Molecular Targeted Therapy for Wilms’ Tumor

  • James I. Geller
  • Jeffrey S. DomeEmail author


Wilms’ tumor (nephroblastoma, WT) is the most common pediatric primary renal malignancy, originating from aberrant differentiation of a pluripotent renal stem cell derived from embryogenic metanephric blastema (Beckwith et al. 1990). In the United States, WT has an annual incidence of 7.6 cases per million children, with approximately 500 new cases diagnosed each year, accounting for 6% of all childhood cancers (Bernstein et al. 1999). The incidence rate is slightly higher in girls (female:male is 1.09), is slightly higher in black children, and significantly lower in Asian children (Dome et al. 2006a). Over 77% of WT patients are diagnosed prior to age 5, with girls and boys presenting at a median age of 3 and 2 years, respectively (Pastore et al. 2006).


Vascular Endothelial Growth Factor Hepatocyte Growth Factor Antimitotic Agent Favorable Histology Anaplastic Histology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alami J, Williams BR, Yeger H (2003a) Differential expression of E-cadherin and beta catein in primary and metastatic Wilms tumours. Mol Pathol 56:218–225.PubMedCrossRefGoogle Scholar
  2. Alami J, Williams Br, Yeger H (2003b) Derivation and characterization of a Wilms tumor cell line, WiT 49. Int J Cancer 107:365–374.PubMedCrossRefGoogle Scholar
  3. Alami J, Williams BR, Yeger H (2002) Expression and localization of HGF and met in Wilms’ tumours. J Pathol 196:76–84.PubMedCrossRefGoogle Scholar
  4. Alger EM, Heaps L, Darmanian A, Dagar V, Prawitt D, Peter GB, et al. (2007) Paternally inherited submicroscopic dupliction at 11p15.5 implicated insulin-like growth factor II in overgrowth and Wilms tumorigenesis. Cancer Res 67:2360–2363.CrossRefGoogle Scholar
  5. Arcellana-Panlilio MY, Egeler RM, Ujack E, Pinto A, Demetrick DJ, Robbins SM, et al. (2000) Decreased expression of the INK4 family of cyclin-dependent kinase inhibitor in Wilms tumor. Genes Chromosomes Can 29:63–69.CrossRefGoogle Scholar
  6. Bardeesy N, Beckwith B, Pelletier J ( 1995) Clonal expansion and attenuated apoptosis in Wilms tumors are associated with p53 gene mutations. Cancer Res 55:215–219.PubMedGoogle Scholar
  7. Barker N, Clevers H (2006) Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov 5:997–1014.PubMedCrossRefGoogle Scholar
  8. Baudry D, Faussillin M, Cabanis MO, Rigolet M, Zucker JM, Patte C, et al. (2002) Changes in WT1 splicing are associated with a specific gene expression profile in Wilms tumour. Oncogene 36:5566–5573.CrossRefGoogle Scholar
  9. Baudry D, Hamelin M, Cabanis M, Fournet J, Tournade M, Sarnacki S, et al.(2000) WT1 splicing alterations in Wilms tumors. Clin Can Res 6:3957–3965.Google Scholar
  10. Beckwith JB, Kiviat NB, Bonadio JF (1990) Nephrogenic rests, nephroblastomatosis, and the pathogenesis of Wilms’ tumor. Pediatr Pathol 10:1–36.PubMedCrossRefGoogle Scholar
  11. Bernstein L, Linet M, Smith M, Olshan AF (1999) Surveillance epidemiology end results – renal tumors. Nat Can Inst 91:1382–1396.CrossRefGoogle Scholar
  12. Blann AD, Li JL, Li C, Kumar S (2001) Increased serum VEGF in 13 children with Wilms’ tumour falls after surgery but rising levels predict poor prognosis. Cancer Lett 28:183–186.CrossRefGoogle Scholar
  13. Brown KW, Shaw AP, Poirier V, Tyler SJ, Berry PJ, Mott MG, et al. (1989) Loss of chromosome 11p alleles I cultured cell derived from Wilms tumors. Br J Can 60:25–29.CrossRefGoogle Scholar
  14. Camassei FD, Arancia G, Cianfriglia M, Bosman C, Francalanci P, Rava L, et al. (2002) Nephroblastoma: multidrug-resistance P-glycoprotein expression in tumor cells and intratumoral capillary endothelial cells. Am J Clin Pathol 117:484–490.PubMedCrossRefGoogle Scholar
  15. Christensen JG, Burrows J, Salgia R (2005) c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett 8:1–26.CrossRefGoogle Scholar
  16. Cooper WN, Luharia A, Evans GA, Raza H, Haire AC, Grundy R, et al. (2005) Molecular subtypes an dphenotypic expression of Beckwith-Wiedeman syndrome. Eur J Hum Genet 13:1025–1032.PubMedCrossRefGoogle Scholar
  17. Daw NC, Furman WL, Stewart CF, Iacono LC, Krailo M, Bernstein ML, et al. (2005) Children’s Oncology Group Study. J Clin Oncol 23:6172–6180.PubMedCrossRefGoogle Scholar
  18. DeAlmeida VI, Miao L, Ernst JA, Koeppen H, Polakis P, Rubinfeld B (2007) The soluble wnt receptor Frizzled8CRD-hFc inhibits the growth of teratocarcinomas in vivo. Cancer Res 1:5371–5379.CrossRefGoogle Scholar
