Skip to main content

Denoising of Electron Tomograms

  • Chapter

Abstract

The crucial problem inherent to electron tomography is radiation damage or, related to this, the choice of the correct electron dose: an excessive dose destroys the specimen, especially biological ones, while an insufficient dose results in images that are noisy and lack information. Sophisticated and highly automated techniques have been developed both for data acquisition with the aim of keeping the electron dose as low as possible, and for image processing, in order to extract reliable information from the recorded data. However, the tolerable dose is very small, especially for unstained, frozen-hydrated specimens. As a rule of thumb, 5000e/nm2 are tolerable for such specimens. According to the dose fractionation theorem (Hegerl and Hoppe, 1978), the total tolerable dose has to be divided by the number of projection views in order to find the dose allowed for each image of a tilt series. In addition, the low scattering power of biological material results in low-contrast images. For instance, assuming a tilt series of 50 images, a pixel size of 1nm2, phase contrast imaging with a contrast of 10%, and considering only the shot noise of the electrons, the signal-to-noise ratio (SNR defined as energy of signal over energy of noice) in the projection images is in the order of 1. An increase in the number of projection images, a decrease of the pixel size and additional noise arising from the image recording system push the SNR below 1.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barth, M., Bryan, R. K., Hegerl, R. and Baumeister, W. (1988). Estimation of missing cone data in three-dimensional electron microscopy. Scanning Microsc. Suppl. 2:277–284.

    PubMed  CAS  Google Scholar 

  • Daubechies, I. (1992). Ten Lectures on Wavelets. SIAM Publications, Philadelphia.

    Google Scholar 

  • Donoho, D.L. (1995). De-noising by soft thresholding. IEEE Trans. Inform. Theory 41:613–627.

    Article  Google Scholar 

  • Fernández, J. J. and Li, S. (2003). An improved algorithm for anisotropic nonlinear diffusion for denoising cryo-tomograms. J. Struct. Biol. 144:152–161.

    Article  PubMed  Google Scholar 

  • Frangakis, A. and Hegerl, R. (2001). Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion. J. Struct. Biol. 135:239–250.

    Article  PubMed  CAS  Google Scholar 

  • Frank, J. (2002). Single-particle imaging of macromolecules by cryo-electron microscopy. Annu. Rev. Biophys. Biomol. Struct. 31:303–319.

    Article  PubMed  CAS  Google Scholar 

  • Fujiyoshi, Y. (1998). The structural study of membrane proteins by electron crystallography. Adv. Biophys. 35:25–80.

    Article  PubMed  CAS  Google Scholar 

  • Hegerl, R. and Hoppe, W. (1976). Influence of electron noise on three-dimensional image reconstruction. Z. Naturforsch. 31a:1717–1721.

    Google Scholar 

  • Jiang, W., Baker, M. L., Wu, Q., Bajaj, C. and Chiu, W. (2003). Applications of a bilateral denoising filter in biological electron microscopy. J. Struct. Biol. 144:114–122.

    Article  PubMed  Google Scholar 

  • Mallat, S. G. (1989). A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Machine Intell. 2:674–693.

    Article  Google Scholar 

  • Moss, W. C., Haase, S., Lyle, J. M., Agard, D. A. and Sedat, J.W. (2005). A novel 3D wavelet-based filter for visualizing features in noisy biological data. J. Microsc. 219:43–49.

    Article  PubMed  CAS  Google Scholar 

  • Mrazek, P. and Navara, M. (2003). Selection of optimal stopping time for nonlinear diffusion filtering. Int. J. Comput. Vis. 52:189–203.

    Article  Google Scholar 

  • Perona, P. and Malik, J. (1990). Scale-space and edge detection using anistropic diffusion. IEEE Trans. Pattern Anal. Machine Intell. 12:629–639.

    Article  Google Scholar 

  • Russ, J. C. (1995). The Image Processing Handbook. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Skoglund, U., Öfverstedt, L. G., Burnett, R. M. and Bricogne, G. (1996). Maximum-entropy three-dimensional reconstruction with deconvolution of the contrast transfer function: a test with application with adenovirus. J. Struct. Biol. 117:173–188.

    Article  PubMed  CAS  Google Scholar 

  • Stoschek, A. and Hegerl, R. (1997). Denoising of electron tomographic reconstructions using multiscale transformations. J. Struct. Biol. 120:257–265.

    Article  PubMed  CAS  Google Scholar 

  • Stoschek, A., Yu, T. P. Y., and Hegerl, R. (1997) Denoising of electron tomographic reconstructions biological specimens using multidimensional multiscale transforms. Proc. Of ICA SSP97, Munich, IEEE Computer Society Press, Vol. 4, pp. 2793–2796.

    Google Scholar 

  • Tomasi, C. and Manduchi, R. (1998). Bilateral filtering for gray and color images. In Proceedings of the IEEE International Conference on Computer Vision. Bombay, pp. 59–66.

    Google Scholar 

  • Weickert, J. (1998). Anisotropic Diffusion in Image Processing. Teubner, Stuttgart.

    Google Scholar 

  • Weickert, J. (1999). Coherence-enhancing diffusion of color images. Image Vis. Comput. 17:201–202.

    Article  Google Scholar 

  • Yu, T. P.Y., Stoschek, A. and Donoho, D. L. (1996). Translation-and direction-invariant denoising of 2D and 3D images: experience and algorithms. Proc. SPIE 2825:608–619.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hegerl, R., Frangakis, A.S. (2007). Denoising of Electron Tomograms. In: Frank, J. (eds) Electron Tomography. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69008-7_12

Download citation

Publish with us

Policies and ethics