Skip to main content

Introduction: Principles of Electron Tomography

  • Chapter

Abstract

Tomography is a method for reconstructing the interior of an object from its projections. The word tomography literally means the visualization of slices, and is applicable, in the strict sense of the word, only in the narrow context of the single-axis tilt geometry: for instance, in medical computerized axial tomography (CAT-scan imaging), the detector-source arrangement is tilted relative to the patient around a single axis (Fig. 1a). In electron microscopy, where the beam direction is fixed, the specimen holder is tilted around a single axis (Fig. 1b). However, the usage of this term has recently become more liberal, encompassing arbitrary geometries, provided that the specimen is actively tilted into multiple angles. In line with this relaxed convention, we will use the term electron tomography for any technique that employs the transmission electron microscope to collect projections of an object that is tilted in multiple directions and uses these projections to reconstruct the object in its entirety. Excluded from this definition are ‘single-particle’ techniques that make use of multiple occurrences of the object in different orientations, with or without the additional aid of symmetry (Fig. 1c). These techniques are covered elsewhere (non-symmetric: Frank, 1996, 2006; symmetric: Glaeser et al., 2007).

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amos, L.A., Henderson, R. and Unwin, P. N. T. (1982). Three-dimensional structure determination by electron microscopy of 2-dimensional crystals. Prog. Biophys. Mol. Biol. 39: 183–231.

    CrossRef  PubMed  CAS  Google Scholar 

  • Andrews, H. C. (1970). Computer Techniques in Image Processing. Academic Press, New York.

    Google Scholar 

  • Barnard, D. P., Turner, J.N., Frank, J. and McEwen, B.F. (1992). A 360° single-axis tilt stage for the high-voltage electron microscope. J. Microsc. 167:39–48.

    PubMed  CAS  Google Scholar 

  • Bracewell, R. N. (1999). The Fourier Transform and Its Applications, 3rd edn. McGraw-Hill, New York.

    Google Scholar 

  • Bracewell, R. N. and Riddle, A. C. (1967). Inversion of fan-beam scans in radio astronomy. Astrophys. Soc. 150:427–434.

    CrossRef  Google Scholar 

  • Chalcroft, J. P. and Davey, C. L. (1984). A simply constructed extreme-tilt holder for the Philips eucentric goniometer stage. J. Microsc. 134:41–48.

    Google Scholar 

  • Colsher, J. G. (1977). Iterative three-dimensional image reconstruction from tomographic projections. Comput. Graphics Image Process. 6:513–537.

    CrossRef  Google Scholar 

  • Cormack, A. M. (1964). Representation of a function by its line integrals, with some radiological applications. I. J. Appl. Phys. 35:2908–2912.

    CrossRef  Google Scholar 

  • Crowther, R. A., Amos, L. A., Finch, J. T. and Klug, A. (1970a). Three-dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs. Nature 226: 421–425.

    CrossRef  PubMed  CAS  Google Scholar 

  • Crowther, R. A., DeRosier, D. J. and Klug, A. (1970b). The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. B 317:319–340.

    CrossRef  Google Scholar 

  • DeRosier, D. and Klug, A. (1968). Reconstruction of 3-dimensional structures from electron micrographs. Nature 217:130–134.

    CrossRef  Google Scholar 

  • Frank, J. (1975). Averaging of low exposure electron micrographs of nonperiodic objects. Ultramicroscopy 1:159–162.

    CrossRef  PubMed  CAS  Google Scholar 

  • Frank, J. (1992). Introduction. In Electron Tomography (J. Frank, ed.) pp. 1–13. Plenum, New York.

    Google Scholar 

  • Frank, J. (1996). Three-dimensional Electron Microscopy of Macromolecules. Academic Press, San Diego.

    Google Scholar 

  • Frank, J. (2006). Three-dimensional Electron Microscopy of Macromolecules, 2nd edn. Oxford University Press, New York.

    Google Scholar 

  • Frank, J. and Radermacher, M. (1986). Three-dimensional reconstruction of nonperiodic macromolecular assemblies from electron micrographs. In Advanced Techniques in Electron Microscopy III (J. K. Koehler, ed.). Springer-Verlag, New York, pp. 1–72.

    Google Scholar 

  • Gilbert, P. F. C. (1972). The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. II. Direct methods. Proc. R. Soc. B 182:89–117.

    CrossRef  CAS  Google Scholar 

  • Glaeser, R. M., Downing, K. H., Chiu, W., Frank, J. and DeRosier, D. (2007). Electron Crystallography of Biological Macromolecules. Oxford University Press, New York.

    Google Scholar 

  • Hegerl, R. and Altbauer, A. (1982). The ‘EM’ program system. Ultramicroscopy 9:109–116.

    CrossRef  PubMed  CAS  Google Scholar 

  • Herman, G.T. (ed.) (1979). Image Reconstruction from Projections. Springer-Verlag, Berlin.

    Google Scholar 

  • Henderson, R. and Unwin, P. N. T. (1975). Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32.

    CrossRef  PubMed  CAS  Google Scholar 

  • Herman, G. T. and Lewitt, R. M. (1979). Overview of image reconstruction from projections, in Image Reconstruction from Projections (G.T. Herman, ed.). Springer-Verlag, Berlin, pp. 1–7.

