Skip to main content

Electron Tomography of Frozen-hydrated Sections of Cells and Tissues

  • Chapter

Abstract

The technique of cryoelectron tomography of frozen-hydrated biological specimens is opening a new window on cellular structure and organization. This imaging method provides full 3D structural information at much higher resolution (typically 5–10 nm) than is attainable by light microscopy, and can be applied to cells and organelles that are maintained in a state that is as close to native as can be achieved currently in electron microscopy. Not only can cryoelectron tomography be used to visualize directly extended cellular structures, such as membranes and cytoskeleton, but it can also provide 3D maps of the location, orientation and, perhaps, the conformation of large macromolecular complexes, the cell’s ‘molecular machinery’. This information complements that coming from single-particle cryoelectron microscopy (Frank et al., 1996, 2006) and X-ray crystallography, about the subnanometer structure of the same molecular assemblies after isolation. As with studies using single-particle cryoelectron microscopy, specimens smaller than 1 µ in size can be prepared for cryoelectron tomography by plunge-freezing (Dubochet et al., 1988). Cells or organelles can be rapidly frozen directly on an electron microscope grid in thin layers of glass-like, amorphous ice, without the formation of ice crystals that would otherwise disrupt fine structure (Kellenberger, 1987). Specimens are imaged directly, without chemical fixation, dehydration or staining with heavy metals.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Amoudi, A., Dubochet, J., Gnägi, H., Lüthi, W. and Studer, D. (2003). An oscillating cryo-knife reduces cutting-induced deformation of vitreous ultrathin sections. J. Microsc. 212:26–33.

    CrossRef  PubMed  CAS  Google Scholar 

  • Al-Amoudi A., Norlén, L. P. O. and Dubochet J. (2004). Cryo-electron microscopy of vitreous sections of native biological cells and tissues. J. Struct. Biol. 148:131–135.

    CrossRef  PubMed  CAS  Google Scholar 

  • Al-Amoudi, A., Studer, D. and Dubochet, J. (2005). Cutting artifacts and cutting process in vitreous sections for cryo-electron microscopy. J. Struct. Biol. 150:109–121.

    CrossRef  PubMed  CAS  Google Scholar 

  • Baumeister, W. (2002). Electron tomography: towards visualizing the molecular organization of the cytoplasm. Curr. Opin. Struct. Biol. 12:679–684.

    CrossRef  PubMed  CAS  Google Scholar 

  • Baumeister, W. and Steven, A. C. (2000). Macromolecular electron microscopy in the era of structural genomics. Trends Biochem. Sci. 25:624–631.

    CrossRef  PubMed  CAS  Google Scholar 

  • Beck, M., Förster, F., Ecke, M., Plitzko, J. M., Melchior, F., Gerisch, G., Baumeister, W. and Medalia, O. (2004). Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306:1387–1390.

    CrossRef  PubMed  CAS  Google Scholar 

  • Bernhard, W. and Leduc, E. (1967). Ultrathin frozen sections. J. Cell Biol. 34:757–771.

    CrossRef  PubMed  CAS  Google Scholar 

  • Böhm, J., Frangakis, A. S., Hegerl, R., Nickell, S., Typke, D. and Baumeister, W. (2000). Toward detecting and identifying macromolecules in a cellular context: template matching applied to electron tomograms. Proc. Natl Acad. Sci. USA 97:14245–14250.

    CrossRef  PubMed  Google Scholar 

  • Böhm, J., Lambert, O., Frangakis, A. S., Letellier, L. Baumeister, W. and Rigaud, J. L. (2001). FhuA-mediated phage genome transfer into liposomes: a cryo-electron tomography study. Curr. Biol. 11:1168–1175.

    CrossRef  PubMed  Google Scholar 

  • Bongini, L., Fanelli, D., Piazza, F., De los Rios, P., Sandin, S. and Skoglund, U. (2004). Freezing immunoglobulins to see them move. Proc. Natl Acad. Sci. USA 101:6466–6471.

    CrossRef  PubMed  CAS  Google Scholar 

  • Brandt, S., Heikkonen, J. and Engelhardt, P. (2001a). Multiphase method for automatic alignment of transmission electron microscope images using markers. J. Struct. Biol. 133:10–22.

    CrossRef  PubMed  CAS  Google Scholar 

  • Brandt, S., Heikkonen, J. and Engelhardt, P. (2001b). Automatic alignment of transmission electron microscope tilt series without fiducial markers. J. Struct. Biol. 136:201–213.

