Skip to main content

Molecular Therapy for Rhabdomyosarcoma

  • Chapter
  • First Online:
Book cover Molecularly Targeted Therapy for Childhood Cancer

Abstract

Rhabdomyosarcoma (RMS) is the most common sarcoma of childhood representing about 23% of all sarcomas, and approximately 7% of all pediatric malignancies (Arndt and Crist 1999). Histologically, RMS presents as three major variants, embryonal (ERMS), representing about 60%, botryoid that are usually combined with embryonal tumors, and alveolar RMS (ARMS) that comprise 30% of RMS. The pleiomorphic variant is an unrelated high-grade sarcoma with various degrees of muscle differentiation and is rarely (if ever) diagnosed in children. Embryonal RMS is not associated with any chromosomal translocation, but loss of heterozygosity at 11p15.5 is a common feature (Scrable et al. 1987; Scrable et al. 1989) associated with loss of imprinting of the IGF-2 locus (Anderson et al. 1999). Alveolar RMS is characterized by specific translocations. Approximately 60 to 70% of histologically diagnosed ARMSs involve translocations of t(2;13)(q35;q14) leading to PAX3-FKHR gene fusion (Galili et al. 1993), whereas 10% have the t(1;13)(q36;q14) translocation that encodes the PAX7-FKHR fusion (Davis et al. 1994). Both translocations generate in-frame fusion between the PAX gene DNA binding domain and the transactivation domain of FKHR. Interestingly, both ERMS and translocation-positive ARMS may have loss of imprinting at 11p15.5 (Anderson et al. 1999), suggesting that dysregulation of IGF2 may be common to both histologies. Recent studies using expression profiling suggest that histological ARMS that are translocation negative cluster with ERMS, hence the molecular classification of these tumors may differ from the histopathologic classification. Further, a small signature comprising as few as ten genes differentiates translocation-positive from translocation-negative RMS (Lae et al. 2007). Thus, the understanding of genetic events characteristic of RMS is at a point where these may be applied to differential diagnosis, and potentially to novel treatment strategies. It is well established that ARMSs are more aggressive than ERMS, and have a poorer prognosis (Qualman and Morotti 2002; Breneman et al. 2003). Further, the prognosis for patients with metastatic disease at diagnosis is significantly worse for ARMS having the t(2;13)(q35;q14) translocation compared to those having the t(1;13)(q36;q14) variant (Sorensen et al. 2002). Thus, the genetic alterations impact on chemo- or radio-sensitivity. However, it is also clear that any advanced stage RMS still presents a clinical challenge. Essentially, the cure rate for metastatic disease has not changed significantly in 30 years, despite intensification of cytotoxic therapy and introduction of novel cytotoxic agents (Pappo et al. 2007). Thus, while introduction of novel cytotoxic agents, such as the camptothecins that target topoisomerase 1 (Furman et al. 1999; Pappo et al. 2007), may ultimately improve outcome, it is probable that it will be at the expense of additional toxicity or necessitate reduced dose intensity of other agents used in the treatment of RMS. Alternative approaches that exploit the molecular characteristics of RMS conceptually appear to offer potential benefit with lower toxicity and with reduced sequellae. The obvious example is that of imatinib mesylate in the treatment of chronic myelogenous leukemia (Druker 2003; Druker et al. 2006) or gastrointestinal stromal tumors (Rubin et al. 2007; Siehl and Thiel 2007). However, the complexities of RMS biology suggest that a single “genetic driver” is unlikely, and that combinations of agents that target different molecular abnormalities will be necessary to eradicate these tumors using these rational approaches. Indeed, the development of therapeutic strategies that exploit synthetic lethal interactions that are consequential to the molecular aberrations in these tumors will be the major challenge in developing curative approaches to childhood RMS. Here, we review the reported molecular characteristics of RMS as they relate to the development of molecularly targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alema, S., and Tato, F. 1994. Oncogenes and muscle differentiation: multiple mechanisms of interference. Semin Cancer Biol 5: 147–156.

    PubMed  CAS  Google Scholar 

  • Ambrosini, G., Sambol, E.B., Carvajal, D., Vassilev, L.T., Singer, S., and Schwartz, G.K. 2007. Mouse double minute antagonist Nutlin-3a enhances chemotherapy-induced apoptosis in cancer cells with mutant p53 by activating E2F1. Oncogene 26: 3473–3481.

    PubMed  CAS  Google Scholar 

  • Anderson, J., Gordon, A., McManus, A., Shipley, J., and Pritchard-Jones, K. 1999. Disruption of imprinted genes at chromosome region 11p15.5 in paediatric rhabdomyosarcoma. Neoplasia 1: 340–348.

    PubMed  CAS  Google Scholar 

  • Arndt, C.A., and Crist, W.M. 1999. Common musculoskeletal tumors of childhood and adolescence. N Engl J Med 341: 342–352.

    PubMed  CAS  Google Scholar 

  • Arsham, A.M., Plas, D.R., Thompson, C.B., and Simon, M.C. 2002. Phosphatidylinositol 3-kinase/Akt signaling is neither required for hypoxic stabilization of HIF-1 alpha nor sufficient for HIF-1-dependent target gene transcription. J Biol Chem 277: 15162–15170.

    PubMed  CAS  Google Scholar 

  • Asakura, A., Seale, P., Girgis-Gabardo, A., and Rudnicki, M.A. 2002. Myogenic specification of side population cells in skeletal muscle. J Cell Biol 159: 123–134.

    PubMed  CAS  Google Scholar 

  • Ayalon, D., Glaser, T., and Werner, H. 2001. Transcriptional regulation of IGF-I receptor gene expression by the PAX3-FKHR oncoprotein. Growth Horm IGF Res 11: 289–297.

    PubMed  CAS  Google Scholar 

  • Bach, L.A., Hsieh, S., Brown, A.L., and Rechler, M.M. 1994. Recombinant human insulin-like growth factor (IGF)-binding protein-6 inhibits IGF-II-induced differentiation of L6A1 myoblasts. Endocrinology 135: 2168–2176.

    PubMed  CAS  Google Scholar 

  • Bach, L.A., Salemi, R., and Leeding, K.S. 1995. Roles of insulin-like growth factor (IGF) receptors and IGF-binding proteins in IGF-II-induced proliferation and differentiation of L6A1 rat myoblasts. Endocrinology 136: 5061–5069.

    PubMed  CAS  Google Scholar 

  • Bardos, J.I., Chau, N.M., and Ashcroft, M. 2004. Growth factor-mediated induction of HDM2 positively regulates hypoxia-inducible factor 1alpha expression. Mol Cell Biol 24: 2905–2914.

    PubMed  CAS  Google Scholar 

  • Barlow, J.W., Wiley, J.C., Mous, M., Narendran, A., Gee, M.F., Goldberg, M., Sexsmith, E., and Malkin, D. 2006. Differentiation of rhabdomyosarcoma cell lines using retinoic acid. Pediatr Blood Cancer 47: 773–784.

    PubMed  Google Scholar 

  • Baserga, R. 2004. Targeting the IGF-1 receptor: from rags to riches. Eur J Cancer 40: 2013–2015.

    PubMed  Google Scholar 

  • Beckert, S., Farrahi, F., Perveen Ghani, Q., Aslam, R., Scheuenstuhl, H., Coerper, S., Konigsrainer, A., Hunt, T.K., and Hussain, M.Z. 2006. IGF-I-induced VEGF expression in HUVEC involves phosphorylation and inhibition of poly(ADP-ribose)polymerase. Biochem Biophys Res Commun 341: 67–72.

    PubMed  CAS  Google Scholar 

  • Begum, S., Emani, N., Cheung, A., Wilkins, O., Der, S., and Hamel, P.A. 2005. Cell-type-specific regulation of distinct sets of gene targets by Pax3 and Pax3/FKHR. Oncogene 24: 1860–1872.

    PubMed  CAS  Google Scholar 

  • Benezra, R., Davis, R.L., Lockshon, D., Turner, D.L., and Weintraub, H. 1990. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61: 49–59.

    PubMed  CAS  Google Scholar 

  • Beppu, K., Nakamura, K., Linehan, W.M., Rapisarda, A., and Thiele, C.J. 2005. Topotecan blocks hypoxia-inducible factor-1alpha and vascular endothelial growth factor expression induced by insulin-like growth factor-I in neuroblastoma cells. Cancer Res 65: 4775–4781.

    PubMed  CAS  Google Scholar 

  • Berg, T., Cohen, S.B., Desharnais, J., Sonderegger, C., Maslyar, D.J., Goldberg, J., Boger, D.L., and Vogt, P.K. 2002. Small-molecule antagonists of Myc/Max dimerization inhibit Myc-induced transformation of chicken embryo fibroblasts. Proc Natl Acad Sci USA 99: 3830–3835.

    PubMed  CAS  Google Scholar 

  • Bernasconi, M., Remppis, A., Fredericks, W.J., Rauscher, F.J., 3rd, and Schafer, B.W. 1996. Induction of apoptosis in rhabdomyosarcoma cells through down-regulation of PAX proteins. Proc Natl Acad Sci USA 93: 13164–13169.

    PubMed  CAS  Google Scholar 

  • Bohula, E.A., Playford, M.P., and Macaulay, V.M. 2003. Targeting the type 1 insulin-like growth factor receptor as anti-cancer treatment. Anticancer Drugs 14: 669–682.

    PubMed  CAS  Google Scholar 

  • Bond, M., Bernstein, M.L., Pappo, A., Schultz, K.R., Krailo, M., Blaney, S.M., and Adamson, P.C. 2008. A phase II study of imatinib mesylate in children with refractory or relapsed solid tumors: a Children’s Oncology Group study. Pediatr Blood Cancer 50:254–258.

