Skip to main content

Gas Flow–Particle Interaction

  • Chapter
  • First Online:

Abstract

In the thermal processing of powders for spraying of protective coatings or free-standing bodies, the proper control of particle or droplet (suspension or solution) trajectories and their temperature and momentum histories in the gas flow represents one of the critical aspects on which the overall success of the operation strongly depends. In fact, a slight deviation from near optimal conditions can easily lead to poor results due to either the lack of melting of particles, or insufficient impact velocities, or the modification of their composition due to particle evaporation or unwanted chemical reactions. The first parts of the chapter deal with a single particle trajectory and heating, including heat propagation, with mass transfers and chemical reactions for liquid or gaseous phases. Then ensemble of particles is considered with the injection problems and possible loading effects. The last section is devoted to the interaction between a high-energy gas and a liquid, which fragmentation and then vaporization cools the hot gases. Moreover liquid fragmentation and vaporization is drastically modified by arc root fluctuations for plasmas produced by direct current torches

This is a preview of subscription content, log in via an institution.

Abbreviations

d.c.:

direct current

D-gun:

Detonation gun

FTIR:

Fourier transform infra red

GLR:

Gas-to-liquid mass ratio

HVAF:

High velocity air fuel

HVOF:

High velocity oxygen fuel

i.d.:

internal diameter

L.T.E.:

Local Thermodynamic Equilibrium

PIV:

Particle Image Velocimetry

r.f.:

radio frequency

XRD:

X-Ray Diffraction

References

  1. Boulos MI, Fauchais P, Vardelle A, Pfender E (1993) Fundamentals of plasma particle momentum and heat transfer. In: Suryanarayanan R (ed) Plasma spraying theory and applications. World Scientific, Singapore

    Google Scholar 

  2. Pfender E (1999) Thermal plasma technology: where do we stand and where are we going? Plasma Chem Plasma Proc 19(1):1–31

    Google Scholar 

  3. Pfender E, Chang CH (1998) Plasma spray jets and plasma-particulate interaction: modeling and experiments. In: Coddet C (ed) Thermal spray: meeting the challenges of the 21st century, vol 1. ASM International, Materials Park, OH, pp 315–321

    Google Scholar 

  4. Fauchais P, Léger AC, Vardelle M, Vardelle (1997) Formation of plasma sprayed oxide coatings. In: Sohn HY, Evans JW, Apelian D (eds) Proceedings of the Julian Szekely Memorial Symposium on Materials Processing. T.M.S. pp 571–582

    Google Scholar 

  5. Boulos MI Plasma interaction with a dispersed medium. In: Heberlein J (ed) Ch 6.2. Continuing education course in conjunction with ITSC2004. University of Minnesota, MN

    Google Scholar 

  6. Pfender E (1985) Heat and momentum transfer to particles in thermal plasma flows. Pure Appl Chem 57:1179–1196

    Google Scholar 

  7. Pfender E, Lee YC (1985) Particle dynamics and particle heat and mass transfer in thermal plasmas. Part I. The motion of a single particle without thermal effects. Plasma Chem Plasma Proc 5(3):211–237

    Google Scholar 

  8. Lee YC, Chyou YP, Pfender E (1985) Particle dynamics and particle heat and mass transfer in thermal plasmas. Part II. Particle heat and mass transfer in thermal plasmas. Plasma Chem Plasma Proc 5(4):391–414

    Google Scholar 

  9. Lee YC, Chyou YP, Pfender E (1997) Particle dynamics and particle heat and mass transfer in thermal plasmas. Part III. Thermal plasma jet reactors and multiparticle injection. Plasma Chem Plasma Proc 7(1):1–27

    Google Scholar 

  10. Chen X (1988) Particle heating in a thermal plasma. Pure Appl Chem 60:651–662

    Google Scholar 

  11. Pfender E (1989) Particle behavior in thermal plasmas. Plasma Chem Plasma Proc 9(Sup.1):167S–194S

    Google Scholar 

  12. Clift R, Grace JR, Weber JE (1978) Bubbles, drops and particles. Academic, New York, NY

    Google Scholar 

  13. White FM (1974) Viscous fluid flow. Mc Graw Hill, New York, NY

    Google Scholar 

  14. Sayegh NN, Gauvin WH (1979) Analysis of variable property heat transfer to a single sphere in high temperature surrounding. AIChE J 25:522–534