    CrossRef  PubMed  CAS  Google Scholar 

  • Bretschneider. T., Jonkman, J., Kohler, J., Medalia, O., Barisic, K. Weber, I., Selzer, E. H. K., Baummeister, W. and Gerisch, G. (2002). Dynamic organization of the actin system in the motile cells of Dictyostelium. J. Muscle Res. Cell Motil. 23:639–649.

    CrossRef  PubMed  CAS  Google Scholar 

  • Buchanan, R. A., Leapman, R. D., O’Connell, M. F., Reese, T. S. and Andrews, S. B. (1993). Quantitative scanning transmission electron microscopy of ultrathin cryosections: subcellular organelles in rapidly frozen liver and cerebellar cortex. J. Struct. Biol. 110:244–255.

    CrossRef  PubMed  CAS  Google Scholar 

  • Chang, J.-J., McDowall, A.W., Lepault, J., Freeman, R., Walter, C.A. and Dubochet, J. (1983). Freezing, sectioning and observation artifacts of frozen hydrated sections for electron microscopy. J. Microsc. 132:109–123.

    Google Scholar 

  • Craig, S. and Staehelin, L. A. (1988). High pressure freezing of intact plant tissues. Evaluation and characterization of novel features of the endoplasmic reticulum and associated membrane systems. Eur. J. Cell Biol. 46:81–93.

    PubMed  CAS  Google Scholar 

  • Crowther, R. A., DeRosier, D. J. and Klug, A. (1970). The reconstruction of a three-dimensional structure from its projections and its applications to electron microscopy. Proc. R. Soc. B 317:319–340.

    CrossRef  Google Scholar 

  • Cyrklaff, M., Risco, C., Fernandez, J. J., Jimenez, M. V., Esteban, M., Baumeister, W. and Carrascosa, J. L. (2005). Cryo-electron tomography of Vaccinia virus. Proc. Natl Acad. Sci. USA 102:2772–2777.

    CrossRef  PubMed  CAS  Google Scholar 

  • Dahl, R. and Staehelin, L. A. (1989). High-pressure freezing for the preservation of biological structure: theory and practice. J. Electron Microsc. Tech. 13:165–174.

    CrossRef  PubMed  CAS  Google Scholar 

  • Dierksen, K., Typke, D., Hegerl, R. and Baumeister, W. (1993). Towards automatic electron tomography. II. Implementation of autofocus and low-dose procedures. Ultramicroscopy 49:109–120.

    CrossRef  Google Scholar 

  • Dierksen, K., Typke, D., Hegerl, R., Walz, J., Sackmann, E. and Baumeister, W. (1995). Three-dimensional structure of lipid vesicles embedded in vitreous ice and investigated by automated electron tomography. Biophys. J. 68:1416–1422.

    PubMed  CAS  Google Scholar 

  • Dubochet, J., Adrian, M., Chang, J. J., Homo, J.-C., Lepault, J., McDowall, A.W. and Schultz, P. (1988). Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21:129–228.

    PubMed  CAS  Google Scholar 

  • Dubochet, J., Adrian, M., Chang, J.-J., Lepault, J. and McDowall, A. (1987). Cryoelectron microscopy of vitrified specimens. In Cryotechniques in Biological Electron Microscopy (R. A. Steinbrecht and K. Zierold, eds). Springer, Berlin, pp. 114–131.

    Google Scholar 

  • Dubochet, J. and Sartori Blanc, N. (2001). The cell in absence of aggregation artifacts. Micron 32:91–99.

    CrossRef  PubMed  CAS  Google Scholar 

  • Echlin, P. (1992). Low-temperature Microscopy and Microanalysis. Plenum, New York.

    Google Scholar 

  • Edelman, L. (1994). Optimal freeze-drying of cryosections and bulk specimens for X-ray microanalysis. Scanning Microsc. Suppl. 8:67–81.

    Google Scholar 

  • Erk, I., Nicolas, G., Carloff, A. and Lepault, J. (1998). Electron microscopy of frozen biological objetcs: a study using cryosectioning and cryosubstitution. J. Microsc. 189:236–248.

    CrossRef  PubMed  CAS  Google Scholar 

  • Fernández-Morán, H. (1952). Application of the ultrathin freeze sectioning technique to the study of cell structures with the electron microscope. Arch. Fysik. 4:471–483.

    Google Scholar 

  • Fernández-Morán, H. (1960). Low-temperature preparation techniques for electron microscopy of biological specimens based on rapid freezing with liquid helium II. Annu. NY Acad. Sci. 85:689–713.

    CrossRef  Google Scholar 

  • Forbes, M. S. (1986). Dog hairs as section manipulators. EMSA Bull. 16:67.