  19. Desbois-Mouthon C, Cadoret A, Vlivet-Van Eggelpoel M-J, Bertrand F, Cherqui G, Perret C, et al. (2001) Insulin and IGF-1 stimulate the b-catenin pathway through two signalling cascades involving GSK-3b inhibition and Ras activation. Oncogene 20:252–9.PubMedCrossRefGoogle Scholar
  20. Diller L, Ghahremani M, Morgan J, Grundy P, Reeves C, Breslow N, et al. (1998) Constitutional WT1 mutations in Wilms tumor patients. J Clin Oncol 16:3634–3640.PubMedGoogle Scholar
  21. Dome JS, Perlman EJ, Ritchey ML, et al. (2006a) Renal Tumors. In Principles and Practice of Pediatric Oncology 5th Ed., Poplack DG and Pizzo PA (eds), p 904. Philadelphia: Lippincott Williams and Wilkins.Google Scholar
  22. Dome J, Cotton C, Perlman E, Breslow N, Kalapurakal J, Ritchey M, et al. (2006b) Treatment of anaplastic histology Wilms’ tumor: results from the fifth national Wilms’ tumor study. J Clin Oncol 24:2352–2358.PubMedCrossRefGoogle Scholar
  23. Donovan MJ, Hempstead B, Huber LJ, Kaplan D, Tsoulfas P, Chao M, et al. (1994) Identification of the neurotrophin receptors p75 and trk in a series of Wilms’ tumors. Am J Pathol 145:792–801.PubMedGoogle Scholar
  24. Drummond IA, Madden SL, Rohwer-Nutter P, Bell GI, Sukhatme VP, Rauscher FJ 3 rd (1992) Repression of the insulin-like growth factor II gene by the Wilms tumor suppressor WT1. Science 31:674–678.CrossRefGoogle Scholar
  25. Efferth T, Schulten HG, Thelen P, Bode ME, Beniers AJ, Granzen B, et al. (2001a) Differential expression of the heat shock protein 70 in the histological compartments of nephroblastomas. Anticancer Res 21:2915–2920.PubMedGoogle Scholar
  26. Efferth T, Thelen P, Schulten HG, Bode ME, Granzen B, Benier AJ, et al. (2001b) Differential expression of the multirug resistance-related proteins MRP1 in the histological compartments of nephroblastomas. Int J Oncol 19:367–371.PubMedGoogle Scholar
  27. Eggert A, Grotzer MA, Ikegaki N, Zhao H, Cnaan A, Brodeur GM, et al.(2001) Expression of the neurotrophin receptor TrkB is associated with unfavorable outcome in Wilms’ tumor. J Clin Oncol 1:689–696.Google Scholar
  28. Eguchi M, Nguyen C, Lee SC, Kahn M (2005) ICG-001, a novel small moleculre regulator of TCF/beta-catenin transcription. Med Chem 1:467–472.PubMedCrossRefGoogle Scholar
  29. Ehrlich M, Hopkins NE, Jiang G, Dome JS, Yu MC, Woods CB, et al. (2003) Satellite DNA hypomethylation in karyotyped Wilms tumors. Can Genet Cytogenet 141:97–105.CrossRefGoogle Scholar
  30. Ehrlich M, Jiang G, Fiala E, Dome JS, Yu MC, Long TI, et al. (2002) Hypomethylation and hypermethylation of DNA in Wilms tumors. Oncogene 26:6694–6702.CrossRefGoogle Scholar
  31. Emami KH, Nguyen C, Ma H, Kim DH, Jeong KW, Eguchi M, et al. (2004) A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc Natl Acad Sci USA 101:12682–12687.PubMedCrossRefGoogle Scholar
  32. Englert C, Hou X, Maheswaran S, Bennett P, Ngwu C, Re GG, et al. (1995) WT1 suppresses synthesis of the epidermal growth factor receptor and induces apoptosis. EMBO J 14:4662–4675.PubMedGoogle Scholar
  33. Englert C, Maheswaran S, Garvin AJ, Kreidberg J, Haber DA (1997) Induction of p21 by the Wilms’ tumor suppressor gene WT1. Cancer Res 15:1429–1434.Google Scholar
  34. Faussillon M, Moonier L, Junien C, Jeanpierre C (2005) Frequent overexpression of cyclin D2/cyclin-dependent kinase 4 in Wilms tumor. Cancer Lett 18:67–75.CrossRefGoogle Scholar
  35. Fernandeaz CV, Lestou VS, Wildish J, Lee CI Soreansen PH (2001) Detection of a novel t(6;15)(q21;q21) in a pediatric Wilms tumor. Canr Genet Cytogenet 129:165–167.CrossRefGoogle Scholar
  36. Fouladi M, Furman WL, Chin T, Freeman BB 3rd, Dudkin L, et al. (2006) Phase I study of depsipeptide in pediatric patients with refractory solid tumors: a Children’s Oncology Group report. J Clin Oncol 1:3678–3685.CrossRefGoogle Scholar
  37. Frischer JS, Huang J, Serur A, Kadenhe-Chiweshe A, McCrudden KW, O’Toole K, et al. (2004) Effects of potent VEGF blockade on experimental Wilms tumor and its persisting vasculature. Int J Oncol 25:549–553.PubMedGoogle Scholar
  38. Fukuzawa R, Heathcott RW, Sano M, Morison IM, Yun K, Reeve AE (2004) Myogenesis in Wilms tumors is associated with mutations of the WT1 gene and activation of Bel-2 and the Wnt signaling pathway. Pediatr Dev Pathol 7:668–669.CrossRefGoogle Scholar
  39. Gansler T, Allen KD, Burant CF, Inabnett T, Scott A, Buse MG, et al. (1988) Detection of type 1insuline-like growth factor (IGF) receptors in Wilms tumors. Am J Pathol 130:431–435.PubMedGoogle Scholar