    Google Scholar 

  15. Boothroyd RG (1971) Flowing gas-solid suspension. Chapman and Hall, London

    Google Scholar 

  16. Ishii M (1975) Thermofluid dynamic theory of two phase flow. Eyrolles, Paris

    Google Scholar 

  17. Rudinger G (1980) Fundamentals of gas-solid particle flow. Elsevier, Amsterdam

    Google Scholar 

  18. Chang CH, Ramshaw JD (1994) Numerical simulation of non-equilibrium effects in an argon plasma jet. Phys Plasmas 1:3698–3708

    Google Scholar 

  19. Chyou YP, Pfender E (1989) Behavior of particulates in thermal plasma flows. Plasma Chem Plasma Proc 9(1):45–71

    Google Scholar 

  20. Chang CH (1992) Numerical simulation of alumina spraying in an argon-helium plasma jet. In: Berndt CC (ed) Thermal spray: international advances in coatings technology. ASM International, Materials Park, OH, pp 793–798

    Google Scholar 

  21. Vardelle M, Vardelle A, Fauchais P, Li K-I, Dussoubs B, Themelis NJ (2001) Controlling particle injection in plasma spraying. J Therm Spray Technol 10(2):267–284

    Google Scholar 

  22. Janisson S, Meillot E, Vardelle A, Coudert JF, Pateyron B, Fauchais P (1999) Plasma spraying using Ar-He-H2 gas mixtures. J Therm Spray Technol 8(4):545–552

    Google Scholar 

  23. Planche MP, Bolot R, Landemarre O, Coddet C (1998) Comparison between experimental and numerical results obtained on in-flight particles characteristics. In: Coddet C (ed) Thermal spray: meeting the challenges of the 21st century, vol 2. ASM International, Materials Park, OH, pp 355–360

    Google Scholar 

  24. Bolot R, Morin V, Coddet C (2001) Correlation between simulations and plasma spray coatings properties. In: Berndt CC, Khor KA, Lugsheider E (eds) Thermal spray 2001: new surface for a new millenium. 883, 888

    Google Scholar 

  25. Dussoubs B, Vardelle A, Mariaux G, Themelis NJ, Fauchais P (2001) Modeling of plasma spraying of two powders. J Therm Spray Technol 10(1):105–110

    Google Scholar 

  26. Delluc G, Perrin L, Ageorges H, Fauchais P, Pateyron B (2004) Modelling of plasma jet and particle behavior in spraying conditions. In: Rom CD (ed) ITSC2004, in modeling and simulation V. DVS, Düsseldorf, Germany

    Google Scholar 

  27. Planche MP, Bolot R, Coddet C (2003) In-flight characteristics of plasma sprayed alumina particles: measurements, modeling, and comparison. J Therm Spray Technol 12(1):101–111

    Google Scholar 

  28. Zhang T, Gawne DT, Liu B (2000) Computer modelling of the influence of process parameters on the heating and acceleration of particles during plasma spraying. Surf Coat Technol 132:233–243

    Google Scholar 

  29. Devasenapathi A, Ang CB, Yu SCM, Ng HW (2001) Role of particle injection velocity on coating microstructure of plasma sprayed alumina - validation of process chart. Surf Coat Technol 139:44–54

    Google Scholar 

  30. Wilden J, Frank H, Bergmann J-P (2006) Process and microstructure simulation in thermal spraying. Surf Coat Technol 201:1962–1968

    Google Scholar 

  31. Kamnis S, Gu S, Zeoli N (2008) Mathematical modelling of Inconel 718 particles in HVOF thermal spraying. Surf Coat Technol 202:2715–2724

    Google Scholar 

  32. Li M, Christofides PD (2004) Feedback control of HVOF spray process accounting for powder size distribution. J Therm Spray Technol 13(1):108–120

    Google Scholar 

  33. Samareh B, Dolatabadi A (2007) A three-dimensional analysis of the cold spray process: the effects of substrate location and shape. J Therm Spray Technol 16(5–6):634–642

    Google Scholar 

  34. Katanoda H, Matsuoka T, Matsuo K (2007) Experimental study on shock wave structures in constant-area passage of cold spray nozzle. J Therm Sci 16(1):40–45

    Google Scholar 

  35. Nickel R, Bobzin K, Lugscheider E, Parkot D, Varava W, Olivier H, Luo X (2007) Numerical studies of the application of shock tube technology for cold gas dynamic spray process. J Therm Spray Technol 16(5–6):729–735