    Google Scholar 

  • Förster, F., Medalia, O., Zauberman, N., Baumeister, W. and Fass, D. (2005). Retrovirus envelope protein complex structure in situ studied by cryo-electron tomography. Proc. Natl Acad. Sci. USA 102:4729–4734.

    CrossRef  PubMed  CAS  Google Scholar 

  • Frangakis, A. S., Böhm, J., Förster, F., Nickell, S., Nicastro, D., Typke, D., Hegerl, R. and Baumeister, W. (2002). Identification of macromolecular complexes in cryoelectron tomograms of phantom cells. Proc. Natl Acad. Sci. USA 99:14153–14158.

    CrossRef  PubMed  CAS  Google Scholar 

  • Frangakis, A. S. and Förster, F. (2004). Computational exploration of structural information from cryo-electron tomograms. Curr. Opin. Struct. Biol. 14:325–331.

    CrossRef  PubMed  CAS  Google Scholar 

  • Frank, J. (1996). Three-dimensional Electron Microscopy of Macromolecules. Academic Press, San Diego.

    Google Scholar 

  • Frank, J. (2006). Three-dimensional Electron Microscopy of Macromolecular Assemblies—Visualization of Biological Molecules in Their Native State. Oxford University Press, New York.

    Google Scholar 

  • Frank, J., Wagenknecht, T., McEwen, B. F., Marko, M., Hsieh, C.-E. and Mannella, C. A. (2002). Three-dimensional imaging of biological complexity. J. Struct. Biol. 138:85–91.

    CrossRef  PubMed  Google Scholar 

  • Frederik, P. M., Bomans, P. H. H. and Stuart, M. C. A. (1993). Matrix effects and the induction of mass loss or bubbling by the electron beam in vitrified hydrated specimens. Ultramicroscopy 48:107–119.

    CrossRef  Google Scholar 

  • Frederik, P. M., Busing, W. M. and Persson, A. (1982). Concerning the nature of the cryosectioning process. J. Microsc. 125:167–175.

    PubMed  CAS  Google Scholar 

  • Frederik, P. M., Busing, W. M. and Persson, A. (1984). Surface defects on thin cryosections. Scanning Electron Microsc. 1:433–443.

    Google Scholar 

  • Gessler, A. E. and Fullam, E. F. (1946). Sectioning for the electron microscope accomplished by the high speed microtome. Am. J. Anat. 78:245–279.

    CrossRef  Google Scholar 

  • Gilkey, J. C. and Staehelin, L. A. (1986). Advances in ultrarapid freezing for the preservation of cellular ultrastructure. J. Electron Microsc. Tech. 3:177–210.

    CrossRef  Google Scholar 

  • Grimm, R., Singh, H., Rachel, R., Typke, D., Zilling, W. and Baumeister, W. (1998). Electron tomography of ice-embedded prokaryotic cells. Biophys. J. 74:1031–1042.

    PubMed  CAS  Google Scholar 

  • Grünewald, K., Desai, P., Winkler, D. C., Heyman, J. B., Belnap, D. M., Baumeister, W. and Steven, A. C. (2003). Three-dimensional structure of herpes simplex virus from cryoelectron tomography. Science 302:1396–1398.

    CrossRef  PubMed  CAS  Google Scholar 

  • Grünewald, K., Medallia, O., Gross, A., Steven, A. and Baumeister, W. (2002). Prospects of electron cryotomography to visualize macromolecular complexes inside cellular compartments: implications of crowding. Biophys. Chem. 100:577–591.

    CrossRef  CAS  Google Scholar 

  • Gupta, B. L. and Hall, T.A. (1981). The x-ray microanalysis of frozen-hydrated sections in scanning electron microscopy: an evaluation. Tissue and Cell 13:623–643.

    CrossRef  PubMed  CAS  Google Scholar 

  • Hama, K. and Arii, T. (1987). Three-dimensional analysis of high-voltage electron microscope tilt images: methods and problems. J. Electron Microsc. Tech. 6:185–192.

    CrossRef  Google Scholar 

  • Hess, M.W., Muller, M., Debbage, P. L., Vetterlein, M. and Pavelka, M. (2000). Cryopreparation provides new insight into the effects of brefeldin A on the structure of the HepG2 Golgi apparatus. J. Struct. Biol. 130:63–72.

    CrossRef  PubMed  CAS  Google Scholar 

  • Hodson, S. and Marshall, J. (1970). Ultracryotomy: a technique for cutting ultrathin sections of unfixed biological tissues for electron micrscopy. J. Microsc. 91:105–117.

    PubMed  CAS  Google Scholar 

  • Hohenberg, H., Tobler, M. and Müller, M. (1996). High-pressure freezing of tissue obtained by fine-needle biopsy. J. Microsc. 183:1–7.