  40. Gansler T, Furlanetto R, Gramling TS, Robinson KA, Blocker N, Buse MG, et al. (1989) Antibody to type I insulinlike growth factor receptor inhibits growth of Wilms’ tumor in culture and athymic mice. Am J of Path 135:961–966.Google Scholar
  41. Garvin AJ, Re GG, Tarnowski Bi, Hazen-Martin DJ, Sens DA (1993) The G401 cell line utilized for studies of chromosomal changes in Wilms tumor, is derived from a rhabdiod tumor of the kidney. Am J Pathol 142:375–380.PubMedGoogle Scholar
  42. Garvin AJ, Sullivan JL, Bennett DD, Stanley WS, Inabnett T, Sens DA (1987) The in vitro growth, heterotransplantation and immonohistochemical characterization of the blastemal component of Wilms Tumor. Am J Pathol 129:353–363.PubMedGoogle Scholar
  43. Garvin AJ, Surrette F, Hintz DS, Rudisill MT, Sens MA, Sens DA (1985) The in vitro growth and charaterization of the skeletal muscle component of Wilms tumor. Am J Pathol 121:298–310.PubMedGoogle Scholar
  44. Gessler M, Konig A, Arden K, Grundy P, Orkin S, Sallan S, et al. (1994) Infrequent mutation of the WTI gene in 77 Wilms Tumors. Hum Mutat 3:212–222.PubMedCrossRefGoogle Scholar
  45. Ghanem MA, Van Der Kwast TH, Den Hollander JC, Sudaryo MK, Mathoera RB, Van den Heuvel MM, et al. (2001a) Expression and prognostic value of epidermal growth factor receptor, transforming growth factor-alpha, and c-erb B-2 in nephroblastoma. Cancer 15;92(12):3120–3129.CrossRefGoogle Scholar
  46. Ghanem MA, Van der Kwast TH, Den Hollander JC, Sudaryo MK, Van den Heuvel MM, Noordzij MA, et al. (2001b) The prognostic significance of apoptosis-associated proteins BCL-2, BAX and BCL-X in clinical nephroblastoma. Br J Can 16:1557–1563.CrossRefGoogle Scholar
  47. Ghanem MA, van Steenbrugge GJ, Sudary MK, Mathoera RB, Nijman JM, van der Kwast TH (2003) Expression and prognostic relevance of vascular endothelial growth factor (VEGF) and its receptor (FLT-1) in nephroblastoma. J Clin Pathol 56:107–113.PubMedCrossRefGoogle Scholar
  48. Graham C, Tucker C, Creech J, Favours E, Billups CA, Liu T, et al. (2006) Evaluation of the antitumor efficacy, pharmacokinetics, and pharmacodynamics of the histone deacetylase inhibitor depsipeptide in childhood cancer models in vivo. Clin Can Res 1:223–234.CrossRefGoogle Scholar
  49. Green D (2004) The treatment of stages I-IV favorable histology Wilms tumor. J of Clin Oncol 22(8):1366–72.CrossRefGoogle Scholar
  50. Grundy P, Telzerow P, Breslow N, Moksness J, Huff V, Paterson M, et al. (1994) Loss of heterozygosity for chromosomes 16q and 1 p in Wilms tumors predicts an adverse outcome. Cancer Res 54:2331–2333.PubMedGoogle Scholar
  51. Grundy P, Telzerow P, Moksness J, Beslow NE (1996) Clinicopathologic correlates of loss of heterozygosity in Wilms tumor: a preliminary analysis. Med Pediatr Oncol 27:429–433.PubMedCrossRefGoogle Scholar
  52. Grundy PE, Breslow NE, LI S, Perlman E, Beckwith JB, Ritchey ML, et al. (2005) Loss of heterozygosity for chromosomes 1p and 16q is an adverse prognostic factor in favorable-histology Wilms tumor: a report from the National Wilms Tumor Study Group. J Clin Oncol 23:7312–7321.PubMedCrossRefGoogle Scholar
  53. Hancock AL, Brown KW, Moorewood K, Moon H, Holmgren C, Mardikar SH, et al. (2007) A CTCF-binding silencer regulates the imprinted genes AWT1 and exjobots seqiemtoa; epigenetic defects during Wilms Tumorigenesis. Hum Mol Genet 1:343–354.Google Scholar
  54. Herbst A, Koligs FT (2007) Wnt signaling as a therapeutic target for cancer. Meth in Mol Biol 361:63–91.Google Scholar
  55. Houghton PJ, Maris JM, Courtright J, Friedman HS, Keir ST, Lock RB, et al. (2007b) Initial Testing of the Histone Deacetylase Inhibitor Vorinostat by the Pediatric Preclinical Testing Program. Proceedings of the American Association for Cancer Research Annual Meeting 48:126, Apr 2007. (Abstract C226).Google Scholar
  56. Houghton PJ, Maris JM, Courtright J, Friedman HS, Keir ST, Lock RB, et al. (2007e) Pediatric preclinical testing program (PPTP) evaluation of the EGFR and ErbB2 inhibitor Lapatinib. Proceedings of the American Association for Cancer Research Annual Meeting 48:126, Apr 2007. (Abstract B118).Google Scholar
  57. Houghton PJ, Maris JM, Friedman HS, Keir ST, Lock RB, Carol H, et al. (2007d) Pediatric preclinical testing program (PPTP) evaluation of the multi-targeted kinase inhibitor Sunitinib. Proceedings of the American Association for Cancer Research Annual Meeting 48:126, Apr 2007. (Abstract 527).Google Scholar
  58. Houghton PJ, Maris JM, Friedman HS, Keir ST, Lock RB, Carol H, et al. (2007f) Pediatric preclinical testing program (PPTP) evaluation of the fully human anti-IGF-1R Antibody SCH 717454. (Abstract A212).Google Scholar
