Abstract
Electron tomography offers opportunities to study structures that are not amenable to 3D imaging by any of the classical methods, such as singleparticle reconstruction (Frank, 1996), helical reconstruction (Egelman, 2000; DeRosier and Moore, 1970) or electron crystallography (Glaeser, 1999) that require either a repetitive structure, or multiple copies of identical structures. Since electron tomography can produce a 3D image of a single copy of a structure, it is finding wide application in cell biology and material science. Paracrystalline specimens constitute another class of structure for which electron tomography can be particularly useful for obtaining detailed 3D images (Taylor et al., 1997). Paracrystals (para—Greek prefix meaning faulty) are arrays with various kinds of intrinsic disorder. Spatial averaging of such specimens usually blurs or even erases the disordered component, which may eliminate the functionally interesting feature. For this chapter, we define a paracrystalline specimen as one with partial ordering such that one component of the specimen may be highly regular while another may be irregular due to either low occupancy, lattice irregularity or both.
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Beck, M., Förster, F., Ecke, M., Plitzko, J.M., Melchior, F., Gerisch, G., Baumeister, W. and Medalia, O. (2004). Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306:1387–1390.
Böhm, J., Frangakis, A. S., Hegerl, R., Nickell, S., Typke, D. and Baumeister, W. (2000). Toward detecting and identifying macromolecules in a cellular context: template matching applied to electron tomograms. Proc. Natl. Acad. Sci. USA 97:14245–14250.
Braunfeld, M. B., Koster, A. J., Sedat, J.W. and Agard, D. A. (1994). Cryo automated electron tomography: towards high-resolution reconstructions of plastic-embedded structures. J. Microsc. 174:75–84.
Bullard, B. (1984). A large troponin in asynchronous insect flight muscle. J. Muscle Res. Cell Motil. 5:196.
Burgess, S.A., Walker, M. L., Thirumurugan, K., Trinick, J. and Knight, P. J. (2004). Use of negative stain and single-particle image processing to explore dynamic properties of flexible macromolecules. J. Struct. Biol. 147:247–258.
Chen, L. F., Blanc, E., Chapman, M. S. and Taylor, K.A. (2001). Real space refinement of actomyosin structures from sectioned muscle. J. Struct. Biol., 133, 221–232.
Chen, L. F., Winkler, H., Reedy, M. K., Reedy, M. C. and Taylor, K. A. (2002). Molecular modeling of averaged rigor crossbridges from tomograms of insect flight muscle. J. Struct. Biol. 138:92–104.
DeRosier, D. J. and Moore, P.B. (1970). Reconstruction of three-dimensional images from electron micrographs of structures with helical symmetry. J. Mol. Biol. 52:355–369.
Dierksen, K., Typke, D., Hegerl, R., Walz, J., Sackmann, E. and Baumeister, W. (1995). Threedimensional structure of lipid vesicles embedded in vitreous ice and investigated by automated electron tomography. Biophys. J. 68:1416–1422
Egelman, E. H. (2000). A robust algorithm for the reconstruction of helical filaments using single-particle methods. Ultramicroscopy 85:225–234.
Egelman, E. H. and DeRosier, D. J. (1992). Image analysis shows that variations in actin crossover spacings are random, not compensatory. Biophys. J. 63:1299–1305.
Egelman, E. H., Francis, N. and DeRosier, D. J. (1982). F-actin is a helix with a random variable twist. Nature 298:131–135.
Förster, F., Medalia, O., Zauberman, N., Baumeister, W. and Fass, D. (2005). Retrovirus envelope protein complex structure in situ studied by cryo-electron tomography. Proc. Natl. Acad. Sci. USA 102:4729–4734.
Frangakis, A. S., Bohm, J., Förster, F., Nickell, S., Nicastro, D., Typke, D., Hegerl, R. and Baumeister, W. (2002). Identification of macromolecular complexes in cryoelectron tomograms of phantom cells. Proc. Natl Acad. Sci. USA 99:14153–14158.
Frank, J. (1990). Classification of macromolecular assemblies studied as’ single particles’. Q. Rev. Biophys. 23:281–329.
Frank, J. (1996). Three-dimensional Elecron Microscopy of Macromolecular Assemblies. Academic Press, San Diego, CA.
Geeves, M.A. and Holmes, K. C. (1999). Structural mechanism of muscle contraction. Annu. Rev. Biochem. 68:687–728.
Glaeser, R.M. (1999). Review: electron crystallography: present excitement, a nod to the past, anticipating the future. J. Struct. Biol. 128:3–14.
Goody, R. S., Reedy, M. C., Hofmann, W., Holmes, K. C. and Reedy, M. K. (1985). Binding of myosin subfragment 1 to glycerinated insect flight muscle in the rigor state. Biophys. J. 47:151–169.