    CrossRef  Google Scholar 

  • Hsieh, C., He, W., Marko, M. and Stokes, D. L. (2004). 3D Tomographic map of desmosome from frozen-hydrated skin sections. Microsc. Microanal. 10(Suppl. 2):1188CD.

    Google Scholar 

  • Hsieh, C.-E., Leith, A., Mannella, C.A., Frank, J. and Marko, M. (2006). Towards high-resolution three-dimensional imaging of native mammalian tissue: electron tomography of frozen-hydrated rat liver sections. J. Struct. Biol. 153 (in press).

    Google Scholar 

  • Hsieh, C.-E., Marko, M., Frank, J. and Mannella, C. A. (2002). Electron tomographic analysis of frozen-hydrated tissue sections. J. Struct. Biol. 138:63–73.

    CrossRef  PubMed  Google Scholar 

  • Hsieh, C.-E., Marko, M., Leith, A., Frank, J. and Mannella, C. A. (2003). Electron tomographic comparison of frozen-hydrated and freeze-substituted sections of high-pressure frozen rat-liver tissue. Microsc. Microanal. 9(Suppl. 2):1178CD.

    Google Scholar 

  • Hutchinson, T. E., Johnson, D. E. and MacKenzie, A.P. (1978). Instrumentation for direct observation of frozen hydrated specimens in the electron microscope. Ultramicroscopy 3:315–324.

    CrossRef  PubMed  CAS  Google Scholar 

  • Kellenberger, E. (1987). The response of biological macromolecules and supremolecular structures to the physics of specimen cryopreparation. In Cryotechniques in Biological Electron Microscopy (R. A. Steinbrecht and K. Zierold, eds). Springer, Berlin, pp. 35–63.

    Google Scholar 

  • Koster, A. J., Grimm, R., Typke, D., Hegerl, R., Stoschek, A., Walz, J. and Baumeister, W. (1997). Perspectives of molecular and cellular electron tomography. J. Struct. Biol. 120:276–308.

    CrossRef  PubMed  CAS  Google Scholar 

  • Kürner, J., Medalia, O., Linaroudis, A. A. and Baumeister, W. (2004). New insights into the structural organization of eukaryotic and prokaryotic cytoskeletons using cryo-electron tomography. Exp. Cell Res. 301:38–42.

    CrossRef  PubMed  CAS  Google Scholar 

  • Kürner, J., Frangakis, A. S. and Baumeister, W. (2005). Cryo-electron tomography reveals the cytoskeletal structure of Spiroplasma melliferum. Science 307:436–438.

    CrossRef  PubMed  CAS  Google Scholar 

  • Leapman, R. D. (2005). Novel techniques in electron microscopy. Curr. Opin. Neurobiol. 14:591–598.

    CrossRef  CAS  Google Scholar 

  • Leforestier, A., Dubochet, J. and Livolant. F. (2001). Bilayers of nucleosome core particles. Biophys. J. 81:2414–2421.

    PubMed  CAS  Google Scholar 

  • Leis, A., Andrees, L., Gruska, M., Al-Amoudi, A., Sartori, A., Dubochet, J. and Baumeister, W. (2005). Cryo-electron tomography and fluorescence microscopy of unicellular algae in vitreous cryosections. Microsc. Microanal. 11(Suppl. 2):330CD.

    Google Scholar 

  • Lepault, J., Bigot, D., Studer, D. and Erk, I. (1997). Freezing of aqueous specimens: an X-ray diffraction study. J. Microsc. 187:158–166.

    CrossRef  CAS  Google Scholar 

  • Lucic, V., Förster, F. and Baumeister, W. (2005b). Structural studies by electron tomography: from cells to molecules. Annu. Rev. Biochem. 74:833–865.

    CrossRef  PubMed  CAS  Google Scholar 

  • Lucic, V., Yang, T., Schweikert, G., Förster, F. and Baumeister, W. (2005a). Morphological characterization of molecular complexes present in the synaptic cleft. Structure 13:423–434.

    CrossRef  PubMed  CAS  Google Scholar 

  • Luther, P. K., Lawrence, M. C. and Crowther, R.A. (1988) A method for monitoring the collapse of plastic sections as a function of electron dose. Ultramicroscopy 24:7–18.

    CrossRef  PubMed  CAS  Google Scholar 

  • Mannella, C. A. (2006). The relevance of mitochondrial membrane topology to mitochondrial function. Biochem. Biophys. Acta 1762:140–147.

    PubMed  CAS  Google Scholar 

  • Mannella, C. A., Buttle, K., Marko, M. (1997). Reconsidering mitochondrial structure: new views of an old organelle. Trends Biochem. Sci. 22:37–38.