    Google Scholar 

  36. Hanson TC, Hackett CM, Settles GS (2002) Independent control of HVOF particle velocity and temperature. J Therm Spray Technol 11(1):75–85

    Google Scholar 

  37. Vardelle A, Fauchais P, Dussoubs B, Themelis NJ (1998) Heat generation and particle injection in a thermal plasma torch. Plasma Chem Plasma Proc 18(4):551–574

    Google Scholar 

  38. Moreau E, Chazelas C, Mariaux G, Vardelle A (2006) Modeling the restrike mode operation of a d.c. plasma spray torch. J Therm Spray Technol 15(4):524–530

    Google Scholar 

  39. Meillot E, Balmigere G (2008) Plasma spraying modeling: particle injection in a time-fluctuating plasma jet. Surf Coat Technol 202:4465–4469

    Google Scholar 

  40. Legros E (2003) 3D modeling of the spray process. Ph.D. Thesis, University of Limoges, France

    Google Scholar 

  41. Bandyopadhyay R, Nylén P (2003) A computational fluid dynamic analysisof gas and particle flow in flame spraying. J Therm Spray Technol 12(4):492–503

    Google Scholar 

  42. Gu S, McCartney DG, Eastwick CN, Simmons K (2004) Numerical modeling of in-flight characteristics of inconel 625 particles during high-velocity oxy-fuel thermal spraying. J Therm Spray Technol 13(2):200–211

    Google Scholar 

  43. Kadyrov E (1996) Gas-particle interaction in detonation spraying process. J Therm Spray Technol 5(2):185–195

    Google Scholar 

  44. Tillmann W, Vogli E, Nebel J (2007) Development of detonation flame sprayed cu-base coatings containing large ceramic particles. J Therm Spray Technol 16(5–6):751–758

    Google Scholar 

  45. Boulos MI (1978) Heating of powders in the fire ball of an induction plasma. IEEE Trans Plasma Sci 6(2):93–106

    Google Scholar 

  46. Boulos MI (1985) The inductively coupled R.F. (radio frequency) plasma. Pure Appl Chem 57(9):1321–1352

    Google Scholar 

  47. Boulos MI (1992) RF induction plasma spraying: state-of-the-art review. J Therm Spray Technol 1(1):33–40

    Google Scholar 

  48. Abukawa S, Takabate T, Tani K (2006) Effect of powder injection of deposit efficiency in plasma spraying. In: Marple B et al (eds) Proceedings of the 2006 international thermal spray conference. ASM International, Materials Park, OH, e-proc

    Google Scholar 

  49. Han T, Zhao Z, Gillispie BA, Smith JR (2005) Effects of spray conditions on coating formation by the kinetic spray process. J Therm Spray Technol 14(3):373–383

    Google Scholar 

  50. Balani K, Laha T, Agarwal A, Karthikeyan J, Munroe N (2005) Effect of carrier gases on microstructural and electrochemical behavior of cold-sprayed 1100 aluminum coating. Surf Coat Technol 195:272–279

    Google Scholar 

  51. Lewis JW, Gauvin WH (1973) Motion of particles entrained in a plasma jet. AIChE J 19(6):982–990

    Google Scholar 

  52. Oberkampf WL, Talpallikar M (1994) Analysis of a high velocity oxygen-fuel (HVOF) thermal spray torch, part 1: numerical formulation. In: Berndt CC, Sampath S (eds) Thermal spray industrial applications. ASM International, Materials Park, OH, pp 381–386

    Google Scholar 

  53. Crowe CT (1967) Drag coefficient on particles in a rocket nozzle. J AIAA 5(5):1021–1022

    Google Scholar 

  54. Lopez AR, Hassan B, Oberkampf WL, Neiser RA, Roemer TJ (1998) Computational fluid dynamics, analysis of a wire-feed, high –velocity oxygen fuel (HVOF) thermal spray torch. J Therm Spray Technol 7(3):374–382

    Google Scholar 

  55. Kadyrov E, Kadyrov V (1995) Gas dynamical parameters of detonation powder spraying. J Therm Spray Technol 4(3):280–286

    Google Scholar 

  56. Henderson CB (1976) Drag coefficients of spheres in continuum and rarefied flows. AIAA J 14(6):707–708

    Google Scholar 

  57. Walsh MJ (1975) Drag coefficient equations for small particles in high speed flows. Am Inst Aeronaut Astronaut J 13(11):1526–1528

