Skip to main content

Reconstruction With Orthogonal Functions

  • Chapter
  • 3203 Accesses

Abstract

In 1917, Johann Radon posed the question of whether the integral over a function with two variables along an arbitrary line can uniquely define that function such that this functional transformation can be inverted. He also solved this problem as a purely mathematical one, although he mentioned some relationships to the physical potential theory in the plane. Forty-six years later, A. M. Cormack published a paper with a title very similar to that by Radon yet still not very informative to the general reader, namely ‘Representation of a function by its line integrals’—but now comes the point: ‘with some radiological applications’. Another point is that the paper appeared in a journal devoted to applied physics. Says Cormack, ‘A method is given of finding a real function in a finite region of a plane given by its line integrals along all lines intersecting the region. The solution found is applicable to three problems of interest for precise radiology and radiotherapy’. Today we know that the method is useful and applicable to the solution of many more problems, including that which won a Nobel prize in medicine, awarded to A. M. Cormack and G. N. Hounsfield in 1979. Radon’s pioneering paper (1917) initiated an entire mathematical field of integral geometry. Yet it remained unknown to the physicists (also to Cormack, whose paper shared the very same fate for a long time). However, the problem of projection and reconstruction, the problem of tomography as we call it today, is so general and ubiquitous that scientists from all kinds of fields stumbled on it and looked for a solution-without, however, looking back or looking to other fields.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz, M. and Stegun, I. A. (1965). Handbook of Mathematical Functions. Dover.

    Google Scholar 

  • Born, M. and Wolf E. (1975). Principles of Optics. Pergamon, Oxford, UK.

    Google Scholar 

  • Bracewell, R. (1999). The Hankel Transform, 3rd edn. McGraw-Hill, New York.

    Google Scholar 

  • Cormack, A. M. (1963). Representation of a function by its line integrals with some radiological applications. J. Appl. Phys. 34:2722–2727.

    CrossRef  Google Scholar 

  • Cormack, A. M. (1964). Representation of a function by its line integrals with some radiological applications. II. J. Appl. Phys. 35:2908–2912.

    CrossRef  Google Scholar 

  • Deans, S. R. (1979). Gegenbauer transforms via Radon transforms. Siam J. Math. Am. 10:577–585.

    CrossRef  Google Scholar 

  • DeRosier, D. J. and Klug, A. (1968). Reconstruction of three-dimensional structures from electron micrographs. Nature 217:130–134.

    CrossRef  Google Scholar 

  • Frank, J., Radermacher, M., Penczek, P., Zhu, J., Li, Y., Ladjadj, M. and Leith, A. (1996). Spider and web: processing and visualization of images in 3d electron microscopy and related fields. J. Struct. Biol. 116:190–199.

    CrossRef  PubMed  CAS  Google Scholar 

  • Gautschi, W., Golub, G. N. and Opfer, G. (1999). Application and Computation of Orthogonal Polynomials. Birkhaueser, Basel, Switzerland.

    Google Scholar 

  • Gradshteyn, J. S. and Ryzhik, L. M. (1994). Tables of Integrals, Series and Products, 5th edn. Academic Press.

    Google Scholar 

  • Helgason, S. (1980). The Radon Transform. Birkhäuser, Boston.

    Google Scholar 

  • Herman, G. T. (1979). Image Reconstruction From Projections. Springer, Berlin.

    Google Scholar 

  • Howard, J. (1988). Tomography and reliable information. JOSA 5:999–1014.

    CAS  Google Scholar 

  • Lanzavecchia, S. and Bellon, P. L. (1998). Fast computation of 3D radon transform via a direct fourier method. Bioinformatics 14:212–216.

    CrossRef  PubMed  CAS  Google Scholar 

  • Lanzavecchia, S., Bellon, P. L. and Radermacher, M. (1999). Fast and accurate threedimensional reconstruction from projections with random orientations via radon transforms. J. Struct. Biol. 128:152–164.

    CrossRef  PubMed  Google Scholar 

  • Lanzavecchia, S., Cantele, F., Radermacher, M. and Bellon P. L. (2002). Symmetry embedding in the reconstruction of macromolecular assemblies via discrete radon transform. J. Struct. Biol. 17:259–272.