    Google Scholar 

  • Hoppe, W. (1972). Drei-dimensional abbildende Elektronenmikroskope. Z. Naturforsch. 27a: 919–929.

    Google Scholar 

  • Hoppe, W. (1981). Three-dimensional electron microscopy. Annu. Rev. Biophys. Bioeng. 10: 563–592.

    CrossRef  PubMed  CAS  Google Scholar 

  • Hoppe, W. (1983). Elektronenbeugung mit dem Transmissions-Elektronenmikroskop als phasenbestimmendem Diffraktometer-von der Ortsfrequenzfilterung zur dreidimensionalen Strukturanalyse an Ribosomen. Angew. Chem. 95:465–494.

    CrossRef  CAS  Google Scholar 

  • Hoppe, W., Gassmann, J., Hunsmann, N., Schramm, H. J. and Sturm, M. (1974). Three-dimensional reconstruction of individual negatively stained fatty-acid synthetase molecules from tilt series in the electron microscope. Hoppe-Seyler’s Z. Physiol. Chem. 355:1483–1487.

    PubMed  CAS  Google Scholar 

  • Klug, A. (1983). From macromolecules to biological assemblies (Nobel lecture). Angew. Chem. 22:565–636.

    CrossRef  Google Scholar 

  • Koster, A. J., Chen, J.W., Sedat, J.W. and Agard, D. A. (1992). Automated microscopy for electron tomography. Ultramicroscopy 46:207–227.

    CrossRef  PubMed  CAS  Google Scholar 

  • Lanzavecchia, S., Cantele, F., Bellon, P. L., Zampighi, L., Kreman, M., Wright, E., and Zampighi, G. A. (2005). Conical tomography of freeze-fracture replicas: a method for the study of integral membrane proteins inserted in phospholipids bilayers. J. Struct. Biol. 149:87–98.

    CrossRef  PubMed  CAS  Google Scholar 

  • Lewitt, R. M. and Bates, R. H. T. (1978a). Image reconstruction from projections. I: General theoretical considerations. Optik (Stuttgart) 50:19–33.

    Google Scholar 

  • Lewitt, R. M. and Bates, R. H.T. (1978b). Image reconstruction from projections. III: Projection completion methods (theory). Optik (Stuttgart) 50:189–204.

    Google Scholar 

  • Lewitt, R. M., Bates, R. H. T. and Peters, T. M. (1978). Image reconstruction from projections. II: Modified back-projection methods. Optik (Stuttgart) 50:85–109.

    Google Scholar 

  • Radermacher, M. and Hoppe, W. (1980). Properties of 3D reconstruction from projections by conical tilting compared to single axis tilting. In Proceedings of the 7th European Congress on Electron Microscopy, Den Haag, Vol. I, pp. 132–133.

    Google Scholar 

  • Radermacher, M., Wagenknechet, T., Verschoor, A. and Frank, J. (1987a). Three-dimensional structure of the large ribosomal subunit from Escherichia coli. EMBO J. 6:1107–1114.

    PubMed  CAS  Google Scholar 

  • Radermacher, M., Wagenknecht, T., Verschoor, A. and Frank, J. (1987b). Three-dimensional reconstruction from single-exposure random conical tilt series applied to the 50S ribosomal subunit of Escherichia coli. J. Microsc. 146:113–136.

    PubMed  CAS  Google Scholar 

  • Radon, J. (1917). Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Math. Phys. Klasse 69:262–277.

    Google Scholar 

  • Saxton, W. O. and Frank, J. (1977). Motif detection in quantum noise-limited electron micrographs by cross-correlation. Ultramicroscopy 2:219–227.

    CrossRef  PubMed  CAS  Google Scholar 

  • Smith, P. R., Peters, T.M. and Bates, R.H.T. (1973). Image reconstruction from a finite number of projections. J. Phys. A 6:361–382.

    CrossRef  Google Scholar 

  • Turner, J. N. (1981). Stages and stereo pair recording. Methods Cell Biol. 23:33–51.

    Google Scholar 

  • Typke, D., Hoppe, W., Sessier, W. and Burger, M. (1976). Conception of a 3-D imaging electron microscopy. In Proceedings of the 6th European Congress on Electron Microscopy (D. G. Brandon, ed.), Vol. 1, Tal International, Israel, pp. 334–335.

    Google Scholar 

  • Unwin, P. N. T. and Henderson, R. (1975). Molecular structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol. 94:425–440.

    CrossRef  PubMed  CAS  Google Scholar 

  • Zampighi, G., Zampighi, L., Fain., N., Wright, E. M., Cantele, F. and Lanzavecchia, S. (2005). Conical tomography II: a method for the study of cellular organelles in thin sections. J. Struct. Biol. 151:263–274.

    CrossRef  PubMed  CAS  Google Scholar 

  • Zwick, M. and Zeitler, E. (1973). Image reconstruction from projections. Optik 38:550–565.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Frank, J. (2007). Introduction: Principles of Electron Tomography. In: Frank, J. (eds) Electron Tomography. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69008-7_1

Download citation

Publish with us

Policies and ethics