    Google Scholar 

  58. Sobolev VV, Guilemany JM, Nutting J (2004) High-velocity oxy-fuel spraying. Maney for the Institute of Materials, Minerals and Mining, London, p 397

    Google Scholar 

  59. Boulos M, Fauchais P, Pfender E (1994) Thermal plasmas fundamental and applications. Plenum Press, London, p 452

    Google Scholar 

  60. Lee YC, Hsu C, Pfender E (1981) Modelling of particle injection into a D.C plasma jet 5th international symposium on plasma chemistry. Edinburgh, Scotland, 2, pp 795-801

    Google Scholar 

  61. Chen X, Pfender E (1983) Effect of the Knudsen number on heat transfer to a particle immersed into a thermal plasma. Plasma Chem Plasma Proc 3:97–113

    Google Scholar 

  62. Chen X, Pfender E (1983) Behavior of small particles in a thermal plasma flow. Plasma Chem Plasma Proc 3:351–366

    Google Scholar 

  63. Xi C, Ping H (1986) Heat transfer from a rarefied plasma flow to a metallic or nonmetallic particle. Plasma Chem Plasma Proc 6(4):313–333

    Google Scholar 

  64. Fazilleau J (2003) Contribution to the understanding of the phenomena implied in the achievement of finely structured oxide coatings by suspension plasma spraying. PhD. Thesis, In French, University of Limoges France

    Google Scholar 

  65. Vardelle A, Themelis NJ, Dussoubs B, Vardelle M, Fauchais P (1997) Transport phenomena in thermal plasmas. J High Temp Mater Proc 1(3):295–317

    Google Scholar 

  66. Fauchais P, Coudert JF, Vardelle M (1989) Diagnostics in thermal plasma processing. In: Ociello O, Flamm DL (eds) Plasma diagnostics, vol 1. Academic, New York, p 349

    Google Scholar 

  67. Ganser GH (1993) A rational approach to drag prediction of spherical and nonspherical particles. Powder Technol 77:43–52

    Google Scholar 

  68. Fukanuma H, Ohno N, Sun B, Huang R (2006) The influence of particle morphology on in-flight particle velocity in cold spray. In: Proceedings of the 2006 International Conference of Thermal Spray. ASM International, Materials Park, OH, e-proc

    Google Scholar 

  69. Xu D-Y, X-C W, Chen X (2002) Motion and heating of non-spherical particles in a plasma jet. Surf Coat Technol 171(1–3):149–156

    Google Scholar 

  70. Fukanuma H, Ohno N, Sun B, Huang R (2006) In-flight particle velocity measurements with DPV-2000 in cold spray. Surf Coat Technol 201:1935–1941

    Google Scholar 

  71. Xi C, Chen X (1989) Drag on a metallic or non-metallic particle exposed to a rarefied plasma flow. Plasma Chem Plasma Proc 9(3):387–408

    Google Scholar 

  72. Uglov AA, Gnedovets AG (1991) Effect of particle charging on momentum and heat transfer from rarefied plasma flow. Plasma Chem Plasma Proc 11(2):251–267

    Google Scholar 

  73. Gnedovets AG, Uglov AA (1992) Heat transfer to non-spherical particles in a rarefied plasma flow. Plasma Chem Plasma Proc 12(4):383–402

    Google Scholar 

  74. Gnedovets AG, Uglov AA (1992) Enhancement of heat transfer from a rarefied plasma flow to thermo-emitting particle. Plasma Chem Plasma Proc 12(4):371–382

    Google Scholar 

  75. Xi C, Chen J, Wang Y (1995) Unsteady heating of metallic particles in a rarefied plasma. Plasma Chem Plasma Proc 15(2):199–219

    Google Scholar 

  76. Soo SL (1967) Fluid dynamics of multiphase systems. Blaisdell, New York, NY

    Google Scholar 

  77. Fauchais P, Etchart-Salas R, Rat V, Coudert JF, Caron N, Wittmann K (2008) Parameters controlling liquid plasma spraying: solutions, sols or suspensions. J Therm Spray Technol 17(1):31–59

    Google Scholar 

  78. Delbos C, Fazilleau J, Rat V, Coudert JF, Fauchais P, Pateyron B (2006) Phenomena involved in suspension plasma spraying, part 2: zirconia particle treatment and coating formation. Plasma Chem Plasma Proc 26(4):393–414

    Google Scholar 

  79. Chen XI, Chyou YP, Lee YC, Pfender E (1985) Heat transfer to a particle under plasma conditions with vapor contamination from the particle. Plasma Chem Plasma Proc 5(2):119–141