    PubMed  Google Scholar 

  • Bottger, A., Bottger, V., Garcia-Echeverria, C., Chene, P., Hochkeppel, H.K., Sampson, W., Ang, K., Howard, S.F., Picksley, S.M., and Lane, D.P. 1997. Molecular characterization of the hdm2-p53 interaction. J Mol Biol 269: 744–756.

    PubMed  CAS  Google Scholar 

  • Braczkowski, R., Schally, A.V., Plonowski, A., Varga, J.L., Groot, K., Krupa, M., and Armatis, P. 2002. Inhibition of proliferation in human MNNG/HOS osteosarcoma and SK-ES-1 Ewing sarcoma cell lines in vitro and in vivo by antagonists of growth hormone-releasing hormone: effects on insulin-like growth factor II. Cancer 95: 1735–1745.

    PubMed  CAS  Google Scholar 

  • Breneman, J.C., Lyden, E., Pappo, A.S., Link, M.P., Anderson, J.R., Parham, D.M., Qualman, S.J., Wharam, M.D., Donaldson, S.S., Maurer, H.M., et al. 2003. Prognostic factors and clinical outcomes in children and adolescents with metastatic rhabdomyosarcoma – a report from the Intergroup Rhabdomyosarcoma Study IV. J Clin Oncol 21: 78–84.

    PubMed  Google Scholar 

  • Bridge, J.A., Liu, J., Weibolt, V., Baker, K.S., Perry, D., Kruger, R., Qualman, S., Barr, F., Sorensen, P., Triche, T., et al. 2000. Novel genomic imbalances in embryonal rhabdomyosarcoma revealed by comparative genomic hybridization and fluorescence in situ hybridization: an intergroup rhabdomyosarcoma study. Genes Chromosomes Cancer 27: 337–344.

    PubMed  CAS  Google Scholar 

  • Bridge, J.A., Liu, J., Qualman, S.J., Suijkerbuijk, R., Wenger, G., Zhang, J., Wan, X., Baker, K.S., Sorensen, P., and Barr, F.G. 2002. Genomic gains and losses are similar in genetic and histologic subsets of rhabdomyosarcoma, whereas amplification predominates in embryonal with anaplasia and alveolar subtypes. Genes Chromosomes Cancer 33: 310–321.

    PubMed  CAS  Google Scholar 

  • Brugarolas, J.B., Vazquez, F., Reddy, A., Sellers, W.R., and Kaelin, W.G., Jr. 2003. TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell 4: 147–158.

    PubMed  CAS  Google Scholar 

  • Brugarolas, J., Lei, K., Hurley, R.L., Manning, B.D., Reiling, J.H., Hafen, E., Witters, L.A., Ellisen, L.W., and Kaelin, W.G., Jr. 2004. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 18: 2893–2904.

    PubMed  CAS  Google Scholar 

  • Burkhart, C.A., Cheng, A.J., Madafiglio, J., Kavallaris, M., Mili, M., Marshall, G.M., Weiss, gonucleotide administration on tumorigenesis in a murine model of neuroblastoma. J Natl Cancer Inst 95: 1394–1403.

    PubMed  Google Scholar 

  • Calzada-Wack, J., Schnitzbauer, U., Walch, A., Wurster, K.H., Kappler, R., Nathrath, M., and Hahn, H. 2002. Analysis of the PTCH coding region in human rhabdomyosarcoma. Hum Mutat 20: 233–234.

    PubMed  Google Scholar 

  • Cam, H., Griesmann, H., Beitzinger, M., Hofmann, L., Beinoraviciute-Kellner, R., Sauer, M., Huttinger-Kirchhof, N., Oswald, C., Friedl, P., Gattenlohner, S., et al. 2006. p53 family members in myogenic differentiation and rhabdomyosarcoma development. Cancer Cell 10: 281–293.

    PubMed  CAS  Google Scholar 

  • Casola, S., Pedone, P.V., Cavazzana, A.O., Basso, G., Luksch, R., d’Amore, E.S., Carli, M., Bruni, C.B., and Riccio, A. 1997. Expression and parental imprinting of the H19 gene in human rhabdomyosarcoma. Oncogene 14: 1503–1510.

    PubMed  CAS  Google Scholar 

  • Chen, J.K., Taipale, J., Young, K.E., Maiti, T., and Beachy, P.A. 2002. Small molecule modulation of Smoothened activity. Proc Natl Acad Sci USA 99: 14071–14076.

    PubMed  CAS  Google Scholar 

  • Chen, Y., Takita, J., Hiwatari, M., Igarashi, T., Hanada, R., Kikuchi, A., Hongo, T., Taki, T., Ogasawara, M., Shimada, A., et al. 2006. Mutations of the PTPN11 and RAS genes in rhabdomyosarcoma and pediatric hematological malignancies. Genes Chromosomes Cancer 45: 583–591.

    PubMed  CAS  Google Scholar 

  • Chen, Y., Takita, J., Mizuguchi, M., Tanaka, K., Ida, K., Koh, K., Igarashi, T., Hanada, R., Tanaka, Y., Park, M.J., et al. 2007. Mutation and expression analyses of the MET and CDKN2A genes in rhabdomyosarcoma with emphasis on MET overexpression. Genes Chromosomes Cancer 46: 348–358.

    PubMed  CAS  Google Scholar 

  • Chesler, L., Schlieve, C., Goldenberg, D.D., Kenney, A., Kim, G., McMillan, A., Matthay, K.K., Rowitch, D., and Weiss, W.A. 2006. Inhibition of phosphatidylinositol 3-kinase destabilizes Mycn protein and blocks malignant progression in neuroblastoma. Cancer Res 66: 8139–8146.

    PubMed  CAS  Google Scholar 

  • Cohen, B.D., Baker, D.A., Soderstrom, C., Tkalcevic, G., Rossi, A.M., Miller, P.E., Tengowski, M.W., Wang, F., Gualberto, A., Beebe, J.S., et al. 2005. Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871. Clin Cancer Res 11: 2063–2073.

    PubMed  CAS  Google Scholar 

  • Cornelison, D.D., and Wold, B.J. 1997. Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191: 270–283.

    PubMed  CAS  Google Scholar 

  • Davicioni, E., Finckenstein, F.G., Shahbazian, V., Buckley, J.D., Triche, T.J., and Anderson, M.J. 2006. Identification of a PAX-FKHR gene expression signature that defines molecular classes and determines the prognosis of alveolar rhabdomyosarcomas. Cancer Res 66: 6936–6946.

    PubMed  CAS  Google Scholar 

  • Davis, R.J., D’Cruz, C.M., Lovell, M.A., Biegel, J.A., and Barr, F.G. 1994. Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res 54: 2869–2872.

    PubMed  CAS  Google Scholar 

  • De Giovanni, C., Melani, C., Nanni, P., Landuzzi, L., Nicoletti, G., Frabetti, F., Griffoni, C., Colombo, M.P., and Lollini, P.L. 1995. Redundancy of autocrine loops in human rhabdomyosarcoma cells: induction of differentiation by suramin. Br J Cancer 72: 1224–1229.

    PubMed  Google Scholar 

  • De Pitta, C., Tombolan, L., Albiero, G., Sartori, F., Romualdi, C., Jurman, G., Carli, M., Furlanello, C., Lanfranchi, G., and Rosolen, A. 2006. Gene expression profiling identifies potential relevant genes in alveolar rhabdomyosarcoma pathogenesis and discriminates PAX3-FKHR positive and negative tumors. Int J Cancer 118: 2772–2781.

    PubMed  Google Scholar 

  • DePinto, W., Chu, X.J., Yin, X., Smith, M., Packman, K., Goelzer, P., Lovey, A., Chen, Y., Qian, H., Hamid, R., et al. 2006. In vitro and in vivo activity of R547: a potent and selective cyclin-dependent kinase inhibitor currently in phase I clinical trials. Mol Cancer Ther 5: 2644–2658.

    PubMed  CAS  Google Scholar 

  • Dias, P., Kumar, P., Marsden, H.B., Gattamaneni, H.R., Heighway, J., and Kumar, S. 1990. N-myc gene is amplified in alveolar rhabdomyosarcomas (RMS) but not in embryonal RMS. Int J Cancer 45: 593–596.

    PubMed  CAS  Google Scholar 

  • Doranz, B.J., Filion, L.G., Diaz-Mitoma, F., Sitar, D.S., Sahai, J., Baribaud, F., Orsini, M.J., Benovic, J.L., Cameron, W., and Doms, R.W. 2001. Safe use of the CXCR4 inhibitor ALX40-4C in humans. AIDS Res Hum Retroviruses 17: 475–486.

    PubMed  CAS  Google Scholar 

  • Dorman, C.M., and Johnson, S.E. 2000. Activated Raf inhibits myogenesis through a mechanism independent of activator protein 1-mediated myoblast transformation. J Biol Chem 275: 27481–27487.

    PubMed  CAS  Google Scholar 

  • Driman, D., Thorner, P.S., Greenberg, M.L., Chilton-MacNeill, S., and Squire, J. 1994. MYCN gene amplification in rhabdomyosarcoma. Cancer 73: 2231–2237.

    PubMed  CAS  Google Scholar 

  • Druker, B.J. 2003. David A. Karnofsky Award lecture. Imatinib as a paradigm of targeted therapies. J Clin Oncol 21: 239s–245s.

    PubMed  Google Scholar 

  • Druker, B.J., Guilhot, F., O’Brien, S.G., Gathmann, I., Kantarjian, H., Gattermann, N., Deininger, M.W., Silver, R.T., Goldman, J.M., Stone, R.M., et al. 2006. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355: 2408–2417.