    CrossRef  PubMed  CAS  Google Scholar 

  • Mannella, C. A. and Frey, T. (2000). The internal structure of mitochondria. Trends Biochem. Sci. 25:319–324.

    CrossRef  PubMed  Google Scholar 

  • Mannella, C. A., Pfeiffer, D. R., Bradshaw, P. C., Moraru, L. I., Slepchenko, L. B., Loew, L. M., Hsieh, C.-E., Buttle, K. and Marko, M. (2001). Topology of the mitochondrial inner membrane: dynamics and bioenergetic implications. IUBMB Life 52:93–100.

    PubMed  CAS  Google Scholar 

  • Marko, M., Hsieh, C.-E., Mannella, C. A. and Frank, J. (2002). Electron tomography of frozen-hydrated specimens: application to tissue sections. In Proceedings of the 15th International Congress on Electron Microscopy (Cross, R., ed.), Microscopy Society of Southern Africa, Onderspoort, SA, 2:205–206.

    Google Scholar 

  • Marko, M., Hsieh, C.-E., Mannella, C. A. and McEwen, B. (1999). Imaging considerations for cryo-tomography of organelles and whole cells at high accelerating voltage. Microsc. Microanal. 5(Suppl. 2):414–415.

    Google Scholar 

  • Marko, M., Hsieh, C., MoberlyChan, W., Mannella, C.A. and Frank, J. (2006). Focused ion beam milling of vitreous water: prospects for an alternative to cryo-ultramicrotomy. J. Microsc. 212:42–47.

    CrossRef  Google Scholar 

  • Marko, M., Hsieh, C.-E., Rath, B. K., Mannella, C. A. and McEwen, B. F. (2000). Electron tomography of frozen-hydrated samples. Microsc. Microanal. 6(Suppl. 2):310–311.

    Google Scholar 

  • Mastronarde, D. N. (1997). Dual-axis tomography: an approach with alignment methods that preserve resolution. J. Struct. Biol. 120:343–352.

    CrossRef  PubMed  CAS  Google Scholar 

  • Mastronarde, D. N. (2005). Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152:36–51.

    CrossRef  PubMed  Google Scholar 

  • Matias, V. R. F., Al-Amoudi, A., Dubochet, J. and Beveridge, T. J. (2003). Cryo-transmission electron microscopy of frozen-hydrated sections of gram-negative bacteria. J. Bacteriol. 185:6112–6118.

    CrossRef  PubMed  CAS  Google Scholar 

  • McDonald, K. and Morphew, M. K. (1993). Improved preservation of ultrastructure in difficult-to-fix organisms by high pressure freezing and freeze substitution: 1 Drosophila melanogaster and Strongylocentrotus purpuratus embryos. Microsc. Res. Tech. 24:254–473.

    CrossRef  Google Scholar 

  • McDowall, A.W., Chang, J. J., Freeman, R., Lepault, J., Walter, C.A. and Dubochet, J. (1983). Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples. J. Microsc. 131:1–9.

    PubMed  CAS  Google Scholar 

  • McEwen, B. F. and Frank, J. (2001). Electron tomographic and other approaches for imaging molecular machines. Curr. Opin. Neurobiol. 11:594–600.

    CrossRef  PubMed  CAS  Google Scholar 

  • McEwen, B. F., Marko, M., Hsieh, C.-E. and Mannella, C. (2002). Use of frozen-hydrated axonemes to assess imaging parameters and resolution limits in cryoelectron tomography. J. Struct. Biol. 138:47–57.

    CrossRef  PubMed  Google Scholar 

  • McIntosh, J. R. (2001) Electron microscopy of cells: a new beginning for a new century. J. Cell Biol. 153:F25–F32.

    CrossRef  PubMed  CAS  Google Scholar 

  • McIntosh, J. R., Nicastro, D. and Mastronarde, D. (2005). New views of cells in 3D: an introduction to electron tomography. Trends Cell Biol. 15:43–51.

    CrossRef  PubMed  CAS  Google Scholar 

  • Medalia, O., Weber, I., Frangakis, A. S., Nicastro, D., Gerisch, G. and Baumeister, W. (2002). Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 289:1209–1213.

    CrossRef  CAS  Google Scholar 

  • Michel, M., Hillman, T. and Müller, M. (1991). Cryosectioning of plant material frozen at high pressure. J. Microsc. 163:3–18.

    Google Scholar 

  • Michel, M., Gnägi, H. and Müller, M. (1992). Diamonds are a cryosectioner’s best friend. J. Microsc. 166:43–56.