  59. Houghton PJ, Maris JM, Friedman HS, Keir ST, Lock RB, Gorlick R, et al. (2006) Pediatric preclinical testing program (PPTP) evaluation of the KSP inhibitor ispinesib (SB-715992). European Journal of Cancer Supplements 4(12):98. (Abstract 313).CrossRefGoogle Scholar
  60. Houghton PJ, Morton CL, Kolb EA, Gorlick R, Lock R, Carol H, et al.(2007c) Initial testing (stage 1) of the mTOR inhibitor rapamycin by the pediatric preclinial testing program. Ped Blood Can [Epub ahead of print].Google Scholar
  61. Houghton PJ, Morton CL, Kolb EA, Lock R, Carol H, Reynolds CP, et al. (2008) Initial testing (stage 1) of the proteasome inhibitor bortezomib by the pediatric preclinical testing program. Ped Blood Can 50:37–45.CrossRefGoogle Scholar
  62. Houghton PJ, Morton CL, Tucker C, Payne D, Favours E, Cole C, et al. (2007a) The pediatric preclinical testing program: description of models and early testing results. Ped Blood Can 49:928–940.CrossRefGoogle Scholar
  63. Huang J, Frischer JS, New T, Kim ES, Serur A, Lee A, et al. (2004) TNP-470 promotes initial vascular sprouting in xenograft tumors. Mol Cancer Ther 3:335–343.PubMedGoogle Scholar
  64. Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, et al. (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 31:2271–81.CrossRefGoogle Scholar
  65. Karth J, Ferrer FA, Perlman E, Hanrahan C, Simons JW, Gearhart JP, et al. (2000) Coexpression of hypoxia-inducible factor 1-alpha and vascular endothelial growth factor in Wilms’ tumor. J Pediatr Surg 35:1749–1753.PubMedCrossRefGoogle Scholar
  66. Katoh M (2007) Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling pathways during carcinogenesis. Stem Cell Rev 3:30–38.PubMedCrossRefGoogle Scholar
  67. Knudson AG, Strong LL (1972) Mutation and cancer: a model for Wilms’ tumor of the kidney. J Natl Can Inst 48: 313–234.Google Scholar
  68. Koesters R, Niggli F, von Knebel Doeberitz M, Stallmach T (2003) Nuclear accumulation of beta-catenin protein in Wilms’ tumours. J Pathol 1:68–76.CrossRefGoogle Scholar
  69. Koesters R, Ridder R, Kopp-Schneider A, Betts D, Adams V, Niggli F, et al. (1996) Mutational activation of the B-Catenin proto-oncogene is a common event in the development of Wilms tumors. Cancer Res 59:3880–3882.Google Scholar
  70. Kolb EA, Gorlick R, Houghton PJ, Morton CL, Lock RB, Tajbakhsh M, et al. (2007) Initial testing of dasatinib by the pediatric preclinical testing program. Ped Blood Can [Epub ahead of print].Google Scholar
  71. Koufos A, Grundy P, Morgan K, Aleck KA, Hadro T, Lampkin BC, et al. (1989) Familial Weidemann-Beckwith syndrome and a second Wilms tumor locus both map to 11p15.5. Am J Hum Genet 44:711–719.PubMedGoogle Scholar
  72. Kudoh T., Ishidate T., Moriyama M., Toyoshima K., Akiyama T. (1995) G1 phase arrest induced by Wilms tumor protein WT1 is abrogated by cyclin/CDK complexes. Proc Natl Acad Sci USA 92:4517–4521.PubMedCrossRefGoogle Scholar
  73. Kumar S, Harrison CJ, Heighway J, Marsden HB, West DC, Jones PM (1987) A cell line from Wilms tumor with deletion in short arm of chromosome II. Int J Cancer 15:499–504.CrossRefGoogle Scholar
  74. Kurmasheva RT, Houghton PJ (2006) IGF-I mediated survival pathways in normal and malignant cells. Biochim Biophy Acta 1766:1–22.Google Scholar
  75. Lepourcelet M, Chen YN, France DS, Wang H, Crews P, Peterson F (2004) Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell 5:91–102.PubMedCrossRefGoogle Scholar
  76. Li C, Kim C, Margolin A, Guo M, Zhu J (2004) CTNNB1 Mutations and Overexpression of Wnt/B-Catenin Target Genes in WT1-Mutant Wilms Tumors. Am J Pathol 165: 1943–1953.PubMedCrossRefGoogle Scholar
  77. Li W, Kessler P, Yeger H, Alami J, Reeve AE, Heathcott R, Skeen J, et al. (2005) A gene expression signature for relapse of primary wilms tumors. Cancer Res 65:2592–2601.PubMedCrossRefGoogle Scholar
  78. Lin RY, Argenta PA, Sullivan KM, Adzick NS (1995) Diagnostic and prognostic role of basic fibroblast growth factor in Wilms’ tumor patients. Clin Cancer Res 1:327–331.PubMedGoogle Scholar
  79. Liu XW, Gong LJ, Guo LY, Katagiri Y, Jiang H, Wang ZY, et al.(2000) The Wilms’ tumor gene product WT1 mediates the down-regulation of the rat epidermal growth factor receptor by nerve growth factor in PC12 cells. J Biol Chem 16:5068–5073.Google Scholar
  80. Ma H, Nguyen C, Lee KS, Kahn M (2005) ICG-001, a novel small molecule regulator of TCF/beta-catenin transcription. Med Chem 1(5):467–72.CrossRefGoogle Scholar