    PubMed  CAS  Google Scholar 

  • Easton, J.B., Kurmasheva, R.T., and Houghton, P.J. 2006. IRS-1: auditing the effectiveness of mTOR inhibitors. Cancer Cell 9: 153–155.

    PubMed  CAS  Google Scholar 

  • Ebauer, M., Wachtel, M., Niggli, F.K., and Schafer, B.W. 2007. Comparative expression profiling identifies an in vivo target gene signature with TFAP2B as a mediator of the survival function of PAX3/FKHR. Oncogene 26: 7267–7281.

    PubMed  CAS  Google Scholar 

  • Eder, J.P., Heath, E., Appleman, L., Shapiro, G., Wang, D., Malburg, L., Zhu, A.X., Leader, T., Wolanski, A., and LoRusso, P. 2007. Phase I experience with c-MET inhibitor XL880 administered orally to patients (pts) with solid tumors. ASCO Annual Meeting Proceedings Part I. J Clin Oncol 25: 3526.

    Google Scholar 

  • Efeyan, A., Ortega-Molina, A., Velasco-Miguel, S., Herranz, D., Vassilev, L.T., and Serrano, M. 2007. Induction of p53-dependent senescence by the MDM2 antagonist nutlin-3a in mouse cells of fibroblast origin. Cancer Res 67: 7350–7357.

    PubMed  CAS  Google Scholar 

  • El-Badry, O.M., Minniti, C., Kohn, E.C., Houghton, P.J., Daughaday, W.H., and Helman, L.J. 1990. Insulin-like growth factor II acts as an autocrine growth and motility factor in human rhabdomyosarcoma tumors. Cell Growth Differ 1: 325–331.

    PubMed  CAS  Google Scholar 

  • Engel, N., Thorvaldsen, J.L., and Bartolomei, M.S. 2006. CTCF binding sites promote transcription initiation and prevent DNA methylation on the maternal allele at the imprinted H19/Igf2 locus. Hum Mol Genet 15: 2945–2954.

    PubMed  CAS  Google Scholar 

  • Epstein, J.A., Shapiro, D.N., Cheng, J., Lam, P.Y., and Maas, R.L. 1996. Pax3 modulates expression of the c-Met receptor during limb muscle development. Proc Natl Acad Sci USA 93: 4213–4218.

    PubMed  CAS  Google Scholar 

  • Ezzat, S., Zheng, L., Winer, D., and Asa, S.L. 2006. Targeting N-cadherin through fibroblast growth factor receptor-4: distinct pathogenetic and therapeutic implications. Mol Endocrinol 20: 2965–2975.

    PubMed  CAS  Google Scholar 

  • Feng, Y., Zhu, Z., Xiao, X., Choudhry, V., Barrett, J.C., and Dimitrov, D.S. 2006. Novel human monoclonal antibodies to insulin-like growth factor (IGF)-II that potently inhibit the IGF receptor type I signal transduction function. Mol Cancer Ther 5: 114–120.

    PubMed  CAS  Google Scholar 

  • Ferracini, R., Olivero, M., Di Renzo, M.F., Martano, M., De Giovanni, C., Nanni, P., Basso, G., Scotlandi, K., Lollini, P.L., and Comoglio, P.M. 1996. Retrogenic expression of the MET proto-oncogene correlates with the invasive phenotype of human rhabdomyosarcomas. Oncogene 12: 1697–1705.

    PubMed  CAS  Google Scholar 

  • Ferrara, N. 2002. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2: 795–803.

    PubMed  CAS  Google Scholar 

  • Flores, E.R. 2007. The roles of p63 in cancer. Cell Cycle 6: 300–304.

    PubMed  CAS  Google Scholar 

  • Flores, E.R., Tsai, K.Y., Crowley, D., Sengupta, S., Yang, A., McKeon, F., and Jacks, T. 2002. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416: 560–564.

    PubMed  CAS  Google Scholar 

  • Flores, E.R., Sengupta, S., Miller, J.B., Newman, J.J., Bronson, R., Crowley, D., Yang, A., McKeon, F., and Jacks, T. 2005. Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 7: 363–373.

    PubMed  CAS  Google Scholar 

  • Flygare, J., Gustafsson, K., Kimby, E., Christensson, B., and Sander, B. 2005. Cannabinoid receptor ligands mediate growth inhibition and cell death in mantle cell lymphoma. FEBS Lett 579: 6885–6889.

    PubMed  CAS  Google Scholar 

  • Fredericks, W.J., Galili, N., Mukhopadhyay, S., Rovera, G., Bennicelli, J., Barr, F.G., and Rauscher, F.J., 3rd. 1995. The PAX3-FKHR fusion protein created by the t(2;13) translocation in alveolar rhabdomyosarcomas is a more potent transcriptional activator than PAX3. Mol Cell Biol 15: 1522–1535.

    PubMed  CAS  Google Scholar 

  • Fry, D.W., Harvey, P.J., Keller, P.R., Elliott, W.L., Meade, M., Trachet, E., Albassam, M., Zheng, X., Leopold, W.R., Pryer, N.K., et al. 2004. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 3: 1427–1438.

    PubMed  CAS  Google Scholar 

  • Furman, W.L., Stewart, C.F., Poquette, C.A., Pratt, C.B., Santana, V.M., Zamboni, W.C., Bowman, L.C., Ma, M.K., Hoffer, F.A., Meyer, W.H., et al. 1999. Direct translation of a protracted irinotecan schedule from a xenograft model to a phase I trial in children. J Clin Oncol 17: 1815–1824.

    PubMed  CAS  Google Scholar 

  • Gable, K.L., Maddux, B.A., Penaranda, C., Zavodovskaya, M., Campbell, M.J., Lobo, M., Robinson, L., Schow, S., Kerner, J.A., Goldfine, I.D., et al. 2006. Diarylureas are small-molecule inhibitors of insulin-like growth factor I receptor signaling and breast cancer cell growth. Mol Cancer Ther 5: 1079–1086.

    PubMed  CAS  Google Scholar 

  • Galili, N., Davis, R.J., Fredericks, W.J., Mukhopadhyay, S., Rauscher, F.J., 3rd, Emanuel, B.S., Rovera, G., and Barr, F.G. 1993. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet 5: 230–235.

    PubMed  CAS  Google Scholar 

  • Gallicchio, M.A., Kneen, M., Hall, C., Scott, A.M., and Bach, L.A. 2001. Overexpression of insulin-like growth factor binding protein-6 inhibits rhabdomyosarcoma growth in vivo. Int J Cancer 94: 645–651.

    PubMed  CAS  Google Scholar 

  • Ganjavi, H., Gee, M., Narendran, A., Freedman, M.H., and Malkin, D. 2005. Adenovirus-mediated p53 gene therapy in pediatric soft-tissue sarcoma cell lines: sensitization to cisplatin and doxorubicin. Cancer Gene Ther 12: 397–406.

    PubMed  CAS  Google Scholar 

  • Garcia, A., Rosen, L., Cunningham, C.C., Nemunaitis, J., Li, C., Rulewski, N., Dovholuk, A., Savage, R., Chan, T., Bukowksi, R., and Mekhail T. 2007. Phase 1 study of ARQ 197, a selective inhibitor of the c-Met RTK in patients with metastatic solid tumors reaches recommended phase 2 dose. ASCO Annual Meeting Proceedings Part I. J Clin Oncol 25: 3525.

    Google Scholar 

  • Gee, M.F., Tsuchida, R., Eichler-Jonsson, C., Das, B., Baruchel, S., and Malkin, D. 2005. Vascular endothelial growth factor acts in an autocrine manner in rhabdomyosarcoma cell lines and can be inhibited with all-trans-retinoic acid. Oncogene 24: 8025–8037.

    PubMed  CAS  Google Scholar 

  • Gerber, H.P., Kowalski, J., Sherman, D., Eberhard, D.A., and Ferrara, N. 2000. Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Res 60: 6253–6258.

    PubMed  CAS  Google Scholar 

  • Gerber, A.N., Wilson, C.W., Li, Y.J., and Chuang, P.T. 2007. The hedgehog regulated oncogenes Gli1 and Gli2 block myoblast differentiation by inhibiting MyoD-mediated transcriptional activation. Oncogene 26: 1122–1136.

    PubMed  CAS  Google Scholar 

  • Ginsberg, J.P., Davis, R.J., Bennicelli, J.L., Nauta, L.E., and Barr, F.G. 1998. Up-regulation of MET but not neural cell adhesion molecule expression by the PAX3-FKHR fusion protein in alveolar rhabdomyosarcoma. Cancer Res 58: 3542–3546.

    PubMed  CAS  Google Scholar 

  • Goga, A., Yamng, D., Tward, A.D., Morgan, D.O., and Bishop, J.M. 2007. Inhibition of CDK1 as a potential therapy for tumors over-expressing MYC. Nature Med 13: 820–827.

    PubMed  CAS  Google Scholar 

  • Goldstein, M., Meller, I., Issakov, J., and Orr-Urtreger, A. 2006. Novel genes implicated in embryonal, alveolar, and pleomorphic rhabdomyosarcoma: a cytogenetic and molecular analysis of primary tumors. Neoplasia 8: 332–343.

    PubMed  CAS  Google Scholar 

  • Gordon, A.T., Brinkschmidt, C., Anderson, J., Coleman, N., Dockhorn-Dworniczak, B., Pritchard-Jones, K., and Shipley, J. 2000. A novel and consistent amplicon at 13q31 associated with alveolar rhabdomyosarcoma. Genes Chromosomes Cancer 28: 220–226.