    Google Scholar 

  • Moor, H. (1987). Theory and practice of high pressure freezing. In Cryotechniques in Biological Electron Microscopy (R. A. Steinbrecht and K. Zierold, eds). Springer, Berlin, pp. 175–191.

    Google Scholar 

  • Morphew, M. K. and McIntosh, J. R. (2003). The use of filter membranes for high-pressure freezing of cell monolayers. J. Microsc. 212:21–25.

    CrossRef  PubMed  CAS  Google Scholar 

  • Nicastro, D., Austin, J., Pierson, J., Gaudette, R., Schwartz, C., Ladinsky, M., Staehelin, L. A. and McIntosh, J. R. (2005b). Visualizing the macromolecular organization of chloroplast membranes using cryo-electron tomography. Microsc. Microanal. 11(Suppl. 2):150–151.

    Google Scholar 

  • Nicastro, D., Frangakis, A. S., Typke, D. and Baumeister, W. (2000). Cryoelectron tomography of Neurospora mitochondria. J. Struct. Biol. 129:48–56.

    CrossRef  PubMed  CAS  Google Scholar 

  • Nicastro, D., McIntosh, J. R. and Baumeister, W. (2005a). 3-D structure of eukaryotic flagella in a quiescent state revealed by cryo-electron tomography. Proc. Natl Acad. Sci. USA 102:15889–15894.

    CrossRef  PubMed  CAS  Google Scholar 

  • Nickell, S., Hegerl, R., Baumeister, W. and Rachel, R. (2003). Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography. J. Struct. Biol. 141(1):34–42.

    CrossRef  PubMed  Google Scholar 

  • Norlén, L. and Al-Amoudi, A. (2004). Stratum corneum keratin structure, function and formation—the cubic rod-packing and membrane templating model. J. Invest. Dermatol. 123:715–732.

    CrossRef  PubMed  Google Scholar 

  • Norlén, L., Al-Amoudi, A. and Dubochet, J. (2003). A cryotransmission electron microscopy study of skin barrier formation. J. Invest. Dermatol. 120:555–560.

    CrossRef  PubMed  Google Scholar 

  • Penczek, P., Marko, M., Buttle, K. and Frank, J. (1995). Double-tilt electron tomography. Ultramicroscopy 60:393–410.

    CrossRef  PubMed  CAS  Google Scholar 

  • Plitzko, J. M., Frangakis, A. S., Foerster, F., Gross, A. and Baumeister, W. (2002). In vivo veritas: electron cryotomography of intact cells with molecular resolution. Trends Biotechnol. 20:40–44.

    CrossRef  Google Scholar 

  • Rath, B. K., Hegerl, R., Leith, A., Shaikh, T. R., Wagenknecht, T. and Frank, J. (2003). Fast 3D motif search of EM density maps using a locally normalized cross-correlation function. J. Struct. Biol. 144:95–103.

    CrossRef  PubMed  CAS  Google Scholar 

  • Rath, B. K., Marko, M., Radermacher, M. and Frank, J. (1997). Low-dose automated electron tomography: a recent implementation. J. Struct. Biol. 120:210–218.

    CrossRef  PubMed  CAS  Google Scholar 

  • Richter, K. (1994). Cutting artefacts on ultrathin cryosections of biological bulk specimens. Micron 25:297–308.

    CrossRef  PubMed  CAS  Google Scholar 

  • Richter, K. (1996). Aspects of cryofixation and cryosectioning for the observation of bulk biological samples in the hydrated state by cryoelectron microscopy. Scanning Microsc. (Suppl. 10):375–386.

    Google Scholar 

  • Richter, K., Gnägi, H. and Dubochet, J. (1991). A model for cryosectioning based on the morphology of vitrified ultrathin sections. J. Microsc. 163:19–28.

    PubMed  CAS  Google Scholar 

  • Rockel B., Jakana J., Chiu W. and Baumeister W. (2002). Electron cryo-microscopy of VAT, the archaeal p97/CDC48 homologue from Thermoplasma acidophilum. J. Mol. Biol. 317:673–668.

    CrossRef  PubMed  CAS  Google Scholar 

  • Sali, A., Glaeser, R., Earnest, T. and Baumeister, W. (2003). From words to literature in structural proteomics. Nature 422:216–225.

    CrossRef  PubMed  CAS  Google Scholar 

  • Sandin S., Ofverstedt L.G., Wikstrom, A.C., Wrange, O. and Skoglund, U. (2004). Structure and flexibility of individual immunoglobulin G molecules in solution. Structure 12:409–415.