  81. Maheswaran S, Englert C, Zheng G, Lee SB, Wong J, Harkin DP, et al. (1998) Inhibition of cellular proliferation by the Wilms tumor suppressor WT1 requires association with the inducible chaperone Hsp70. Genes Dev 15:1108–1120.CrossRefGoogle Scholar
  82. Maiti S, Alam R, Amos C, Huff V (2000) Frequent association of B-catenin and WT1 Mutations in Wilms tumors. Cancer Res 60:6288–6292.PubMedGoogle Scholar
  83. Major MB, Camp ND, Berndt JD, Yi X, Goldenberg SJ, Hubbert C (2007) Wilms tumor suppressor WTX negatively regulates WNT/beta-catenin signaling. Science 316:1043–1046.PubMedCrossRefGoogle Scholar
  84. Maris JM, Courtright J, Houghton PJ, Morton CL, Gorlick R, Kolb EA, et al. (2007) Initial testing of the VEGFR inhibitor AZD2171 by the pediatric preclinical testing program. Ped Blood Can [Epub ahead of print].Google Scholar
  85. McDonald JM, Douglass EC, Fisher R, Geiser Cf, Krill CE, Strong LC, et al. (1998) Linkage of familial Wilms tumor predisposition to chromosome 19 and two-locus model for the etiology of familial tumors. Cancer Res 1:1387–1390.Google Scholar
  86. Metzger ML, Dome JS (2005) Current therapy for Wilms’ tumor. Oncologist 10:815–826.PubMedCrossRefGoogle Scholar
  87. Miliaras D, Karasavvidou F, Papanikolaou A, Sioutopoulou D (2004) KIT expression in fetal, normal adult, and neoplastic renal tissues. J Clin Pathol 57:463–466.PubMedCrossRefGoogle Scholar
  88. Miller MA, Karacay B, Breslow NE, Li S, O’Dorisio MS, Grundy PE, Sandler AD (2005) Prognostic value of quantifying apoptosis factor expression in favorable histology wilms tumors. J Pediatr Hematol 27:11–14.CrossRefGoogle Scholar
  89. Morris MR, Hesson LB, Wagner KL, Morgan NV, Astuti D, Lees RD, et al. (2003) Muligene methylation analysis of Wilms tumour and adult renal cell carcinoma. Oncogene 22:6794–6801.PubMedCrossRefGoogle Scholar
  90. Morrison DJ, English MA, Licht JD (2005) WT1 induces apoptosis through transcriptional regulation of the proapoptotic Bel-2 family member Bak. Cancer Res 15:8174–8182.CrossRefGoogle Scholar
  91. Morton CL, Favours EG, Mercer KS, Boltz CR, Crumpton JC, Tucker C, et al. (2007) Evaluation of ABT-751 against childhood cancer models in vivo. Invest New Drugs 25:285–295.PubMedCrossRefGoogle Scholar
  92. Moulton T, Crenshaw T, Hao Y, Moosikauwan J, Lin N, Demitzer F, et al. (1994) Epigenetic lesions at the H19 locus in Wilms tumour patients. Nat Genet 7:440–447.PubMedCrossRefGoogle Scholar
  93. Mummert SK, Lobanenkov VA, Feinberg AP (2005) Association of chromosome arm 16q loss with loss of imprinting of insulin-like growth factor-II in Wilms tumor. Genes Chromosomes Can 43:155–161.CrossRefGoogle Scholar
  94. Natrajan R, Little S, Reis-Filho J, Hing L, Messahel B, Grundy P, et al. (2006a) Amplification and overexpression of cacna1e correlates with relapse in favorable histology Wilms tumors. Clin Can Res 12:7284–7293.CrossRefGoogle Scholar
  95. Natrajan R, little SE, Sodha N, Reis-Filho JS, Mackay A, Fenwick K et al. (2007c) Analysis by array CGH of genomic changes associated with the progression or relapse of Wilms tumor. J Pathol 21:52–59.CrossRefGoogle Scholar
  96. Natrajan R, Reis-Filho JS, Little SE, Messahel B, Brundler MA, Dome JS, et al. (2006b) Blastemal expression of type I insulin-like growth factor receptor in Wilms’ tumors is driven by increased copy number and correlates with relapse. Cancer Res 66: 11148–55.PubMedCrossRefGoogle Scholar
  97. Natrajan R, Warren W, Messahel B, Reis-Filho JS, Brundler MA, Dome JS, et al. (2007b) Complex patterns of chromosome 9 alterations including the p16INK4A locus in Wilms tumours. J Clin Pathol 10:1–20.Google Scholar
  98. Natrajan R, Williams RD, Grigoriadis A, Mackay A, Fenwick K, Ashworth A, et al. (2007a) Delineation of a 1 MB breakpoint region at 1p13 in Wilms tumor by fine –tilling oligonucleotide array CGH. Genes Chromosome Can 46:607–615.CrossRefGoogle Scholar
  99. Nowicki M, Ostalska-Nowicka D, Kaczmarek M, Miskowiak B Witt M (2007) The significance of VEGF-C/VEGFR-2 interaction in the neovascularization and prognosis of nephroblastoma (Wilms’ tumour). Histopathology 50:358–364.PubMedCrossRefGoogle Scholar
  100. Nusse R (2007) Converging on beta-catenin in Wilms tumor. Science 316:988–989.PubMedCrossRefGoogle Scholar
  101. Ogawa O, Eccles MR, Szeto J, McNoe LA, Yun K, Maw MA, et al. (1993) Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms tumour. Nature 22: 749–751.CrossRefGoogle Scholar