    PubMed  CAS  Google Scholar 

  • Gressner, O., Schilling, T., Lorenz, K., Schulze Schleithoff, E., Koch, A., Schulze-Bergkamen, H., Lena, A.M., Candi, E., Terrinoni, A., Catani, M.V., et al. 2005. TAp63alpha induces apoptosis by activating signaling via death receptors and mitochondria. EMBO J 24: 2458–2471.

    PubMed  CAS  Google Scholar 

  • Grob, T.J., Novak, U., Maisse, C., Barcaroli, D., Luthi, A.U., Pirnia, F., Hugli, B., Graber, H.U., De Laurenzi, V., Fey, M.F., et al. 2001. Human delta Np73 regulates a dominant negative feedback loop for TAp73 and p53. Cell Death Differ 8: 1213–1223.

    PubMed  CAS  Google Scholar 

  • Guba, M., von Breitenbuch, P., Steinbauer, M., Koehl, G., Flegel, S., Hornung, M., Bruns, C.J., Zuelke, C., Farkas, S., Anthuber, M., et al. 2002. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 8: 128–135.

    PubMed  CAS  Google Scholar 

  • Guba, M., Graeb, C., Jauch, K.W., and Geissler, E.K. 2004. Pro- and anti-cancer effects of immunosuppressive agents used in organ transplantation. Transplantation 77: 1777–1782.

    PubMed  CAS  Google Scholar 

  • Guba, M., Koehl, G.E., Neppl, E., Doenecke, A., Steinbauer, M., Schlitt, H.J., Jauch, K.W., and Geissler, E.K. 2005. Dosing of rapamycin is critical to achieve an optimal antiangiogenic effect against cancer. Transpl Int 18: 89–94.

    PubMed  CAS  Google Scholar 

  • Guerreiro, A.S., Boller, D., Doepfner, K.T., and Arcaro, A. 2006. IGF-IR: potential role in antitumor agents. Drug News Perspect 19: 261–272.

    PubMed  CAS  Google Scholar 

  • Hachitanda, Y., Toyoshima, S., Akazawa, K., and Tsuneyoshi, M. 1998. N-myc gene amplification in rhabdomyosarcoma detected by fluorescence in situ hybridization: its correlation with histologic features. Mod Pathol 11: 1222–1227.

    PubMed  CAS  Google Scholar 

  • Hahn, H., Wojnowski, L., Specht, K., Kappler, R., Calzada-Wack, J., Potter, D., Zimmer, A., Muller, U., Samson, E., Quintanilla-Martinez, L., et al. 2000. Patched target Igf2 is indispensable for the formation of medulloblastoma and rhabdomyosarcoma. J Biol Chem 275: 28341–28344.

    PubMed  CAS  Google Scholar 

  • Haluska, P., Carboni, J.M., Loegering, D.A., Lee, F.Y., Wittman, M., Saulnier, M.G., Frennesson, D.B., Kalli, K.R., Conover, C.A., Attar, R.M., et al. 2006. In vitro and in vivo antitumor effects of the dual insulin-like growth factor-I/insulin receptor inhibitor, BMS-554417. Cancer Res 66: 362–371.

    PubMed  CAS  Google Scholar 

  • Hao, Y., Crenshaw, T., Moulton, T., Newcomb, E., and Tycko, B. 1993. Tumour-suppressor activity of H19 RNA. Nature 365: 764–767.

    PubMed  CAS  Google Scholar 

  • Haruta, T., Uno, T., Kawahara, J., Takano, A., Egawa, K., Sharma, P.M., Olefsky, J.M., and Kobayashi, M. 2000. A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1. Mol Endocrinol 14: 783–794.

    PubMed  CAS  Google Scholar 

  • Hernandez-Sanchez, C., Werner, H., Roberts, C.T., Jr., Woo, E.J., Hum, D.W., Rosenthal, S.M., and LeRoith, D. 1997. Differential regulation of insulin-like growth factor-I (IGF-I) receptor gene expression by IGF-I and basic fibroblastic growth factor. J Biol Chem 272: 4663–4670.

    PubMed  CAS  Google Scholar 

  • Hoar, K., Chakravarty, A., Rabino, C., Wysong, D., Bowman, D., Roy, N., and Ecsedy, J.A. 2007. MLN8054, a small-molecule inhibitor of Aurora A, causes spindle pole and chromosome congression defects leading to aneuploidy. Mol Cell Biol 27: 4513–4525.

    PubMed  CAS  Google Scholar 

  • Honda, R., Tanaka, H., and Yasuda, H. 1997. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420: 25–27.

    PubMed  CAS  Google Scholar 

  • Hope, K.J., Jin, L., and Dick, J.E. 2003. Human acute myeloid leukemia stem cells. Arch Med Res 34: 507–514.

    PubMed  CAS  Google Scholar 

  • Hope, K.J., Jin, L., and Dick, J.E. 2004. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 5: 738–743.

    PubMed  CAS  Google Scholar 

  • Houghton, P.J., Morton, C.L., Tucker, C., Payne, D., Favours, E., Cole, C., Gorlick, R., Kolb, E.A., Zhang, W., Lock, R., et al. 2007. The pediatric preclinical testing program: description of models and early testing results. Pediatr Blood Cancer 49:928–940.

    PubMed  Google Scholar 

  • Houghton, P.J., Morton, C.L., Kolb, E.A., Gorlick, R., Lock, R., Carol, H., Reynolds, C.P., Maris, J.M., Keir, S.T., Billups, C.A., et al. 2008. Initial testing (stage 1) of the mTOR inhibitor rapamycin by the pediatric preclinical testing program. Pediatr Blood Cancer 50: 799–805.

    PubMed  Google Scholar 

  • Huang, S., Shu, L., Dilling, M.B., Easton, J., Harwood, F.C., Ichijo, H., and Houghton, P.J. 2003. Sustained activation of the JNK cascade and rapamycin-induced apoptosis are suppressed by p53/p21(Cip1). Mol Cell 11: 1491–1501.

    PubMed  CAS  Google Scholar 

  • Hudson, C.C., Liu, M., Chiang, G.G., Otterness, D.M., Loomis, D.C., Kaper, F., Giaccia, A.J., and Abraham, R.T. 2002. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol 22: 7004–7014.

    PubMed  CAS  Google Scholar 

  • Hurwitz, H.I., Fehrenbacher, L., Hainsworth, J.D., Heim, W., Berlin, J., Holmgren, E., Hambleton, J., Novotny, W.F., and Kabbinavar, F. 2005. Bevacizumab in combination with fluorouracil and leucovorin: an active regimen for first-line metastatic colorectal cancer. J Clin Oncol 23: 3502–3508.

    PubMed  CAS  Google Scholar 

  • Huttinger-Kirchhof, N., Cam, H., Griesmann, H., Hofmann, L., Beitzinger, M., and Stiewe, T. 2006. The p53 family inhibitor DeltaNp73 interferes with multiple developmental programs. Cell Death Differ 13: 174–177.

    PubMed  CAS  Google Scholar 

  • Hwa, V., Oh, Y., and Rosenfeld, R.G. 1999. Insulin-like growth factor binding proteins: a proposed superfamily. Acta Paediatr Suppl 88: 37–45.

    PubMed  CAS  Google Scholar 

  • Issa, J.P., Kantarjian, H.M., and Kirkpatrick, P. 2005. Azacitidine. Nat Rev Drug Discov 4: 275–276.

    PubMed  CAS  Google Scholar 

  • Jaboin, J., Wild, J., Hamidi, H., Khanna, C., Kim, C.J., Robey, R., Bates, S.E., and Thiele, C.J. 2002. MS-27-275, an inhibitor of histone deacetylase, has marked in vitro and in vivo antitumor activity against pediatric solid tumors. Cancer Res 62: 6108–6115.

    PubMed  CAS  Google Scholar 

  • Jankowski, K., Kucia, M., Wysoczynski, M., Reca, R., Zhao, D., Trzyna, E., Trent, J., Peiper, S., Zembala, M., Ratajczak, J., et al. 2003. Both hepatocyte growth factor (HGF) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only HGF enhances their resistance to radiochemotherapy. Cancer Res 63: 7926–7935.

    PubMed  CAS  Google Scholar 

  • Kalebic, T., Tsokos, M., and Helman, L.J. 1994. In vivo treatment with antibody against IGF-1 receptor suppresses growth of human rhabdomyosarcoma and down-regulates p34cdc2. Cancer Res 54: 5531–5534.

    PubMed  CAS  Google Scholar 

  • Kaleko, M., Rutter, W.J., and Miller, A.D. 1990. Overexpression of the human insulinlike growth factor I receptor promotes ligand-dependent neoplastic transformation. Mol Cell Biol 10: 464–473.

    PubMed  CAS  Google Scholar 

  • Kelly, P.N., Dakic, A., Adams, J.M., Nutt, S.L., and Strasser, A. 2007. Tumor growth need not be driven by rare cancer stem cells. Science 317: 337.

    PubMed  CAS  Google Scholar 

  • Khan, J., Bittner, M.L., Saal, L.H., Teichmann, U., Azorsa, D.O., Gooden, G.C., Pavan, W.J., Trent, J.M., and Meltzer, P.S. 1999. cDNA microarrays detect activation of a myogenic transcription program by the PAX3-FKHR fusion oncogene. Proc Natl Acad Sci USA 96: 13264–13269.

    PubMed  CAS  Google Scholar 

  • Knudsen, E.S., Pazzagli, C., Born, T.L., Bertolaet, B.L., Knudsen, K.E., Arden, K.C., Henry, R.R., and Feramisco, J.R. 1998. Elevated cyclins and cyclin-dependent kinase activity in the rhabdomyosarcoma cell line RD. Cancer Res 58: 2042–2049.