    CrossRef  PubMed  CAS  Google Scholar 

  • Sartori, N., Bednar, J. and Dubochet, J. (1996). Electron-beam-induced amorphization of ice III or IX obtained by high-pressure freezing. J. Microsc. 182:163–168.

    CrossRef  CAS  Google Scholar 

  • Sartori, N., Richter, K. and Dubochet, J. (1993). Vitrification depth can be increased more than 10-fold by high-pressure freezing. J. Microsc. 172:55–61.

    CAS  Google Scholar 

  • Sartori Blanc, N., Studer, D., Ruhl, K. and Dubochet, J. (1998). Electron beam-induced changes in vitreous sections of biological samples. J. Microsc. 192:194–201.

    CrossRef  PubMed  CAS  Google Scholar 

  • Sartori-Blanc, N., Senn, A., Leforestier, A., Livolant, F. and Dubochet, J. (2001) DNA in human and stallion spermatozoa forms local hexagonal packing with twist and many defects. J. Struct. Biol. 134:76–81.

    CrossRef  PubMed  CAS  Google Scholar 

  • Sawaguchi, A., Yao, X., Forte, J. G. and McDonald, K. L. (2003). Direct attachment of cell suspensions to high-pressure freezing specimen planchettes. J. Microsc. 212:13–20.

    CrossRef  PubMed  CAS  Google Scholar 

  • Schwartz, C., Nicastro, D., Ladinsky, M. S., Mastronarde, D., O’Toole E. and McIntosh, J. R. (2003). Cryo-electron tomography of frozen-hydrated sections of eukaryotic cells. Microsc. Microanal. 9(Suppl. 2):1166–1167.

    Google Scholar 

  • Shi, S., Sun, S.Q., Andrews, B. and Leapman, R.D. (1996). Thickness measurement of hydrated and dehydrated cryosections by EELS. Microsc. Res. Tech. 33:241–250.

    CrossRef  PubMed  CAS  Google Scholar 

  • Shimoni, E. and Müller, M. (1998). On optimizing high-pressure freezing: from heat transfer theory to a new microbiopsy device. J. Microsc. 192:236–247.

    CrossRef  PubMed  CAS  Google Scholar 

  • Sitte, H. (1996). Advanced instrumentation and methodology related to cryoultramicrotomy: a review. Scanning Microsc. (Suppl. 10):387–466.

    Google Scholar 

  • Somlyo, A. V., Shuman, H. and Somlyo, A. P. (1977). Elemental distribution of striated mucle and the effects of hypertonicity. J. Cell Biol. 74:824–857.

    CrossRef  Google Scholar 

  • Somlyo, A. P., Bond, M. and Somlyo, A.V. (1985). Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo. Nature 314:622–625.

    CrossRef  PubMed  CAS  Google Scholar 

  • Steinbrecht, R. A. and Zierold, K. (1987). Cryotechniques in Biological Electron Microscopy. Springer, Berlin.

    Google Scholar 

  • Steven A. C. and Aebi, U. (2003). The next ice age: cryo-electron tomography of intact cells. Trends Cell Biol. 13:107–110.

    CrossRef  PubMed  CAS  Google Scholar 

  • Stoffler, D., Feja, B., Fahrenkrog, J., Walz, J., Typke, D. and Aebi, U. (2003). Cryo-electron tomography provides novel insights into nuclear pore architecture: implications for nucleocytoplasmic transport. J. Mol. Biol. 328:119–130.

    CrossRef  PubMed  CAS  Google Scholar 

  • Studer, D. and Gnägi, H. (2000). Minimal compression of ultrathin sections with use of an oscillating diamond knife. J. Microsc. 197:94–100.

    CrossRef  PubMed  CAS  Google Scholar 

  • Studer, D., Graber, W., Al-Amoudi, A. and Eggli, P. (2001). A new approach for cryofixation by high-pressure freezing. J. Microsc. 203:285–294.

    CrossRef  PubMed  CAS  Google Scholar 

  • Studer, D., Michel, M. and Müller, M. (1989). High pressure freezing comes of age. Scanning Microsc. (Suppl. 3):253–269.

    Google Scholar 

  • Studer, D., Michel, M., Wohlwend, M., Hunziker, E. B. and Buschmann, M. D. (1995). Vitrification of articular cartilage by high-pressure freezing. J. Microsc. 179 321–332.

    PubMed  CAS  Google Scholar 

  • Sun, S.Q., Shi, S.-L., Hunt, J.A., Leapman, R.D. (1995). Quantitative water mapping of cryosectioned cells by electron energy-loss spectroscopy. J. Microsc. 177:18–30.

