A.W., and J.W. Szostak. 1985. Chromosome segregation in mitosis and meiosis. Annu Rev Cell Biol. 1:289–315.

    PubMed  CAS  Google Scholar 

  • Mythreye, K., and K.S. Bloom. 2003. Differential kinetochore protein requirements for establishment versus propagation of centromere activity in Saccharomyces cerevisiae. J Cell Biol. 160:833–43.

    PubMed  CAS  Google Scholar 

  • Nakano, M., S. Cardinale, V.N. Noskov, R. Gassmann, P. Vagnarelli, S. Kandels-Lewis, V. Larionov, W.C. Earnshaw, and H. Masumoto. 2008. Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Developmental Cell . 14:507–522.

    Google Scholar 

  • Nasmyth, K., and C.H. Haering. 2005. The structure and function of SMC and kleisin complexes. Annu Rev Biochem. 74:595–648.

    PubMed  CAS  Google Scholar 

  • Nasmyth, K.A., and S.I. Reed. 1980. Isolation of genes by complementation in yeast: molecular cloning of a cell-cycle gene. Proc Natl Acad Sci USA. 77:2119–23.

    PubMed  CAS  Google Scholar 

  • Olins, A.L., and D.E. Olins. 1974. Spheroid chromatin units (v bodies). Science. 183:330–2.

    PubMed  CAS  Google Scholar 

  • Olins, D.E., and A.L. Olins. 2003. Chromatin history: our view from the bridge. Nat Rev Mol Cell Biol. 4:809–14.

    PubMed  CAS  Google Scholar 

  • Oliver, S.G., Q.J. van der Aart, M.L. Agostoni-Carbone, M. Aigle, L. Alberghina, D. Alexandraki, G. Antoine, R. Anwar, J.P. Ballesta, P. Benit, and et al. 1992. The complete DNA sequence of yeast chromosome III. Nature. 357:38–46.

    PubMed  CAS  Google Scholar 

  • Orr-Weaver, T.L., J.W. Szostak, and R.J. Rothstein. 1981. Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci USA. 78:6354–8.

    PubMed  CAS  Google Scholar 

  • Osborne, M.A., G. Schlenstedt, T. Jinks, and P.A. Silver. 1994. Nuf2, a spindle pole body-associated protein required for nuclear division in yeast. J Cell Biol. 125:853–66.

    PubMed  CAS  Google Scholar 

  • Pearson, C.G., P.S. Maddox, E.D. Salmon, and K. Bloom. 2001. Budding yeast chromosome structure and dynamics during mitosis. J Cell Biol. 152:1255–66.

    PubMed  CAS  Google Scholar 

  • Peterson, J.B., and H. Ris. 1976. Electron-microscopic study of the spindle and chromosome movement in the yeast Saccharomyces cerevisiae. J Cell Sci. 22:219–42.

    PubMed  CAS  Google Scholar 

  • Pluta, A.F., A.M. Mackay, A.M. Ainsztein, I.G. Goldberg, and W.C. Earnshaw. 1995. The centromere: hub of chromosomal activities. Science. 270:1591–4.

    PubMed  CAS  Google Scholar 

  • Rattner, J.B., and D.P. Bazett-Jones. 1988. Electron spectroscopic imaging of the centrosome in cells of the Indian muntjac. J Cell Sci. 91 (Pt 1):5–11.

    PubMed  Google Scholar 

  • Rattner, J.B., and D.P. Bazett-Jones. 1989. Kinetochore structure: electron spectroscopic imaging of the kinetochore. J Cell Biol. 108:1209–19.

    PubMed  CAS  Google Scholar 

  • Ren, X., C.G. Tahimic, M. Katoh, A. Kurimasa, T. Inoue, and M. Oshimura. 2006. Human artificial chromosome vectors meet stem cells: new prospects for gene delivery. Stem Cell Rev. 2:43–50.

    PubMed  CAS  Google Scholar 

  • Rieder, C.L. 2005. Kinetochore fiber formation in animal somatic cells: dueling mechanisms come to a draw. Chromosoma. 114:310–8.

    PubMed  Google Scholar 

  • Sanyal, K., M. Baum, and J. Carbon. 2004. Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique. Proc Natl Acad Sci USA. 101:11374–9.

    PubMed  CAS  Google Scholar 

  • Saunders, M.J., E. Yeh, M. Grunstein, and K. Bloom. 1990. Nucleosome depletion alters the chromatin structure of Saccharomyces cerevisiae centromeres. Mol Cell Biol. 10:5721–7.

    PubMed  CAS  Google Scholar 

  • Schueler, M.G., A.W. Higgins, M.K. Rudd, K. Gustashaw, and H.F. Willard. 2001. Genomic and genetic definition of a functional human centromere. Science. 294:109–15.

    PubMed  CAS  Google Scholar 

  • Schwartz, D.C., and C.R. Cantor. 1984. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell. 37:67–75.

    PubMed  CAS  Google Scholar 

  • Shaw, S.L., E. Yeh, K. Bloom, and E.D. Salmon. 1997a. Imaging green fluorescent protein fusion proteins in Saccharomyces cerevisiae. Curr Biol. 7:701–4.

    Google Scholar 

  • Shaw, S.L., E. Yeh, P. Maddox, E.D. Salmon, and K. Bloom. 1997b. Astral microtubule dynamics in yeast: a microtubule-based searching mechanism for spindle orientation and nuclear migration into the bud. J Cell Biol. 139:985–94.

    Google Scholar 

  • Snyder, M., R.J. Sapolsky, and R.W. Davis. 1988. Transcription interferes with elements important for chromosome maintenance in Saccharomyces cerevisiae. Mol Cell Biol. 8:2184–94.