    CrossRef  Google Scholar 

  • Lerche, I. and Zeitler, E. (1976). Projections, reconstructions and orthogonal functions. J. Math. Anal. Apppl. 56:634–649.

    CrossRef  Google Scholar 

  • Lewitt, R. M. and Bates, R. H. T. (1978a). Image reconstruction from projections: I. General theoretical considerations. Optik 50:19–33.

    Google Scholar 

  • Lewitt, R. M. and Bates, R. H. T. (1978b). Image reconstruction from projections: III. Projection completion methods (theory). Optik 50:189–204.

    Google Scholar 

  • Lewitt, R. M., Bates, R. H. T. and Peters, T. M. (1978). Image reconstruction from projections: II. modified back-projection methods. Optik 50:85–109.

    Google Scholar 

  • Nikiforov, A. F., Uvarov, V. B. and Suslov, S. S. (1992). Classical Orthogonal Polynomials of a Discrete Variable. Springer, New York

    Google Scholar 

  • Pawlak, M. and Liao, S. X. (2002). On the recovery of a function on a circular domain. IEEE Trans. Inform. Theory 48:2736–2753.

    CrossRef  Google Scholar 

  • Radermacher, M. (1994). Three-dimensional reconstruction from random projections: orientational alignment via radon transforms. Ultramicroscopy 53:121–136.

    CrossRef  PubMed  CAS  Google Scholar 

  • Radermacher, M. (1997). Radon transform technique for alignment and 3d reconstruction from random projections. Scanning Microsc. Int. Suppl.:169–176.

    Google Scholar 

  • Radermacher, M., Ruiz, T., Wieczorek, H. and Gruber, G. (2001). The structure of the v(1)-atpase determined by three-dimensional electron microscopy of single particles. J. Struct Biol. 135:26–37.

    CrossRef  PubMed  CAS  Google Scholar 

  • Radon, J. (1917). Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber. Verh. Sächs. Akad. 69:262–277.

    Google Scholar 

  • Ramachandran, G.N. and Lakshiminarayanan, A.V. (1971). Three-dimensional reconstruction from radiographs and electron micrographs: application of convolutions instead of Fourier transforms. Proc. Natl Acad. Sci. USA 68:2236–2240.

    CrossRef  PubMed  CAS  Google Scholar 

  • Ruiz, T., Mechin, I., Br, J., Rypniewski, W., Kopperschlger, G. and Radermacher, M. (2003). The 10.8-structure of Saccharomyces cerevisiae phosphofructokinase determined by cryoelectron microscopy: localization of the putative fructose 6-phosphate binding sites. J. Struct. Biol. 143:124–134.

    CrossRef  PubMed  CAS  Google Scholar 

  • Smith, P. R. (1978). An integrated set of computer programs for processing electron micrographs of biological structures. Ultramicroscopy 3:153–160.

    CrossRef  PubMed  CAS  Google Scholar 

  • Smith, P. R., Peters, T.M. and Bates, R.H.T. (1973). Image reconstruction from finite numbers of projections. J. Phys. A 6:319–381.

    CrossRef  Google Scholar 

  • Strichartz, R. S. (1982). Radon inversion—variation on a theme. Am. Math. Monthly 89:377–384.

    CrossRef  Google Scholar 

  • Szegö, G. (1975). Orthogonal Polynomials. American Mathemeatics Society, Providence RI.

    Google Scholar 

  • Vogel, R. H. and Provencher, S. W. (1988.) Three-dimensional reconstruction from electron micrographs of disordered specimens, II. Implementation and results. Ultramicroscopy 25:223–240.

    CrossRef  PubMed  CAS  Google Scholar 

  • Zeitler, E. (1974). The recostruction of objects from their projections. Optik 39:396–415.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zeitler, E. (2007). Reconstruction With Orthogonal Functions. In: Frank, J. (eds) Electron Tomography. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69008-7_10

Download citation

Publish with us

Policies and ethics