  102. Ohori H, Yamakoshi H, Tomizawa M, Shibuya M, Kakudo Y, Takahashi A, et al. (2006) Synthesis and biological analysis of new curcumin analogues bearing an enhanced potential for the medicinal treatment of cancer. Mol Cancer Ther 5:2563–2571.PubMedCrossRefGoogle Scholar
  103. Ozluk Y, Kilicaslan I, Gulluoglu MG, Ayan I, Uysal V (2006) The prognostic significance of angiogenesis and the effect of vascular endothelial growth factor on angiogenic process in Wilms’tumour. Pathology 38:408–414.PubMedCrossRefGoogle Scholar
  104. Park CH, Chang JY, Hahm ER, Park S, Kim HK, Yang CH (2005) Quercetin, a potent inhibitor against beta-catenin/Tcf signaling in SW480 colon cancer cells. Biochem Biophys Res Commun 328(1):227–34.PubMedCrossRefGoogle Scholar
  105. Pastore G, Znaor A, Spreafico F, Graf N, Pritchard-Jones K, Steliarova-Foucher E (2006) malignant renal tumors incidence and survival in European children (1978–1997): Report from the Automated Childhood Cancer Information System Project. European Journal of Cancer 42: 2103–2114.PubMedCrossRefGoogle Scholar
  106. Perotti D, De Vecchi G, Testi MA, Ludldi E, Modena P, Mondini P, et al. (2004) Germline mutations of the POU6F2 gene in Wilms tumors with loss of heterozygosity on chromosome 7p14. Hum Mutat 24:400–407.PubMedCrossRefGoogle Scholar
  107. Peterson JK, Tucker C, Favours E, Cheshire PJ, Creech J, Billups CA, et al. (2005) In vivo evaluation of exabepilone (BMS247550), a novel epothilone B derivative, against pediatric cancer models. Clin Cancer Res 1:6950–6958.CrossRefGoogle Scholar
  108. Ping AJ, Reeve AE, Law DJ, Young MR, Boehnke M, Feinberg AP (1989) Genetic linkage of Beckwith-Wiedemann syndrome to 11p15. Am J Hum Genet 44(5):720–723.PubMedGoogle Scholar
  109. Pinthus JH, Fridman E, Dekel B, Goldberg I, Kaufman-Francis K, Eshhar Z, et al. (2004) ErbB2 is a tumor associated antigen and a suitable therapeutic target in Wilms tumor. J Urol 172:1644–1548.PubMedCrossRefGoogle Scholar
  110. Pinthus JH, Sheffer Y, Nagler A, Fridman E, Mor Y, Genina O, et al. (2005) Inhibition of Wilms tumor xenograft progression by halofuginone is accompanied by activation of WT-1 gene expression. J Urol 174:1527–1531.PubMedCrossRefGoogle Scholar
  111. Piva R, Pellergrion E, Mattioli M, Agnelli L, Lombard L, Boccalatte F, et al. (2006) Functional validation fo the ana plastic lymphoma kinase signature identifies CEBPB and BCL2A1 as critical target genes. J Clin Invest 6:3171–3182.CrossRefGoogle Scholar
  112. Prawitt D, Enklaar T, Gartner-Rupprecht B, Spangengerg C, Oswald M, Lausch E, et al. (2005) Microdeletion of target sites for insulator protein CTCF in a chromosome 11p15 imprinting center in Beckwith-Wiedemann syndrome and Wilms’ tumor. Proc Natl Acad Sci15:4085–4090.CrossRefGoogle Scholar
  113. Pritchard-Jones K, Vujanic G (2006) Multiple Pathways to Wilms Tumor: How Much is Genetic? Ped Blood and Can 47:232–234.CrossRefGoogle Scholar
  114. Qing RQ, Schmitt S, Ruelicke T, Stallmach T, Schooenle EJ (1996) Autocrine regulation of growth by insulin-like growth factor (IFG)-II mediated by type I IGF-receptor in Wilms tumor cells. Pediatr Res 39(1):160–5.PubMedCrossRefGoogle Scholar
  115. Rahman N, Abidi F, Ford D, Arbour L, Rapley E, Tonin P, Barton D, et al. (1998) Confirmation of FWT1 as a Wilms tumour susceptibility gene and phenotypic characteristic of Wilms tumour attributable to FWT1. Hum Genet 103:547–556.PubMedCrossRefGoogle Scholar
  116. Rahman N, Arbour L, Tonic P, Renshaw J, Pelletier J, Baruchel S, Pritchard-Jones, et al. (1996) Evidence for a familial wills tumour gene (FWT1) on chromosome 17q12-q21. Nat Genet 13:461–463.Google Scholar
  117. Ramburan A, Chetty R, Hadley G P, Naidoo R, Govender D ( 2004) Microsatellite analysis of the DCC gene in nephroblastomas: pathologic correlations and prognostic implications. Mod Pathol 17: 89–95.PubMedCrossRefGoogle Scholar
  118. Ramburan A, Hadley GP, Govender D (2006) Expresson of E-cadherin, cadherin-11, alpha-, beta- and gamma-catenins in nephroblastomas: relatonship with clinicopathological parameters, prognostic factors and outcome. Pathology 38(1):39–44.PubMedCrossRefGoogle Scholar
  119. Ramburan A, Oladiran F, Smith C, Hadley GP, Goverder D (2005) Microsatellite analysis of the adenomatous polyposis coli (APC) gene and imunoexpression of beta catenin in nephroblastoma: a study including 83 cases treated with preoperative chemotherapy. J Clin Pathol 58:44–50.PubMedCrossRefGoogle Scholar
  120. Rasola A, Fassetta M, De Bacco F, D’Alessandro L, Gramaglia D, Di Renzo MF, et al. (2007) A positive feedback loop between hepatocyte growth factor receptor and beta-catenin sustains colorectal cancer cell invasive growth. Oncogene 15:1078–1087.CrossRefGoogle Scholar