Grünewald, K., Desai, P., Winkler, D. C., Heymann, J. B., Belnap, D. M., Baumeister, W. and Steven, A. C. (2003). Three-dimensional structure of herpes simplex virus from cryoelectron tomography. Science 302:1396–1398.
Hegerl, R. and Hoppe, W. (1976). Influence of electron noise on three-dimensional image reconstruction. Z. Naturforsch. 31a:1717–1721.
Henderson, R., Baldwin, J. M., Downing, K. H., Lepault, J. and Zemlin, F. (1986). Structure of purple membrane from Halobacterium halobium: recording, measurement and evaluation of electron micrographs at 3.5 å resolution. Ultramicroscopy 19:147–178.
Holmes, K. C., Tregear, R. T. and Barrington Leigh, J. (1980). Interpretation of the low angle X-ray diffraction from insect muscle in rigor. Proc. R. Soc. B 207:13–33.
Hoppe, W. and Hegerl, R. (1981). Some remarks concerning the influence of electron noise on 3D reconstruction. Ultramicroscopy 6:205–206.
Iwasaki, K., Mitsuoka, K., Fujiyoshi, Y., Fujisawa, Y., Kikuchi, M., Sekiguchi, K. and Yamada, T. (2005). Electron tomography reveals diverse conformations of integrin alphaIIbbeta3 in the active state. J. Struct. Biol. 150:259–267.
Kessel, M., Frank, J. and Goldfarb, W. (1980). Low dose electron microscopy of individual biological macromolecules. In: Electron Microscopy at Molecular Dimensions: State of the Art. and Strategies for the Future. Baumeister, W. and Vogell, W. Eds. Springer-Verlag, Berlin, pp. 154–160.
Koster, A. J., Chen, H., Sedat, J.W. and Agard, D. A. (1992). Automated microscopy for electron tomography. Ultramicroscopy 46:207–227.
Lanzavecchia, S., Cantele, F. and Bellon, P.L. (2001). Alignment of 3D structures of macromolecular assemblies. Bioinformatics 17:58–62.
Liu, J., Reedy, M. C., Goldman, Y. E., Franzini-Armstrong, C., Sasaki, H., Tregear, R. T., Lucaveche, C., Winkler, H., Baumann, B. A. J., Squire, J. M., Irving, T. C., Reedy, M.K. and Taylor, K. A. (2004). Electron tomography of fast frozen, stretched rigor fibers reveals elastic distortions in the myosin crossbridges. J. Struct. Biol. 147:268–282.
Liu, J., Taylor, D.W., Krementsova, E. B., Trybus, K.M. and Taylor, K.A. (2006). 3-D structure of the myosin V inhibited state by cryoelectron tomography. Nature 442:208–211.
Lovell, S. J., Knight, P. J. and Harrington, W. F. (1981). Fraction of myosin heads bound to thin filaments in rigor fibrils from insect flight and vertebrate muscles. Nature 293:664–666.
Mastronarde, D. N. (1997). Dual-axis tomography: an approach with alignment methods that preserve resolution. J. Struct. Biol. 120:343–352.
McEwen, B. F., Downing, K.H. and Glaeser, R.M. (1995). The relevance of dose-fractionation in tomography of radiation-sensitive specimens. Ultramicroscopy 60:357–373.
Nickell, S., Hegerl, R., Baumeister, W. and Rachel, R. (2003). Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography. J. Struct. Biol. 141:34–42.
Pascual-Montano, A., Taylor, K.A., Winkler, H., Pascual-Marqui, R.D. and Carazo, J.M. (2002). Quantitative self-organizing maps for clustering electron tomograms. J. Struct. Biol. 138:114–122.
Penczek, P., Marko, M., Buttle, K. and Frank, J. (1995). Double-tilt electron tomography. Ultramicroscopy 60:393–410.
Rath, B. K., Hegerl, R., Leith, A., Shaikh, T. R., Wagenknecht, T. and Frank, J. (2003). Fast 3D motif search of EM density maps using a locally normalized cross-correlation function. J. Struct. Biol. 144:95–103.
Reedy, M. K. (1967). Cross-bridges and periods in insect flight muscle. Am. Zool. 7:465–481.
Reedy, M. K., Holmes, K. C. and Tregear, R. T. (1965). Induced changes in orientation of the cross-bridges of glycerinated insect flight muscle. Nature 207:1276–1280.
Reedy, M. K. and Reedy, M. C. (1985). Rigor crossbridge structure in tilted single filament layers and flared-X formations from insect flight muscle. J. Mol. Biol. 185:145–176.
Roseman, A. M. (2003). Particle finding in electron micrographs using a fast local correlation algorithm. Ultramicroscopy 94:225–236.
Schatz, M. and van Heel, M. (1990). Invariant classification of molecular views in electron micrographs. Ultramicroscopy 32:255–264.