    Google Scholar 

  80. Seyed AA, Denoirjean A, Denoirjean P, Labbe JC, Fauchais P (2004) Investigation of phenomena influencing properties of plasma sprayed ceramic-metal composite deposits. High Temp Mater Proc 8(2):253–276

    Google Scholar 

  81. Seyed A (2004) Co-spraying in air of alumina and stainless steel particles by DC plasma jet. Ph.D. Thesis, University of Limoges, F. and Ghalam Ishaq Khan Institute, Islamabad, Pa, Feb

    Google Scholar 

  82. Boulos MI (2003) Spheroïdization and densification of powders” Continuing education course on thermal plasmas, held in conjunction with 16th International Symposium on Plasma Chemistry, Fauchais P (ed) University of Limoges

    Google Scholar 

  83. Yang Y-M, Liao H, Coddet C (2002) Simulation and application of a HVOF process for MCrAlY thermal spraying. J Therm Spray Technol 11(1):36–43

    Google Scholar 

  84. Bourdin E, Fauchais P, Boulos MI (1983) Transient heat conduction under plasma conditions. Int J Heat Mass Transfer 26:567–582

    Google Scholar 

  85. Fizdon JK (1979) Melting of powder grains in a plasma flame. Int J Heat Mass Transfer 22:749–761

    Google Scholar 

  86. Chen XI, Pfender E (1982) Unsteady heating and radiation effects of small particles in a thermal plasma. Plasma Chem Plasma Proc 2:293–316

    Google Scholar 

  87. Vardelle A (1988) Numerical study of heat, momentum and mass transfers between an arc plasma at atmospheric pressure and solid particles, Thesis of Doctorate, University of Limoges, France

    Google Scholar 

  88. Gavrilenko TP, Nikolaev YA (2007) Calculation of detonation gas spraying. Combust Explos Shock Waves 43(6):724–731

    Google Scholar 

  89. Bouneder M, El Ganaoui M, Pateyron B, Fauchais P (2003) Thermal modeling of composite iron/alumina particles sprayed under plasma conditions Part I: Pure conduction. High Temp Mater Proc 7(4):547–555

    Google Scholar 

  90. Bouneder M (2006) Modelling of heat and mass transfer within composite metal/ceramic particles in DC plasma spraying. PhD thesis University of Limoges France

    Google Scholar 

  91. Knight CJ (1979) Theoretical modeling of rapid surface vaporization with back pressure. AIAA J 17(5):519–523

    Google Scholar 

  92. Ben-Ettouil F, Mazhorova O, Pateyron B, Ageorges H, El Ganaoui M, Fauchais P (2007) Fast modelling with “back pressure” model of phase changes along the trajectory of a single particle within a DC plasma jet. J Therm Spray Technol 16(5–6):744–750

    Google Scholar 

  93. Ivosevic M, Cairncross RA, Knight R (2006) 3D predictions of thermally sprayed polymer splats: modeling particle acceleration, heating and deformation on impact with a flat substrate. Int J Heat Mass Transfer 49:3285–3297

    Google Scholar 

  94. Hurevich V, Smurnov I, Pawlowski L (2002) Theoretical study of the powder behavior of porous particles in a flame during plasma spraying. Surf Coat Technol 151–152:370–376

    Google Scholar 

  95. Vardelle M, Vardelle A, Denoirjean A, Fauchais P (1990) Heat treatment of zirconia powders with different morphologies under thermal spray conditions. In: Apelian D, Szekely J (eds) MRS Spring Meeting Proceedings, MRS 190:175–183

    Google Scholar 

  96. Diez P, Smith RW (1993) The influence of powder agglomeration methods on plasma sprayed yttria coatings. J Therm Spray Technol 2(2):165–172

    Google Scholar 

  97. Chang P, Khor KA (1996) Influence of powder characteristics on plasma sprayed hydroxyapatite coatings. J Therm Spray Technol 5(3):310–316

    Google Scholar 

  98. Ben-Ettouil F, Mazhorova O, Pateyron B, Ageorges H, El-Ganaoui M, Fauchais P (2008) Predicting dynamic and thermal histories of agglomerated particles injected within a d.c. Plasma Jet Surf Coat Technol 202:4491–4495

    Google Scholar 

  99. Xi C, Pfender E (1982) Heat transfer to a single particle exposed to a thermal plasma. Plasma Chem Plasma Proc 2(2):185–212