    PubMed  CAS  Google Scholar 

  • Kolb, A.E., Gorlick, R., Houghton, P.J., Morton, C.L., Lock, R., Carol, H., Reynolds, C.P., Maris, J.M., Keir, S.T., Billups, C.A., et al. 2008. Initial testing (stage 1) of a monoclonal antibody (SCH 717454) against the IGF-1 receptor by the pediatric preclinical testing program. Pediatr Blood Cancer 50: 1190–1197.

    PubMed  Google Scholar 

  • Komdeur, R., Hoekstra, H.J., Molenaar, W.M., Van Den Berg, E., Zwart, N., Pras, E., Plaza-Menacho, I., Hofstra, R.M., and Van Der Graaf, W.T. 2003. Clinicopathologic assessment of postradiation sarcomas: KIT as a potential treatment target. Clin Cancer Res 9: 2926–2932.

    PubMed  CAS  Google Scholar 

  • Kranz, D., and Dobbelstein, M. 2006. Nongenotoxic p53 activation protects cells against S-phase-specific chemotherapy. Cancer Res 66: 10274–10280.

    PubMed  CAS  Google Scholar 

  • Kurmasheva, R.T., Dudkin, L., Billups, C., Debelenko, L.V., Morton, C.L., Houghton, P.J. 2009. The insulin-like growth factor-1 receptor-targeting antibody, CP-751,871, suppresses tumor-derived VEGF and synergizes with rapamycin in models of childhood sarcoma. Cancer Res 69: 7662–71.

    PubMed  CAS  Google Scholar 

  • Kurmasheva, R.T., and Houghton, P.J. 2006. IGF-I mediated survival pathways in normal and malignant cells. Biochim Biophys Acta 1766: 1–22.

    PubMed  CAS  Google Scholar 

  • Kurmasheva, R.T., Peterson, C.A., Parham, D.M., Chen, B., McDonald, R.E., and Cooney, C.A. 2005. Upstream CpG island methylation of the PAX3 gene in human rhabdomyosarcomas. Pediatr Blood Cancer 44: 328–337.

    PubMed  Google Scholar 

  • Kurmasheva, R.T., Harwood, F.C., and Houghton, P.J. 2007. Differential regulation of vascular endothelial growth factor by Akt and mammalian target of rapamycin inhibitors in cell lines derived from childhood solid tumors. Mol Cancer Ther 6: 1620–1628.

    PubMed  CAS  Google Scholar 

  • Kutko, M.C., Glick, R.D., Butler, L.M., Coffey, D.C., Rifkind, R.A., Marks, P.A., Richon, V.M., and LaQuaglia, M.P. 2003. Histone deacetylase inhibitors induce growth suppression and cell death in human rhabdomyosarcoma in vitro. Clin Cancer Res 9: 5749–5755.

    PubMed  CAS  Google Scholar 

  • Lae, M., Ahn, E.H., Mercado, G.E., Chuai, S., Edgar, M., Pawel, B.R., Olshen, A., Barr, F.G., and Ladanyi, M. 2007. Global gene expression profiling of PAX-FKHR fusion-positive alveolar and PAX-FKHR fusion-negative embryonal rhabdomyosarcomas. J Pathol 212: 143–151.

    PubMed  CAS  Google Scholar 

  • Langenau, D.M., Keefe, M.D., Storer, N.Y., Guyon, J.R., Kutok, J.L., Le, X., Goessling, W., Neuberg, D.S., Kunkel, L.M., and Zon, L.I. 2007. Effects of RAS on the genesis of embryonal rhabdomyosarcoma. Genes Dev 21: 1382–1395.

    PubMed  CAS  Google Scholar 

  • LaRusch, G.A., Jackson, M.W., Dunbar, J.D., Warren, R.S., Donner, D.B., and Mayo, L.D. 2007. Nutlin3 blocks vascular endothelial growth factor induction by preventing the interaction between hypoxia inducible factor 1alpha and Hdm2. Cancer Res 67: 450–454.

    PubMed  CAS  Google Scholar 

  • Lazaro, J.B., Bailey, P.J., and Lassar, A.B. 2002. Cyclin D-cdk4 activity modulates the subnuclear localization and interaction of MEF2 with SRC-family coactivators during skeletal muscle differentiation. Genes Dev 16: 1792–1805.

    PubMed  CAS  Google Scholar 

  • LeRoith, D., Baserga, R., Helman, L., and Roberts, C.T., Jr. 1995. Insulin-like growth factors and cancer. Ann Intern Med 122: 54–59.

    PubMed  CAS  Google Scholar 

  • Leuschner, I., Langhans, I., Schmitz, R., Harms, D., Mattke, A., and Treuner, J. 2003. p53 and mdm-2 expression in Rhabdomyosarcoma of childhood and adolescence: clinicopathologic study by the Kiel Pediatric Tumor Registry and the German Cooperative Soft Tissue Sarcoma Study. Pediatr Dev Pathol 6: 128–136.

    PubMed  CAS  Google Scholar 

  • Li, L., Zhou, J., James, G., Heller-Harrison, R., Czech, M.P., and Olson, E.N. 1992. FGF inactivates myogenic helix-loop-helix proteins through phosphorylation of a conserved protein kinase C site in their DNA-binding domains. Cell 71: 1181–1194.

    PubMed  CAS  Google Scholar 

  • Lin, R., Connolly, P.J., Lu, Y., Chiu, G., Li, S., Yu, Y., Huang, S., Li, X., Emanuel, S.L., Middleton, S.A., et al. 2007. Synthesis and evaluation of pyrazolo[3,4-b]pyridine CDK1 inhibitors as anti-tumor agents. Bioorg Med Chem Lett 17: 4297–4302.

    PubMed  CAS  Google Scholar 

  • Linardic, C.M., Downie, D.L., Qualman, S., Bentley, R.C., and Counter, C.M. 2005. Genetic modeling of human rhabdomyosarcoma. Cancer Res 65: 4490–4495.

    PubMed  CAS  Google Scholar 

  • Logan, I.R., McNeill, H.V., Cook, S., Lu, X., Lunec, J., and Robson, C.N. 2007. Analysis of the MDM2 antagonist nutlin-3 in human prostate cancer cells. Prostate 67: 900–906.

    PubMed  CAS  Google Scholar 

  • Lollini, P.L., De Giovanni, C., Del Re, B., Landuzzi, L., Nicoletti, G., Prodi, G., Scotlandi, K., and Nanni, P. 1989. Myogenic differentiation of human rhabdomyosarcoma cells induced in vitro by antineoplastic drugs. Cancer Res 49: 3631–3636.

    PubMed  CAS  Google Scholar 

  • Longati, P., Comoglio, P.M., and Bardelli, A. 2001. Receptor tyrosine kinases as therapeutic targets: the model of the MET oncogene. Curr Drug Targets 2: 41–55.

    PubMed  CAS  Google Scholar 

  • Lu, Y.J., Williamson, D., Clark, J., Wang, R., Tiffin, N., Skelton, L., Gordon, T., Williams, R., Allan, B., Jackman, A., et al. 2001. Comparative expressed sequence hybridization to chromosomes for tumor classification and identification of genomic regions of differential gene expression. Proc Natl Acad Sci USA 98: 9197–9202.

    PubMed  CAS  Google Scholar 

  • Lu, X., Pearson, A., and Lunec, J. 2003. The MYCN oncoprotein as a drug development target. Cancer Lett 197: 125–130.

    PubMed  CAS  Google Scholar 

  • Ma, P.C., Schaefer, E., Christensen, J.G., and Salgia, R. 2005. A selective small molecule c-MET Inhibitor, PHA665752, cooperates with rapamycin. Clin Cancer Res 11: 2312–2319.

    PubMed  CAS  Google Scholar 

  • Manfredi, M.G., Ecsedy, J.A., Meetze, K.A., Balani, S.K., Burenkova, O., Chen, W., Galvin, K.M., Hoar, K.M., Huck, J.J., LeRoy, P.J., et al. 2007. Antitumor activity of MLN8054, an orally active small-molecule inhibitor of Aurora A kinase. Proc Natl Acad Sci USA 104: 4106–4111.

    PubMed  CAS  Google Scholar 

  • Mao, J., Maye, P., Kogerman, P., Tejedor, F.J., Toftgard, R., Xie, W., Wu, G., and Wu, D. 2002. Regulation of Gli1 transcriptional activity in the nucleus by Dyrk1. J Biol Chem 277: 35156–35161.

    PubMed  CAS  Google Scholar 

  • Maris, J.M., Courtright, J., Houghton, P.J., Morton, C.L., Gorlick, R., Kolb, E.A., Lock, R., Tajbakhsh, M., Reynolds, C.P., Keir, S.T., et al. 2008a. Initial testing of the VEGFR inhibitor AZD2171 by the pediatric preclinical testing program. Pediatr Blood Cancer 50: 581–587.

    PubMed  Google Scholar 

  • Maris, J.M., Courtright, J., Houghton, P.J., Morton, C.L., Kolb, E.A., Lock, R.B., Tajbakhsh, M., Reynolds, C.P., Keir, S.T., Wu, J., and Smith, M.A. 2008b. Initial testing (stage 1) of sunitinib by the pediatric preclinical testing program. Pediatr Blood Cancer 51:42–48.

    PubMed  Google Scholar 

  • Matsuoka, S., Edwards, M.C., Bai, C., Parker, S., Zhang, P., Baldini, A., Harper, J.W., and Elledge, S.J. 1995. p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev 9: 650–662.

    PubMed  CAS  Google Scholar 

  • McAllister, S.D., Chan, C., Taft, R.J., Luu, T., Abood, M.E., Moore, D.H., Aldape, K., and Yount, G. 2005. Cannabinoids selectively inhibit proliferation and induce death of cultured human glioblastoma multiforme cells. J Neurooncol 74: 31–40.