  121. Ravenel J, Broman K, Perlman E, Niemitz E, Jayawardena T, Bell D, et al. (2001) Loss of imprintng of insulin-like growth factor-II (IGF2) Gene in distinguishing specific biologic subtypes of Wilms tumor. J Nat Can Inst 93:1698–1703.CrossRefGoogle Scholar
  122. Ravenel J, Perlman E, Broman K, Feinberg A (2002) Re: loss of imprinting of insulin-like growth factor-II (IGF2) gene in distinguishing specific biologic subtypes of Wilms tumor. J Nat Canr Inst 94:1809–1810.CrossRefGoogle Scholar
  123. Re GG, Hazen-Martin DJ, El Bahtimi R, Brownlee NA, Willingham MC, Garvin AJ (1999) Prognostic significance of Bcl-X(L) in rare tumor cases. Int J Cancer 20:192–200.CrossRefGoogle Scholar
  124. Rebhandl W, Handisurya A, Memaran N, Felberbauer FX, Aberle J, Paya K, et al. (2001) Expression of cytokeratin-18-related tissue polypeptide-specific (TPS) antigen in Wilms tumor. Med Pediatr Oncol 37:357–364.PubMedCrossRefGoogle Scholar
  125. Reeve AE, Eccles MR, Wilkins RJ Bell GI, Millow LJ (1985) Expression of insulin-like growth factor-II transcriptions in Wilms tumour. Nature 19:258–260.CrossRefGoogle Scholar
  126. Reidemann J, Macaulay VM (2006) IGF1R signaling and its inhibition. Endocrin-Related Cancer 13:33–43.CrossRefGoogle Scholar
  127. Rivera M, Kim WJ, Wells J, Driscoll DR, Brannigan BW, Han M, et al. (2007) An X chromosome gene, WTX is commonly inactivated in Wilms tumor. Science 315:642–645.PubMedCrossRefGoogle Scholar
  128. Safford SD, Freemerman AJ, Langdon S, Bentley R, Goyeau D, Grundy PE (2005) Decreased E-cadherin expression correlates with higher stage of Wilms’ tumors. J Pediatr Surg 40:341–348.PubMedCrossRefGoogle Scholar
  129. Salem M, Kinoshita Y, Tajiri T, Souzaki R, Tatsuta K, Higashi M, et al.(2006) Association between the HER2 expression and histological differentiation in Wilms tumor. Pediatr Surg Int (11):891–896.CrossRefGoogle Scholar
  130. Samani AA, Yakar S, LeRoith D, Brodt P (2007) The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev 28:20–47.PubMedCrossRefGoogle Scholar
  131. Sattler M, Salgia R (2007) c-Met and hepatocyte growth factor: potential as novel targets in cancer therapy. Curr Oncol Rep 9:102–108.PubMedCrossRefGoogle Scholar
  132. Schmitt S, Ren-Qiu Q, Torresani T, Doebeli M, Zapf J, Schoenle J (1997) High molecular weight forms of IGF-II (big-IGF-II) released by Wilms tumor cells. Eur J of Endo 137:396–401.CrossRefGoogle Scholar
  133. Schulz S,. Becker KF, Braungart E, Reichmuth C, Klamt B, Becker I, et al.(2000) Molecular analysis of E-cadherin and cadherin-11 in Wilms tumour. J Pathol 191:162–169.PubMedCrossRefGoogle Scholar
  134. Scott J, Cowell J, K Robertson ME, Priestley LM, Wadey R, Hopkins B, et al.(1985) Insulin-like growth factor-II gene expression in Wilms tumour and embryonic tissues. Nature 19:260–262.CrossRefGoogle Scholar
  135. Shan J, Shi DL, Wang J, Zheng J (2005) Identification of a specific inhibitor of the dishevelled PDZ domain. Biochemistry 29:15495–15503.CrossRefGoogle Scholar
  136. Shaw AP, Poirier V, Tyler S, Mott M, Berry Y, Maitland NJ (1988) Expression of the N-myc oncogene in Wilms’ tumour and related tissues. Oncogene 3(2):143–9.PubMedGoogle Scholar
  137. Singh KP, Roy D (2006) SKCG-1: a new candidate growth regulatory gene at chromosome 11q23.2 in human sporadic Wilms tumours. Br J Can 94:1524–1532.CrossRefGoogle Scholar
  138. Skoldenberg EG, Christiansson J, Sandstedt B, Larsson A, Lackgren G, Christofferson R (2001) Angiogenesis and angiogenic growth factors in Wilms tumor. J Urol 165:2274–2279.PubMedCrossRefGoogle Scholar
  139. Smith MA, Maris JM, Keir ST, et al. (2007) Pediatric preclinical testing program (PPTP) efficacy and pharmacodynamic evaluation of the Hsp90 inhibitor 17-DMAG. J Clin Oncol 25 (Abstract 3575).Google Scholar
  140. Smith MA, Morton CL, Phelps D, Girtman K, Neale G, Houghton PJ. (2006) SK-NEP-1 and Rh1 are Ewing family tumor lines. Ped Blood Can [Epub ahead of print].Google Scholar
  141. Smithey BE, Pappo AS, Hill DA (2002) C-kit expression in pediatric solid tumors: a comparative immunohistochemical study. Am J Surg Pathol 26:486–492.PubMedCrossRefGoogle Scholar
  142. Stammler G, Volm M (1996) Expression of heat shock proteins, glutatahione peroxidase and catalase in childhood acute lymphoblastic leukemia and nephroblastoma. Cancer Lett 19:35–42.CrossRefGoogle Scholar
  143. Stanhope-Baker P, Kessler PM, LI W, Agarwal ML, Williams BR (2004) The Wilms tumor suppressor-1 target gene podacalyxin is transcriptionally repressed by p53. J Biol Chem 6:33357–33385.Google Scholar