    PubMed  CAS  Google Scholar 

  • Taylor, K.A. and Glaeser, R.M. (1974). Electron diffraction of frozen, hydrated protein crystals. Science 186:1036–1037.

    CrossRef  PubMed  CAS  Google Scholar 

  • Taylor, K. A. and Glaeser, R. M. (1976). Electron microscopy of frozen hydrated biological specimens. J. Ultrastruct. Res. 55:448–456.

    CrossRef  PubMed  CAS  Google Scholar 

  • Ting, C. S., Hsieh, C., Sundararaman, S., Mannella, C. A. and Marko, M. (2005). Comparative three-dimensional imaging of environmentally critical cyanobacteria through cryoelectron tomography. Microsc. Microanal. 11(Suppl. 2): 332CD.

    Google Scholar 

  • Tokuyasu, K. T. (1986). Application of cryoultramicrotomy to immunocytochemistry. J. Microsc. 143:139–149.

    PubMed  CAS  Google Scholar 

  • Vanhecke, D., Graber, W., Herrmann, G., Al-Amoudi, A., Eggli, P. and Studer. D. (2003). A rapid microbiopsy system to improve the preservation of biological samples prior to high-pressure freezing. J. Microsc. 212:3–12.

    CrossRef  PubMed  CAS  Google Scholar 

  • Van Marle, J., Dietrich, A., Jonges, K., Jonges, R, de Moor, E., Vink, A., Boon, P. and van Veen, H. (1995). EM-tomography of section collapse, a non-linear phenomenon. Microsc. Res. Tech. 31:311–316.

    CrossRef  PubMed  Google Scholar 

  • Vonk, J. (2000). Parameters affecting specimen flatness of two-dimensional crystals for electron crystallography. Ultramicroscopy 5:123–129.

    CrossRef  Google Scholar 

  • Wagenknecht, T., Hsieh, C.-E., Rath, B., Fleischer, S. and Marko, M. (2002). Electron tomography of frozen-hydrated isolated triad junctions. Biophys. J. 83:2491–2501.

    CrossRef  PubMed  CAS  Google Scholar 

  • Walther, P. and Müller, M. (1997). Double-layer coating for field-emission cryo-scanning electron microscopy—present state and applications. Scanning 19:343–348.

    CrossRef  PubMed  CAS  Google Scholar 

  • Walz, J., Typke, D., Nitsch, M., Koster, A. J., Hegerl, R. and Baumeister, W. (1997). Electron tomography of single ice-embedded macromolecules: three-dimensional alignment and classification. J. Struct. Biol. 120:387–395.

    CrossRef  PubMed  CAS  Google Scholar 

  • Winkler, H. and Taylor, K.A. (2006). Accurate marker-free alignment with simultaneous geometry determination and reconstruction of tilt series in electron tomography. Ultramicroscopy 106:240–254.

    CrossRef  PubMed  CAS  Google Scholar 

  • Woodcock, C. L. (1994). Chromatin fibers observed in situ in frozen hydrated sections. Native fiber diameter is not correlated with nucleosome repeat length. J. Cell Biol. 125:11–19.

    CrossRef  PubMed  CAS  Google Scholar 

  • Zhang, P., Bos, E., Heyman, J., Gnägi, H., Kessel, M., Petere, P. J. and Subramaniam, S. (2004). Direct visualization of receptor arrays in frozen-hydrated sections and plunge-frozen specimens of E. coli engineered to overproduce the chemotaxis receptor Tsr. J. Microsc. 216:76–83.

    CrossRef  PubMed  CAS  Google Scholar 

  • Zhao, Q., Ofverstedt, L. G., Skoglund, U. and Isaksson, L. A. (2004). Morphological variation of individual Escherichia coli 30S ribosomal subunits in vitro and in situ, as revealed by cryo-electron tomography. Exp. Cell Res. 297:495–507.

    CrossRef  PubMed  CAS  Google Scholar 

  • Zierold, K. (1984). The morphology of ultrathin cryosections. Ultramicroscopy 14:201–210.

    CrossRef  Google Scholar 

  • Zierold, K. (1987). Cryoultramicrotomy. In Cryotechniques in Biological Electron Microscopy (R. A. Steinbrecht and K. Zierold, eds). Springer, Berlin, pp. 132–148.

    Google Scholar 

  • Zierold, K. (1988). X-ray microanalysis of freeze-dried and frozen-hydrated cryosections. J. Electron Microsc. Tech. 9:65–82.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Marko, M., Hsieh, CE., Mannella, C.A. (2007). Electron Tomography of Frozen-hydrated Sections of Cells and Tissues. In: Frank, J. (eds) Electron Tomography. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69008-7_3

Download citation

Publish with us

Policies and ethics