    PubMed  CAS  Google Scholar 

  • Melino, G., De Laurenzi, V., and Vousden, K.H. 2002. p73: friend or foe in tumorigenesis. Nat Rev Cancer 2: 605–615.

    PubMed  CAS  Google Scholar 

  • Melino, G., Bernassola, F., Ranalli, M., Yee, K., Zong, W.X., Corazzari, M., Knight, R.A., Green, D.R., Thompson, C., and Vousden, K.H. 2004. p73 Induces apoptosis via PUMA transactivation and Bax mitochondrial translocation. J Biol Chem 279: 8076–8083.

    PubMed  CAS  Google Scholar 

  • Mercer, S.E., Ewton, D.Z., Shah, S., Naqvi, A., and Friedman, E. 2006. Mirk/Dyrk1b mediates cell survival in rhabdomyosarcomas. Cancer Res 66: 5143–5150.

    PubMed  CAS  Google Scholar 

  • Minniti, C.P., Tsokos, M., Newton, W.A., Jr., and Helman, L.J. 1994. Specific expression of insulin-like growth factor-II in rhabdomyosarcoma tumor cells. Am J Clin Pathol 101: 198–203.

    PubMed  CAS  Google Scholar 

  • Misawa, A., Hosoi, H., Arimoto, A., Shikata, T., Akioka, S., Matsumura, T., Houghton, P.J., and Sawada, T. 2000. N-Myc induction stimulated by insulin-like growth factor I through mitogen-activated protein kinase signaling pathway in human neuroblastoma cells. Cancer Res 60: 64–69.

    PubMed  CAS  Google Scholar 

  • Mitsiades, C.S., Mitsiades, N.S., McMullan, C.J., Poulaki, V., Shringarpure, R., Akiyama, M., Hideshima, T., Chauhan, D., Joseph, M., Libermann, T.A., et al. 2004. Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell 5: 221–230.

    PubMed  CAS  Google Scholar 

  • Mohammadi, M., Froum, S., Hamby, J.M., Schroeder, M.C., Panek, R.L., Lu, G.H., Eliseenkova, A.V., Green, D., Schlessinger, J., and Hubbard, S.R. 1998. Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J 17: 5896–5904.

    PubMed  CAS  Google Scholar 

  • Mora-Bermudez, F., Gerlich, D., and Ellenberg, J. 2007. Maximal chromosome compaction occurs by axial shortening in anaphase and depends on Aurora kinase. Nat Cell Biol 9: 822–831.

    PubMed  CAS  Google Scholar 

  • Morgenstern, D.A., and Anderson, J. 2006. MYCN deregulation as a potential target for novel therapies in rhabdomyosarcoma. Expert Rev Anticancer Ther 6: 217–224.

    PubMed  CAS  Google Scholar 

  • Morison, I.M., Ramsay, J.P., and Spencer, H.G. 2005. A census of mammalian imprinting. Trends Genet 21: 457–465.

    PubMed  CAS  Google Scholar 

  • Muller, M., Schilling, T., Sayan, A.E., Kairat, A., Lorenz, K., Schulze-Bergkamen, H., Oren, M., Koch, A., Tannapfel, A., Stremmel, W., et al. 2005. TAp73/Delta Np73 influences apoptotic response, chemosensitivity and prognosis in hepatocellular carcinoma. Cell Death Differ 12:1564–1577.

    PubMed  CAS  Google Scholar 

  • Nabarro, S., Himoudi, N., Papanastasiou, A., Gilmour, K., Gibson, S., Sebire, N., Thrasher, A., Blundell, M.P., Hubank, M., Canderan, G., et al. 2005. Coordinated oncogenic transformation and inhibition of host immune responses by the PAX3-FKHR fusion oncoprotein. J Exp Med 202: 1399–1410.

    PubMed  CAS  Google Scholar 

  • Novitch, B.G., Mulligan, G.J., Jacks, T., and Lassar, A.B. 1996. Skeletal muscle cells lacking the retinoblastoma protein display defects in muscle gene expression and accumulate in S and G2 phases of the cell cycle. J Cell Biol 135: 441–456.

    PubMed  CAS  Google Scholar 

  • O’Reilly, K.E., Rojo, F., She, Q.B., Solit, D., Mills, G.B., Smith, D., Lane, H., Hofmann, F., Hicklin, D.J., Ludwig, D.L., et al. 2006. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66: 1500–1508.

    PubMed  Google Scholar 

  • Pappo, A.S., Lyden, E., Breitfeld, P., Donaldson, S.S., Wiener, E., Parham, D., Crews, K.R., Houghton, P., and Meyer, W.H. 2007. Two consecutive phase II window trials of irinotecan alone or in combination with vincristine for the treatment of metastatic rhabdomyosarcoma: the Children’s Oncology Group. J Clin Oncol 25: 362–369.

    PubMed  CAS  Google Scholar 

  • Pavelic, J., Matijevic, T., and Knezevic, J. 2007. Biological and physiological aspects of action of insulin-like growth factor peptide family. Indian J Med Res 125: 511–522.

    PubMed  CAS  Google Scholar 

  • Pavlakovic, H., Havers, W., and Schweigerer, L. 2001. Multiple angiogenesis stimulators in a single malignancy: implications for anti-angiogenic tumour therapy. Angiogenesis 4: 259–262.

    PubMed  CAS  Google Scholar 

  • Perry, R.L., Parker, M.H., and Rudnicki, M.A. 2001. Activated MEK1 binds the nuclear MyoD transcriptional complex to repress transactivation. Mol Cell 8: 291–301.

    PubMed  CAS  Google Scholar 

  • Pession, A., and Tonelli, R. 2005. The MYCN oncogene as a specific and selective drug target for peripheral and central nervous system tumors. Curr Cancer Drug Targets 5: 273–283.

    PubMed  CAS  Google Scholar 

  • Petricoin, E.F., 3rd, Espina, V., Araujo, R.P., Midura, B., Yeung, C., Wan, X., Eichler, G.S., Johann, D.J., Jr., Qualman, S., Tsokos, M., et al. 2007. Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res 67: 3431–3440.

    PubMed  CAS  Google Scholar 

  • Propper, D.J., McDonald, A.C., Man, A., Thavasu, P., Balkwill, F., Braybrooke, J.P., Caponigro, F., Graf, P., Dutreix, C., Blackie, R., et al. 2001. Phase I and pharmacokinetic study of PKC412, an inhibitor of protein kinase C. J Clin Oncol 19: 1485–1492.

    PubMed  CAS  Google Scholar 

  • Qualman, S.J., and Morotti, R.A. 2002. Risk assignment in pediatric soft-tissue sarcomas: an evolving molecular classification. Curr Oncol Rep 4: 123–130.

    PubMed  Google Scholar 

  • Radhakrishnan, S.K., and Gartel, A.L. 2006. A novel transcriptional inhibitor induces apoptosis in tumor cells and exhibits antiangiogenic activity. Cancer Res 66: 3264–3270.

    PubMed  CAS  Google Scholar 

  • Radhakrishnan, S.K., Halasi, M., Bhat, U.G., Kurmasheva, R.T., Houghton, P.J., and Gartel, A.L. 2008. Proapoptotic compound ARC targets Akt and N-myc in neuroblastoma cells. Oncogene 27: 694–699.

    PubMed  CAS  Google Scholar 

  • Rao, S.S., and Kohtz, D.S. 1995. Positive and negative regulation of D-type cyclin expression in skeletal myoblasts by basic fibroblast growth factor and transforming growth factor beta. A role for cyclin D1 in control of myoblast differentiation. J Biol Chem 270: 4093–4100.

    PubMed  CAS  Google Scholar 

  • Rao, S.S., Chu, C., and Kohtz, D.S. 1994. Ectopic expression of cyclin D1 prevents activation of gene transcription by myogenic basic helix-loop-helix regulators. Mol Cell Biol 14: 5259–5267.

    PubMed  CAS  Google Scholar 

  • Rees, H., Williamson, D., Papanastasiou, A., Jina, N., Nabarro, S., Shipley, J., and Anderson, J. 2006. The MET receptor tyrosine kinase contributes to invasive tumour growth in rhabdomyosarcomas. Growth Factors 24: 197–208.

    PubMed  CAS  Google Scholar 

  • Romer, J.T., Kimura, H., Magdaleno, S., Sasai, K., Fuller, C., Baines, H., Connelly, M., Stewart, C.F., Gould, S., Rubin, L.L., et al. 2004. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/−)p53(−/−) mice. Cancer Cell 6: 229–240.

    PubMed  CAS  Google Scholar 

  • Romualdi, C., De Pitta, C., Tombolan, L., Bortoluzzi, S., Sartori, F., Rosolen, A., and Lanfranchi, G. 2006. Defining the gene expression signature of rhabdomyosarcoma by meta-analysis. BMC Genomics 7: 287.

    PubMed  Google Scholar 

  • Rubin, B.P., Heinrich, M.C., and Corless, C.L. 2007. Gastrointestinal stromal tumour. Lancet 369: 1731–1741.

    PubMed  CAS  Google Scholar 

  • Saab, R., Bills, J.L., Miceli, A.P., Anderson, C.M., Khoury, J.D., Fry, D.W., Navid, F., Houghton, P.J., and Skapek, S.X. 2006. Pharmacologic inhibition of cyclin-dependent kinase 4/6 activity arrests proliferation in myoblasts and rhabdomyosarcoma-derived cells. Mol Cancer Ther 5: 1299–1308.

    PubMed  CAS  Google Scholar 

  • Sachdev, D., and Yee, D. 2006. Inhibitors of insulin-like growth factor signaling: a therapeutic approach for breast cancer. J Mammary Gland Biol Neoplasia 11: 27–39.