  144. Steeman M, Rainier S, Dobry CJ, Grundy P, Horon I, Feingerg AP (1994) Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms tumour. Nat Genet 7:433–439.CrossRefGoogle Scholar
  145. Tajbakhsh M, Houghton PJ, Morton CL, Kolb EA, Gorlick R, Maris JM, et al. (2007) Initial testing of cisplatin by the pediatric preclinical testing program. Ped Blood Can [Epub ahead of print].Google Scholar
  146. Takahashi-Yanaga F, Sasaguri T (2007) The Wnt/B-catein signaling pathway as a target in drug discovery. J Pharmacol 104:293–302.Google Scholar
  147. Takamizawa S, Okamoto S, Bishop W, Wen J, Kimura K, Sandler A (2000) Differential apoptosis gene expression in pediatric tumors of the kidney. J Pediatr Surg 35:390–395.PubMedCrossRefGoogle Scholar
  148. Takamizawa S, Scott D, Wen J, Grundy P, Bishop W, Kimura K, et al.(2001) The survivin:fas ratio in pediatric renal tumors. J Pediatr Surg 36:37–42.PubMedCrossRefGoogle Scholar
  149. Talts JF, Aufderheide E, Sorokin L, Ocklind G, Mattson R, Ekblom P (1993) Induction of mouse tenascin expression by a human sarcomatiod Wilms tumor cell line growing in nude mice. Int J Cancer 54:868–874.PubMedCrossRefGoogle Scholar
  150. Tanaka K, Granata C, Wang Y, O’Briain DS, Puri P (1999) Apoptosis and bcl-2 oncogene expression in Wilms’ tumor. Pediatr Surg Int 15:243–247.PubMedCrossRefGoogle Scholar
  151. Timofeeva QA, Plisov S, Evseev AA, Peng S, Jose-Kampfner M, Lovvorn HN, et al. (2006) Serine-phosphorylated STAT1 is a prosurvival factor in Wilms tumor pathogenesis. Oncogene 25:7555–7564.PubMedCrossRefGoogle Scholar
  152. Vicanek C, Ferretti E, Goodyer C, Torban E, Moffett P, Pelletier J, et al. (1997) Regulation of renal EGF receptor expression is normal in Denys-Drash syndrome. Kidney Int 52(3):614–619.PubMedCrossRefGoogle Scholar
  153. Vincent TS, Hazen-Martin DJ, Garvin AJ (1996a) Inhibition of insulin like growth factor II autocrin growth of Wilms tumor by suramin in vitro and vivo. Cancer Lett 15:49–56.CrossRefGoogle Scholar
  154. Vincent TS, Re GG, Hazen-Martin DJ, Tarnowsk BI, Willingham MC, Garvin AJ (1996b) All-trans-retinoic acid-induced growth Suppression of blastemal Wilms’ tumor. Pediatr Pathol Lab Med 16:777–789.PubMedCrossRefGoogle Scholar
  155. Werner H, Gian G Re, Iain A, Drummond, Vikas P, Sukhatme, Frank J, et al.(1993) Increase expression of the insulin-like growth factor I receptor gene, IGF1R, in Wilms tumor is correlated with modulation of IGF1R promoter activity by the WT1 Wilms tumor gene product. Proc Nat Acad Sci 90:5828–5832.PubMedCrossRefGoogle Scholar
  156. Werner H, Le Roith D (1997) The insulin-like growth factor-I receptor signaling pathways are important for tumorigenesis and inhibition of apoptosis. Crit Rev Oncol 8:71–92.CrossRefGoogle Scholar
  157. Wunsch L, Flemming P, Gluer S (2001) Expression of MIB and BCL-2 in patients with nephrogenic rest with and without associated Wilms tumors. Eur J Ped Surg 11:105–109.CrossRefGoogle Scholar
  158. Xu YQ, Grundy P, Polychronakos C (1997) Aberrant imprinting of the insulin-like growth factor II receptor gene in Wilms’ tumor. Oncogene 14(9):1041–6.PubMedCrossRefGoogle Scholar
  159. Yang Y, Niu ZB, Hou Y, Wang CL (2006) The expression of HSP70 and HSP90alpha in children with Wilms tumor. J Pediatr Surg 41:1062–1066.PubMedCrossRefGoogle Scholar
  160. Yokoi A, McCrudden KW, Huang J, Kim ES, Soffer SZ, Frischer JS, et al.(2003) Human epidermal growth factor receptor signaling contributes to tumor growth via angiogenesis in her2/neu-expressing experimental Wilms’ tumor. J Pediatr Surg 38 1569–1573.PubMedCrossRefGoogle Scholar
  161. Zhao J, Yart A, Frigerio S, Perren A, Schraml P, Weisstanner C, et al. (2007) Sporadic human renal tumors display frequent allelic imbalances and novel mutations of the HRPT2 gene. Oncogene 26:334–3449.Google Scholar
  162. Zirn B, Samans B, Wittmann S, Pietsch T, Leuschner I, Graf N, et al. (2006) Target genes of the WNT/beta-catenin pathway in Wilms tumors. Genes Chromosomes Can 45:565–574.CrossRefGoogle Scholar
  163. Zumkeller W, Schwander J, Mitchell CD, Morrell DJ, Scholfield PN, Preece MA (1993) Insulin-like growth factor (IGF)-I, II and IGF binding protein-2 (IGFBP-2) in the plasma of children with Wilms tumor. Eur J Cancer 14:1973–1977.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Division of Oncology, Center for Cancer and Blood DisordersChildren’s National Medical CenterWashingtonUSA

Personalised recommendations