Schatz, M. and van Heel, M. (1992). Invarient recognition of molecular projections in vitreous ice preparations. Ultramicroscopy 45:15–22.
Schmid, M., Dargahi, R. and Tam, M. (1993). SPECTRA: a system for processing electron images of crystals. Ultramicroscopy 48:251–264.
Schmitz, H., Reedy, M. C., Reedy, M. K., Tregear, R. T. and Taylor, K.A. (1997). Tomographic three-dimensional reconstruction of insect flight muscle partially relaxed by AMPPNP and ethylene glycol. J. Cell Biol. 139:695–707.
Schmitz, H., Reedy, M. C., Reedy, M. K., Tregear, R. T., Winkler, H. and Taylor, K. A. (1996). Electron tomography of insect flight muscle in rigor and AMPPNP at 23°C. J. Mol. Biol. 264:279–301.
Squire, J. M. (1981). The Structural Basis of Muscle Contraction. Plenum Press, New York.
Stoffler, D., Feja, B., Fahrenkrog, B., Walz, J., Typke, D. and Aebi, U. (2003). Cryo-electron tomography provides novel insights into nuclear pore architecture: implications for nucleocytoplasmic transport. J. Mol. Biol. 328:119–130.
Taylor, K. A., Schmitz, H., Reedy, M. C., Goldman, Y. E., Franzini-Armstrong, C., Sasaki, H., Tregear, R. T., Poole, K. J. V., Lucaveche, C., Edwards, R. J., Chen, L. F., Winkler, H. and Reedy, M.K. (1999). Tomographic 3-D reconstruction of quick frozen, Ca2+-activated contracting insect flight muscle. Cell 99:421–431.
Taylor, K. A., Tang, J., Cheng, Y. and Winkler, H. (1997). The use of electron tomography for structural analysis of disordered protein arrays. J. Struct. Biol. 120:372–386.
Taylor, K.A. and Taylor, D.W. (1994). Formation of two-dimensional complexes of F-actin and crosslinking proteins on lipid monolayers: demonstration of unipolar alpha-actinin-Factin crosslinking. Biophys. J. 67:1976–1983.
Taylor, K. A., Taylor, D. W. and Schachat, F. (2000). Isoforms of alpha-actinin from cardiac, smooth, and skeletal muscle form polar arrays of actin filaments. J. Cell Biol. 149:635–646.
Thomas, D. D., Cooke, R. and Barnett, V. A. (1983). Orientation and rotational mobility of spin-labelled myosin heads in insect flight muscle in rigor. J. Muscle Res. Cell Motil. 4:367–378.
Tilney, L.G., Derosier, D. J. and Mulroy, M. J. (1980). The organization of actin filaments in the stereocilia of cochlear hair cells. J. Cell Biol. 86:244–259.
Tregear, R. T., Reedy, M. C., Goldman, Y. E., Taylor, K. A., Winkler, H., Franzini-Armstrong, C., Sasaki, H., Lucaveche, C. and Reedy, M. K. (2004). Cross-bridge number, position, and angle in target zones of cryofixed isometrically active insect flight muscle. Biophys. J. 86:3009–3019.
Unser, M., Trus, B. L. and Steven, A. C. (1987). A new resolution criterion based on spectral signal-to-noise ratios. Ultramicroscopy 23:39–51.
Van Heel, M., Schatz, M. and Orlova, E. (1992). Correlation functions revisited. Ultramicroscopy 46:307–316.
Walz, J., Typke, D., Nitsch, M., Koster, A. J., Hegerl, R. and Baumeister, W. (1997). Electron tomography of single ice-embedded macromolecules: three-dimensional alignment and classification. J. Struct. Biol. 120:387–395.
Winkler, H. and Taylor, K.A. (1996). Three-dimensional distortion correction applied to tomographic reconstructions of sectioned crystals. Ultramicroscopy 63:125–132.
Winkler, H. and Taylor, K.A. (1999) Multivariate statistical analysis of three-dimensional crossbridge motifs in insect flight muscle. Ultramicroscopy 77:141–152.
Winkler, H. and Taylor, K.A. (2003). Focus gradient correction applied to tilt series image data used in electron tomography. J. Struct. Biol. 143:24–32.
Zhu, P., Liu, J., Bess, J. J., Chertova, E., Lifson, J.D., Grisé, H., Ofek, G., Taylor, K.A. and Roux, K. H. (2006) Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature 441:847–852.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Taylor, K.A., Liu, J., Winkler, H. (2007). Localization and Classification of Repetitive Structures in Electron Tomograms of Paracrystalline Assemblies. In: Frank, J. (eds) Electron Tomography. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69008-7_16
Download citation
DOI: https://doi.org/10.1007/978-0-387-69008-7_16
Publisher Name: Springer, New York, NY
Print ISBN: 978-0-387-31234-7
Online ISBN: 978-0-387-69008-7
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)