    PubMed  Google Scholar 

  • Sachdev, D., and Yee, D. 2007. Disrupting insulin-like growth factor signaling as a potential cancer therapy. Mol Cancer Ther 6: 1–12.

    PubMed  CAS  Google Scholar 

  • Santos, E.S., Rosenblatt, J.D., and Goodman, M. 2004. Role of farnesyltransferase inhibitors in hematologic malignancies. Expert Rev Anticancer Ther 4: 843–856.

    PubMed  CAS  Google Scholar 

  • Sarfaraz, S., Afaq, F., Adhami, V.M., and Mukhtar, H. 2005. Cannabinoid receptor as a novel target for the treatment of prostate cancer. Cancer Res 65: 1635–1641.

    PubMed  CAS  Google Scholar 

  • Sarfaraz, S., Afaq, F., Adhami, V.M., Malik, A., and Mukhtar, H. 2006. Cannabinoid receptor agonist-induced apoptosis of human prostate cancer cells LNCaP proceeds through sustained activation of ERK1/2 leading to G1 cell cycle arrest. J Biol Chem 281: 39480–39491.

    PubMed  CAS  Google Scholar 

  • Sayan, A.E., Roperch, J.P., Sayan, B.S., Rossi, M., Pinkoski, M.J., Knight, R.A., Willis, A.E., and Melino, G. 2007. Generation of DeltaTAp73 proteins by translation from a putative internal ribosome entry site. Ann N Y Acad Sci 1095: 315–324.

    PubMed  CAS  Google Scholar 

  • Schoenherr, C.J., Levorse, J.M., and Tilghman, S.M. 2003. CTCF maintains differential methylation at the Igf2/H19 locus. Nat Genet 33: 66–69.

    PubMed  CAS  Google Scholar 

  • Scholl, F.A., Betts, D.R., Niggli, F.K., and Schafer, B.W. 2000. Molecular features of a human rhabdomyosarcoma cell line with spontaneous metastatic progression. Br J Cancer 82: 1239–1245.

    PubMed  CAS  Google Scholar 

  • Scotlandi, K., Manara, M.C., Nicoletti, G., Lollini, P.L., Lukas, S., Benini, S., Croci, S., Perdichizzi, S., Zambelli, D., Serra, M., et al. 2005. Antitumor activity of the insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 in musculoskeletal tumors. Cancer Res 65: 3868–3876.

    PubMed  CAS  Google Scholar 

  • Scrable, H.J., Witte, D.P., Lampkin, B.C., and Cavenee, W.K. 1987. Chromosomal localization of the human rhabdomyosarcoma locus by mitotic recombination mapping. Nature 329: 645–647.

    PubMed  CAS  Google Scholar 

  • Scrable, H., Witte, D., Shimada, H., Seemayer, T., Sheng, W.W., Soukup, S., Koufos, A., Houghton, P., Lampkin, B., and Cavenee, W. 1989. Molecular differential pathology of rhabdomyosarcoma. Genes Chromosomes Cancer 1: 23–35.

    PubMed  CAS  Google Scholar 

  • Seale, P., and Rudnicki, M.A. 2000. A new look at the origin, function, and “stem-cell” status of muscle satellite cells. Dev Biol 218: 115–124.

    PubMed  CAS  Google Scholar 

  • Seale, P., Sabourin, L.A., Girgis-Gabardo, A., Mansouri, A., Gruss, P., and Rudnicki, M.A. 2000. Pax7 is required for the specification of myogenic satellite cells. Cell 102: 777–786.

    PubMed  CAS  Google Scholar 

  • Secchiero, P., Corallini, F., Gonelli, A., Dell’Eva, R., Vitale, M., Capitani, S., Albini, A., and Zauli, G. 2007. Antiangiogenic activity of the MDM2 antagonist nutlin-3. Circ Res 100: 61–69.

    PubMed  CAS  Google Scholar 

  • Sepp-Lorenzino, L. 1998. Structure and function of the insulin-like growth factor I receptor. Breast Cancer Res Treat 47: 235–253.

    PubMed  CAS  Google Scholar 

  • Shi, Y., Yan, H., Frost, P., Gera, J., and Lichtenstein, A. 2005. Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther 4: 1533–1540.

    PubMed  CAS  Google Scholar 

  • Siehl, J., and Thiel, E. 2007. C-kit, GIST, and imatinib. Recent Results Cancer Res 176: 145–151.

    PubMed  CAS  Google Scholar 

  • Skapek, S.X., Rhee, J., Spicer, D.B., and Lassar, A.B. 1995. Inhibition of myogenic differentiation in proliferating myoblasts by cyclin D1-dependent kinase. Science 267: 1022–1024.

    PubMed  CAS  Google Scholar 

  • Skapek, S.X., Rhee, J., Kim, P.S., Novitch, B.G., and Lassar, A.B. 1996. Cyclin-mediated inhibition of muscle gene expression via a mechanism that is independent of pRB hyperphosphorylation. Mol Cell Biol 16: 7043–7053.

    PubMed  CAS  Google Scholar 

  • Skaper, S.D., Kee, W.J., Facci, L., Macdonald, G., Doherty, P., and Walsh, F.S. 2000. The FGFR1 inhibitor PD 173074 selectively and potently antagonizes FGF-2 neurotrophic and neurotropic effects. J Neurochem 75: 1520–1527.

    PubMed  CAS  Google Scholar 

  • Sorensen, P.H., Lynch, J.C., Qualman, S.J., Tirabosco, R., Lim, J.F., Maurer, H.M., Bridge, J.A., Crist, W.M., Triche, T.J., and Barr, F.G. 2002. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children’s oncology group. J Clin Oncol 20: 2672–2679.

    PubMed  CAS  Google Scholar 

  • Steenman, M.J., Rainier, S., Dobry, C.J., Grundy, P., Horon, I.L., and Feinberg, A.P. 1994. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms’ tumour. Nat Genet 7: 433–439.

    PubMed  CAS  Google Scholar 

  • Stewart, C.E., and Rotwein, P. 1996. Growth, differentiation, and survival: multiple physiological functions for insulin-like growth factors. Physiol Rev 76: 1005–1026.

    PubMed  CAS  Google Scholar 

  • Stiewe, T., and Putzer, B.M. 2002. Role of p73 in malignancy: tumor suppressor or oncogene? Cell Death Differ 9: 237–245.

    PubMed  CAS  Google Scholar 

  • Stoeltzing, O., Liu, W., Reinmuth, N., Fan, F., Parikh, A.A., Bucana, C.D., Evans, D.B., Semenza, G.L., and Ellis, L.M. 2003. Regulation of hypoxia-inducible factor-1alpha, vascular endothelial growth factor, and angiogenesis by an insulin-like growth factor-I receptor autocrine loop in human pancreatic cancer. Am J Pathol 163: 1001–1011.

    PubMed  CAS  Google Scholar 

  • Stone, R.M., De Angelo, J., Galinsky, I., Estey, E., Klimek, V., Grandin, W., Lebwohl, D., Yap, A., Cohen, P., Fox, E., et al. 2004. PKC 412 FLT3 inhibitor therapy in AML: results of a phase II trial. Ann Hematol 83 Suppl 1: S89–S90.

    PubMed  Google Scholar 

  • Stratton, M.R., Fisher, C., Gusterson, B.A., and Cooper, C.S. 1989. Detection of point mutations in N-ras and K-ras genes of human embryonal rhabdomyosarcomas using oligonucleotide probes and the polymerase chain reaction. Cancer Res 49: 6324–6327.

    PubMed  CAS  Google Scholar 

  • Takahashi, Y., Oda, Y., Kawaguchi, K., Tamiya, S., Yamamoto, H., Suita, S., and Tsuneyoshi, M. 2004. Altered expression and molecular abnormalities of cell-cycle-regulatory proteins in rhabdomyosarcoma. Mod Pathol 17: 660–669.

    PubMed  CAS  Google Scholar 

  • Taulli, R., Scuoppo, C., Bersani, F., Accornero, P., Forni, P.E., Miretti, S., Grinza, A., Allegra, P., Schmitt-Ney, M., Crepaldi, T., et al. 2006. Validation of met as a therapeutic target in alveolar and embryonal rhabdomyosarcoma. Cancer Res 66: 4742–4749.

    PubMed  CAS  Google Scholar 

  • Taylor, A.C., Shu, L., Danks, M.K., Poquette, C.A., Shetty, S., Thayer, M.J., Houghton, P.J., and Harris, L.C. 2000. P53 mutation and MDM2 amplification frequency in pediatric rhabdomyosarcoma tumors and cell lines. Med Pediatr Oncol 35: 96–103.

    PubMed  CAS  Google Scholar 

  • Thimmaiah, K.N., Easton, J., Huang, S., Veverka, K.A., Germain, G.S., Harwood, F.C., and Houghton, P.J. 2003. Insulin-like growth factor I-mediated protection from rapamycin-induced apoptosis is independent of Ras-Erk1-Erk2 and phosphatidylinositol 3′-kinase-Akt signaling pathways. Cancer Res 63: 364–374.

    PubMed  CAS  Google Scholar 

  • Tiffin, N., Williams, R.D., Shipley, J., and Pritchard-Jones, K. 2003. PAX7 expression in embryonal rhabdomyosarcoma suggests an origin in muscle satellite cells. Br J Cancer 89: 327–332.

    PubMed  CAS  Google Scholar 

  • Tomescu, O., Xia, S.J., Strezlecki, D., Bennicelli, J.L., Ginsberg, J., Pawel, B., and Barr, F.G. 2004. Inducible short-term and stable long-term cell culture systems reveal that the PAX3-FKHR fusion oncoprotein regulates CXCR4, PAX3, and PAX7 expression. Lab Invest 84: 1060–1070.

