Skip to main content

Motif Search in Electron Tomography

  • Chapter

Abstract

Cryoelectron tomography aims to act as an interface between two levels of 3D imaging: in vivo cell imaging and techniques achieving atomic resolution (e.g., X-ray crystallography). This most likely will happen through a computational motif search by mapping structures with atomic resolution into lower-resolution tomograms of cells and organelles. There exist a large variety of pattern recognition techniques in engineering, which can perform different types of motif search. This chapter will focus on cross-correlation techniques, which aim to identify a motif within a noisy 3D image (the tomogram or the 3D reconstruction). Generally, the success of the crosscorrelation approach depends on the resolution of the tomograms, the degree of corruption of the motif by noise as well as the fidelity with which the template matches the motif. For maximal detection signal, the template should have the same impulse response as the motif, which in this case is the macromolecule sought. Since the noise in the tomogram cannot be significantly decreased after data recording, the task of designing an accurate template reduces to the determination of the precise parameters of the image recording conditions, so that the searched motifs may be modeled as accurately as possible.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Böhm, J., Frangakis, A. S., Hegerl, R., Nickell, S., Typke, D. and Baumeister, W. (2000). Toward detecting and identifying macromolecules in a cellular context: template matching applied to electron tomograms. Proc. Natl Acad. Sci. USA 97:14245–14250.

    CrossRef  PubMed  Google Scholar 

  • Cong, Y., Kovacs, J. A. and Wriggers, W. (2003). 2D fast rotational matching for image processing of biophysical data. J. Struct. Biol. 144:51–60.

    CrossRef  PubMed  Google Scholar 

  • Frangakis, A. S., Böhm, J., Forster, F., Nickell, S., Nicastro, D., Typke, D., Hegerl, R. and Baumeister, W. (2002). Identification of macromolecular complexes in cryoelectron tomograms of phantom cells. Proc. Natl. Acad. Sci. USA 99:14153–14158.

    CrossRef  PubMed  CAS  Google Scholar 

  • Kovacs, J.A., Chacon, P., Cong, Y., Metwally, E. and Wriggers, W. (2003). Fast rotational matching of rigid bodies by fast Fourier transform acceleration of five degrees of freedom. Acta Crystallogr. D Biol. Crystallogr. 59:1371–1376.

    CrossRef  PubMed  Google Scholar 

  • Pavelcik, F., Zelinka, J. and Otwinowski, Z. (2002). Methodology and applications of automatic electron-density map interpretation by six-dimensional rotational and translational search for molecular fragments. Acta Crystallogr. D Biol. Crystallogr. 58:275–283.

    CrossRef  PubMed  Google Scholar 

  • Rath, B. K., Hegerl, R., Leith, A., Shaikh, T. R., Wagenknecht, T. and Frank, J. (2003). Fast 3D motif search of EM density maps using a locally normalized cross-correlation function. J. Struct. Biol. 144:95–103.

    CrossRef  PubMed  CAS  Google Scholar 

  • Roseman, A. M. (2003). Particle finding in electron micrographs using a fast local correlation algorithm. Ultramicroscopy 94: 225–236.

    CrossRef  PubMed  CAS  Google Scholar 

  • Roseman, A. M. (2004). FindEM-a fast, efficient program for automatic selection of particles from electron micrographs. J. Struct. Biol. 145:91–99.

    CrossRef  PubMed  CAS  Google Scholar 

  • Rosenthal, P. B. and Henderson, R. (2003). Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333:721–745.

    CrossRef  PubMed  CAS  Google Scholar 

  • Stewart, P. L., Fuller, S. D. and Burnett, R. M. (1993). Diference imaging of adenovivus: bridging the resolution gap between X-ray crystallography and electron microscopy. EMBO J. 12:2589–2599.

    PubMed  CAS  Google Scholar 

  • Zhu, Y., Carragher, B., Glaeser, R. M., Fellman, D., Bajaj, C., Bern, M., Mouche, F., de Hass, F., Hall, R. J., Kriegman, D. J., Ludtke, S. J., Mallick, S. P., Penczek, P. A., Roseman, A. M., Sigworth, F. J., Volkmann, N. and Potter, C. S. (2004). Automatic particle selection: results of a comparative study. J. Struct. Biol. 145:3–14.

    CrossRef  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Frangakis, A.S., Rath, B.K. (2007). Motif Search in Electron Tomography. In: Frank, J. (eds) Electron Tomography. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69008-7_15

Download citation

Publish with us

Policies and ethics