Abstract
Cryoelectron tomography aims to act as an interface between two levels of 3D imaging: in vivo cell imaging and techniques achieving atomic resolution (e.g., X-ray crystallography). This most likely will happen through a computational motif search by mapping structures with atomic resolution into lower-resolution tomograms of cells and organelles. There exist a large variety of pattern recognition techniques in engineering, which can perform different types of motif search. This chapter will focus on cross-correlation techniques, which aim to identify a motif within a noisy 3D image (the tomogram or the 3D reconstruction). Generally, the success of the crosscorrelation approach depends on the resolution of the tomograms, the degree of corruption of the motif by noise as well as the fidelity with which the template matches the motif. For maximal detection signal, the template should have the same impulse response as the motif, which in this case is the macromolecule sought. Since the noise in the tomogram cannot be significantly decreased after data recording, the task of designing an accurate template reduces to the determination of the precise parameters of the image recording conditions, so that the searched motifs may be modeled as accurately as possible.
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Böhm, J., Frangakis, A. S., Hegerl, R., Nickell, S., Typke, D. and Baumeister, W. (2000). Toward detecting and identifying macromolecules in a cellular context: template matching applied to electron tomograms. Proc. Natl Acad. Sci. USA 97:14245–14250.
Cong, Y., Kovacs, J. A. and Wriggers, W. (2003). 2D fast rotational matching for image processing of biophysical data. J. Struct. Biol. 144:51–60.
Frangakis, A. S., Böhm, J., Forster, F., Nickell, S., Nicastro, D., Typke, D., Hegerl, R. and Baumeister, W. (2002). Identification of macromolecular complexes in cryoelectron tomograms of phantom cells. Proc. Natl. Acad. Sci. USA 99:14153–14158.
Kovacs, J.A., Chacon, P., Cong, Y., Metwally, E. and Wriggers, W. (2003). Fast rotational matching of rigid bodies by fast Fourier transform acceleration of five degrees of freedom. Acta Crystallogr. D Biol. Crystallogr. 59:1371–1376.
Pavelcik, F., Zelinka, J. and Otwinowski, Z. (2002). Methodology and applications of automatic electron-density map interpretation by six-dimensional rotational and translational search for molecular fragments. Acta Crystallogr. D Biol. Crystallogr. 58:275–283.
Rath, B. K., Hegerl, R., Leith, A., Shaikh, T. R., Wagenknecht, T. and Frank, J. (2003). Fast 3D motif search of EM density maps using a locally normalized cross-correlation function. J. Struct. Biol. 144:95–103.
Roseman, A. M. (2003). Particle finding in electron micrographs using a fast local correlation algorithm. Ultramicroscopy 94: 225–236.
Roseman, A. M. (2004). FindEM-a fast, efficient program for automatic selection of particles from electron micrographs. J. Struct. Biol. 145:91–99.
Rosenthal, P. B. and Henderson, R. (2003). Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333:721–745.
Stewart, P. L., Fuller, S. D. and Burnett, R. M. (1993). Diference imaging of adenovivus: bridging the resolution gap between X-ray crystallography and electron microscopy. EMBO J. 12:2589–2599.
Zhu, Y., Carragher, B., Glaeser, R. M., Fellman, D., Bajaj, C., Bern, M., Mouche, F., de Hass, F., Hall, R. J., Kriegman, D. J., Ludtke, S. J., Mallick, S. P., Penczek, P. A., Roseman, A. M., Sigworth, F. J., Volkmann, N. and Potter, C. S. (2004). Automatic particle selection: results of a comparative study. J. Struct. Biol. 145:3–14.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer Science+Business Media, LLC
About this chapter
Cite this chapter
Frangakis, A.S., Rath, B.K. (2007). Motif Search in Electron Tomography. In: Frank, J. (eds) Electron Tomography. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69008-7_15
Download citation
DOI: https://doi.org/10.1007/978-0-387-69008-7_15
Publisher Name: Springer, New York, NY
Print ISBN: 978-0-387-31234-7
Online ISBN: 978-0-387-69008-7
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)