    PubMed  CAS  Google Scholar 

  • Tonelli, R., Purgato, S., Camerin, C., Fronza, R., Bologna, F., Alboresi, S., Franzoni, M., Corradini, R., Sforza, S., Faccini, A., et al. 2005. Anti-gene peptide nucleic acid specifically inhibits MYCN expression in human neuroblastoma cells leading to cell growth inhibition and apoptosis. Mol Cancer Ther 4: 779–786.

    PubMed  CAS  Google Scholar 

  • Tostar, U., Malm, C.J., Meis-Kindblom, J.M., Kindblom, L.G., Toftgard, R., and Unden, A.B. 2006. Deregulation of the hedgehog signalling pathway: a possible role for the PTCH and SUFU genes in human rhabdomyoma and rhabdomyosarcoma development. J Pathol 208: 17–25.

    PubMed  CAS  Google Scholar 

  • Tovar, C., Rosinski, J., Filipovic, Z., Higgins, B., Kolinsky, K., Hilton, H., Zhao, X., Vu, B.T., Qing, W., Packman, K., et al. 2006. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci USA 103: 1888–1893.

    PubMed  CAS  Google Scholar 

  • Tsutsumi, N., Yonemitsu, Y., Shikada, Y., Onimaru, M., Tanii, M., Okano, S., Kaneko, K., Hasegawa, M., Hashizume, M., Maehara, Y., et al. 2004. Essential role of PDGFRalpha-p70S6K signaling in mesenchymal cells during therapeutic and tumor angiogenesis in vivo: role of PDGFRalpha during angiogenesis. Circ Res 94: 1186–1194.

    PubMed  CAS  Google Scholar 

  • Vassilev, L.T. 2007. MDM2 inhibitors for cancer therapy. Trends Mol Med 13: 23–31.

    PubMed  CAS  Google Scholar 

  • Vogelstein, B., Lane, D., and Levine, A.J. 2000. Surfing the p53 network. Nature 408: 307–310.

    PubMed  CAS  Google Scholar 

  • Wachtel, M., Dettling, M., Koscielniak, E., Stegmaier, S., Treuner, J., Simon-Klingenstein, K., Buhlmann, P., Niggli, F.K., and Schafer, B.W. 2004. Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res 64: 5539–5545.

    PubMed  CAS  Google Scholar 

  • Wang, W., Kumar, P., Wang, W., Epstein, J., Helman, L., Moore, J.V., and Kumar, S. 1998. Insulin-like growth factor II and PAX3-FKHR cooperate in the oncogenesis of rhabdomyosarcoma. Cancer Res 58: 4426–4433.

    PubMed  CAS  Google Scholar 

  • Wang, X., Le, P., Liang, C., Chan, J., Kiewlich, D., Miller, T., Harris, D., Sun, L., Rice, A., Vasile, S., et al. 2003. Potent and selective inhibitors of the Met [hepatocyte growth factor/scatter factor (HGF/SF) receptor] tyrosine kinase block HGF/SF-induced tumor cell growth and invasion. Mol Cancer Ther 2: 1085–1092.

    PubMed  CAS  Google Scholar 

  • Wang, Y., Hailey, J., Williams, D., Wang, Y., Lipari, P., Malkowski, M., Wang, X., Xie, L., Li, G., Saha, D., et al. 2005. Inhibition of insulin-like growth factor-I receptor (IGF-IR) signaling and tumor cell growth by a fully human neutralizing anti-IGF-IR antibody. Mol Cancer Ther 4: 1214–1221.

    PubMed  CAS  Google Scholar 

  • Wedge, S.R., Kendrew, J., Hennequin, L.F., Valentine, P.J., Barry, S.T., Brave, S.R., Smith, N.R., James, N.H., Dukes, M., Curwen, J.O., et al. 2005. AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res 65: 4389–4400.

    PubMed  CAS  Google Scholar 

  • Weinstein, I.B., and Joe, A.K. 2006. Mechanisms of disease: oncogene addiction – a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol 3: 448–457.

    PubMed  CAS  Google Scholar 

  • Weksberg, R., Teshima, I., Williams, B.R., Greenberg, C.R., Pueschel, S.M., Chernos, J.E., Fowlow, S.B., Hoyme, E., Anderson, I.J., Whiteman, D.A., et al. 1993. Molecular characterization of cytogenetic alterations associated with the Beckwith–Wiedemann syndrome (BWS) phenotype refines the localization and suggests the gene for BWS is imprinted. Hum Mol Genet 2: 549–556.

    PubMed  CAS  Google Scholar 

  • Williams, J.A., Guicherit, O.M., Zaharian, B.I., Xu, Y., Chai, L., Wichterle, H., Kon, C., Gatchalian, C., Porter, J.A., Rubin, L.L., et al. 2003. Identification of a small molecule inhibitor of the hedgehog signaling pathway: effects on basal cell carcinoma-like lesions. Proc Natl Acad Sci USA 100: 4616–4621.

    PubMed  CAS  Google Scholar 

  • Williamson, D., Lu, Y.J., Gordon, T., Sciot, R., Kelsey, A., Fisher, C., Poremba, C., Anderson, J., Pritchard-Jones, K., and Shipley, J. 2005. Relationship between MYCN copy number and expression in rhabdomyosarcomas and correlation with adverse prognosis in the alveolar subtype. J Clin Oncol 23: 880–888.

    PubMed  CAS  Google Scholar 

  • Williamson, D., Selfe, J., Gordon, T., Lu, Y.J., Pritchard-Jones, K., Murai, K., Jones, P., Workman, P., and Shipley, J. 2007. Role for amplification and expression of glypican-5 in rhabdomyosarcoma. Cancer Res 67: 57–65.

    PubMed  CAS  Google Scholar 

  • Wittman, M.D., Balasubramanian, B., Stoffan, K., Velaparthi, U., Liu, P., Krishnanathan, S., Carboni, J., Li, A., Greer, A., Attar, R., et al. 2007. Novel 1H-(benzimidazol-2-yl)-1H-pyridin-2-one inhibitors of insulin-like growth factor I (IGF-1R) kinase. Bioorg Med Chem Lett 17: 974–977.

    PubMed  CAS  Google Scholar 

  • Yang, Y., Hoeflich, A., Butenandt, O., and Kiess, W. 1996. Opposite regulation of IGF-I and IGF-I receptor mRNA and concomitant changes of GH receptor and IGF-II/M6P receptor mRNA in human IM-9 lymphoblasts. Biochim Biophys Acta 1310: 317–324.

    PubMed  Google Scholar 

  • Yoo, C.B., and Jones, P.A. 2006. Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 5: 37–50.

    PubMed  CAS  Google Scholar 

  • Yu, Y., Davicioni, E., Triche, T.J., and Merlino, G. 2006. The homeoprotein six1 transcriptionally activates multiple protumorigenic genes but requires ezrin to promote metastasis. Cancer Res 66: 1982–1989.

    PubMed  CAS  Google Scholar 

  • Zaika, A.I., Slade, N., Erster, S.H., Sansome, C., Joseph, T.W., Pearl, M., Chalas, E., and Moll, U.M. 2002. DeltaNp73, a dominant-negative inhibitor of wild-type p53 and TAp73, is up-regulated in human tumors. J Exp Med 196: 765–780.

    PubMed  CAS  Google Scholar 

  • Zhan, S., Shapiro, D.N., and Helman, L.J. 1994. Activation of an imprinted allele of the insulin-like growth factor II gene implicated in rhabdomyosarcoma. J Clin Invest 94: 445–448.

    PubMed  CAS  Google Scholar 

  • Zhang, L., and Wang, C. 2003. PAX3-FKHR transformation increases 26S proteasome-dependent degradation of p27Kip1, a potential role for elevated Skp2 expression. J Biol Chem 278: 27–36.

    PubMed  CAS  Google Scholar 

  • Zhang, L., Kashanchi, F., Zhan, Q., Zhan, S., Brady, J.N., Fornace, A.J., Seth, P., and Helman, L.J. 1996. Regulation of insulin-like growth factor II P3 promotor by p53: a potential mechanism for tumorigenesis. Cancer Res 56: 1367–1373.

    PubMed  CAS  Google Scholar 

  • Zhang, L., Zhan, Q., Zhan, S., Kashanchi, F., Fornace, A.J., Jr., Seth, P., and Helman, L.J. 1998a. p53 regulates human insulin-like growth factor II gene expression through active P4 promoter in rhabdomyosarcoma cells. DNA Cell Biol 17: 125–131.

    PubMed  Google Scholar 

  • Zhang, L., Zhan, S., Navid, F., Li, Q., Choi, Y.H., Kim, M., Seth, P., and Helman, L.J. 1998b. AP-2 may contribute to IGF-II overexpression in rhabdomyosarcoma. Oncogene 17: 1261–1270.

    PubMed  CAS  Google Scholar 

  • Zhang, J.M., Wei, Q., Zhao, X., and Paterson, B.M. 1999. Coupling of the cell cycle and myogenesis through the cyclin D1-dependent interaction of MyoD with cdk4. EMBO J 18: 926–933.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Original work reported here was supported by PHS awards CA23099, CA96696, CA77776, and CA21675 (Cancer Center Support Grant), and by ALSAC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Houghton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kurmasheva, R.T., Hosoi, H., Kikuchi, K., Houghton, P.J. (2010). Molecular Therapy for Rhabdomyosarcoma. In: Houghton, P., Arceci, R. (eds) Molecularly Targeted Therapy for Childhood Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69062-9_20

Download citation

Publish with us

Policies and ethics