    PubMed  CAS  Google Scholar 

  • Spencer, F., S.L. Gerring, C. Connelly, and P. Hieter. 1990. Mitotic chromosome transmission fidelity mutants in Saccharomyces cerevisiae. Genetics. 124:237–49.

    PubMed  CAS  Google Scholar 

  • Steiner, N.C., and L. Clarke. 1994. A novel epigenetic effect can alter centromere function in fission yeast. Cell. 79:865–74.

    PubMed  CAS  Google Scholar 

  • Stinchcomb, D.T., K. Struhl, and R.W. Davis. 1979. Isolation and characterisation of a yeast chromosomal replicator. Nature. 282:39–43.

    PubMed  CAS  Google Scholar 

  • Stoler, S., K. Rogers, S. Weitze, L. Morey, M. Fitzgerald-Hayes, and R.E. Baker. 2007. Scm3, an essential Saccharomyces cerevisiae centromere protein required for G2/M progression and Cse4 localization. Proc Natl Acad Sci U S A. 104:10571–6.

    PubMed  CAS  Google Scholar 

  • Straight, A.F., A.S. Belmont, C.C. Robinett, and A.W. Murray. 1996. GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr Biol. 6:1599–608.

    PubMed  CAS  Google Scholar 

  • Straight, A.F., J.W. Sedat, and A.W. Murray. 1998. Time-lapse microscopy reveals unique roles for kinesins during anaphase in budding yeast. J Cell Biol. 143:687–94.

    PubMed  CAS  Google Scholar 

  • Struhl, K., D.T. Stinchcomb, S. Scherer, and R.W. Davis. 1979. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci USA. 76:1035–9.

    PubMed  CAS  Google Scholar 

  • Sullivan, K.F., M. Hechenberger, and K. Masri. 1994. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J Cell Biol. 127:581–92.

    PubMed  CAS  Google Scholar 

  • Sun, X., H.D. Le, J.M. Wahlstrom, and G.H. Karpen. 2003. Sequence analysis of a functional Drosophila centromere. Genome Res. 13:182–94.

    PubMed  CAS  Google Scholar 

  • Suzuki, N., K. Nishii, T. Okazaki, and M. Ikeno. 2006. Human artificial chromosomes constructed using the bottom-up strategy are stably maintained in mitosis and efficiently transmissible to progeny mice. J Biol Chem. 281:26615–23.

    PubMed  CAS  Google Scholar 

  • Szostak, J.W., and E.H. Blackburn. 1982. Cloning yeast telomeres on linear plasmid vectors. Cell. 29:245–55.

    PubMed  CAS  Google Scholar 

  • Tanaka, T., J. Fuchs, J. Loidl, and K. Nasmyth. 2000. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nat Cell Biol. 2:492–9.

    PubMed  CAS  Google Scholar 

  • Thompson, D.A.W. 1917. On Growth and Form. Cambridge University Press.

    Google Scholar 

  • Tsuduki, T., M. Nakano, N. Yasuoka, S. Yamazaki, T. Okada, Y. Okamoto, and H. Masumoto. 2006. An artificially constructed de novo human chromosome behaves almost identically to its natural counterpart during metaphase and anaphase in living cells. Mol Cell Biol. 26:7682–95.

    PubMed  CAS  Google Scholar 

  • Uhlmann, F., D. Wernic, M.A. Poupart, E.V. Koonin, and K. Nasmyth. 2000. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell. 103:375–86.

    PubMed  CAS  Google Scholar 

  • Warburton, P.E., C.A. Cooke, S. Bourassa, O. Vafa, B.A. Sullivan, G. Stetten, G. Gimelli, D. Warburton, C. Tyler-Smith, K.F. Sullivan, G.G. Poirier, and W.C. Earnshaw. 1997. Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr Biol. 7:901–4.

    PubMed  CAS  Google Scholar 

  • Waye, J.S., S.J. Durfy, D. Pinkel, S. Kenwrick, M. Patterson, K.E. Davies, and H.F. Willard. 1987. Chromosome-specific alpha satellite DNA from human chromosome 1: hierarchical structure and genomic organization of a polymorphic domain spanning several hundred kilobase pairs of centromeric DNA. Genomics. 1:43–51.

    PubMed  CAS  Google Scholar 

  • Weber, S.A., J.L. Gerton, J.E. Polancic, J.L. DeRisi, D. Koshland, and P.C. Megee. 2004. The kinetochore is an enhancer of pericentric cohesin binding. PLoS Biol. 2:E260.

    PubMed  Google Scholar 

  • Wetmur, J.G., and N. Davidson. 1968. Kinetics of renaturation of DNA. J Mol Biol. 31:349–70.

    PubMed  CAS  Google Scholar 

  • Willard, H.F. 1991. Evolution of alpha satellite. Curr Opin Genet Dev. 1:509–14.

    PubMed  CAS  Google Scholar 

  • Yeh, E., J. Haase, L.V. Paliulis, A. Joglekar, L. Bond, D. Bouck, E.D. Salmon, and K.S. Bloom. 2008. Pericentric chromatin is organized into an intramolecular loop in mitosis. Curr Biol. 18:81–90.

    PubMed  CAS  Google Scholar 

  • Yeh, E., R.V. Skibbens, J.W. Cheng, E.D. Salmon, and K. Bloom. 1995. Spindle dynamics and cell cycle regulation of dynein in the budding yeast, Saccharomyces cerevisiae. J Cell Biol. 130:687–700.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerry S. Bloom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bloom, K.S. (2009). Centromeres and Kinetochores: An Historical Perspective. In: De Wulf, P., Earnshaw, W. (eds) The Kinetochore:. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69076-6_1

Download citation

Publish with us

Policies and ethics