    Google Scholar 

  100. Yoshida T, Akashi K (1977) Particle heating in a radio-frequency plasma torch. J Appl Phys 48(6):2252–2264

    Google Scholar 

  101. Ranz WE, Marshall WR (1952) Evaporation from drops. Chem Eng Prog 48(3):141–146

    Google Scholar 

  102. Ranz WE, Marshall WR (1952) Evaporation from drops. Part II. Chem Eng Prog 48(4):173–180

    Google Scholar 

  103. Borgianni C, Capitelli M, Cramarossa F, Triolo L, Molinari L (1969) The behaviour of metal oxides injected into an argon induction plasma. Combust Flame 13:181–194

    Google Scholar 

  104. Humbert P (1991) Development of pilot set-up for silicon purification by induction thermal plasma and modelling of mass and heat transfers plasma-particles, Ph.D. Thesis, University of Paris VI, ENSCP, Rue P, Curie M

    Google Scholar 

  105. Essoltani A, Proulx P, Boulos MI, Gleizes A (1990) Radiation and self-absorption in argon - iron plasmas at atmospheric pressure, J. Anal Atomic Spectr 5:543–547

    Google Scholar 

  106. Essoltani A, Proulx P, Boulos MI, Gleizes A (1994) Effect of the presence of iron vapors on the volumetric emission of Ar/Fe and Ar/Fe/H2 plasmas. Plasma Chem Plasma Proc 14(3):301–315

    Google Scholar 

  107. Cram L (1985) Statistical evaluation of radiative power losses from thermal plasmas due to spectral lines. J Phys D 18:401–411

    Google Scholar 

  108. Essoltani E, Proulx P, Boulos MI, Gleizes A (1994) Volumetric emission of argon plasmas in the presence of vapors of Fe, Si and Al. Plasma Chem Plasma Proc 14:437–450

    Google Scholar 

  109. Essoltani A, Proulx P, Boulos MI, Gleizes A (1991) Radiative effects on plasma-particle heat transfer in the presence of metallic vapors, 10th International Symposium on Plasma Chemistry. Ehlemann U & et al (eds). University of BOCHUM, Germany, 1

    Google Scholar 

  110. Vardelle M, Vardelle A, Li K-I, Fauchais P, Themelis NJ (1996) Coating generation: vaporization of particles in plasma spraying and splat formation. Pure Appl Chem 68(5):1093–1099

    Google Scholar 

  111. Robertson DGC, Jenkins AE (1970). In: Belton GR, Workel WL (eds) Heterogeneous kinetics at elevated temperatures. Plenum Press, New York, NY pp 369–385

    Google Scholar 

  112. Li K-I, Vardelle M, Vardelle A, Fauchais P, Trassy C (1995) Comparisons between single and double flow injectors in the plasma spraying process. In: Berndt CC (ed) Thermal spray: practical solutions for engineering problems. ASM International, Materials Park, OH, pp 45–50

    Google Scholar 

  113. Gross KA, Fauchais P, Vardelle M, Tikkanen J, Keskinen J (1997) Vaporization and ultrafine particle generation during the plasma spraying process. In: Berndt CC (ed) Thermal spray: a united forum for scientific and technological advances. ASM International, Materials Park, OH, pp 543–548

    Google Scholar 

  114. Vardelle A, Vardelle M, Zhang H, Themelis NJ, Gross K (2002) Controlling particle injection in plasma spraying. J Therm Spray Technol 11(2):244–284

    Google Scholar 

  115. Etemadi K (1991) Formation of aluminum nitrides in thermal plasmas. Plasma Chem Plasma Proc 11(1):41–56

    Google Scholar 

  116. Volenik K, Leitner J, Hanousek F, Dubsky J, Kolman B (1997) Oxides in plasma-sprayed chromium steel. J Therm Spray Technol 6(3):327–334

    Google Scholar 

  117. Asaki Z, Fakunaka Y, Nagasi T, Kondo Y (1974) Thermal decomposition of limestone in a fluidized bed. Metallurg Transact B 5:381–390

    Google Scholar 

  118. Arnauld PH, Cavadias S, Amouroux J (1985) The interaction of a fluidized bed with a thermal plasma. Application to limestone decomposition. In: Timmermans X (ed) Proceedings of international symposium on plasma chemistry, vol 1. University of Technology of Eindhoven, Netherlands, pp 195–200

    Google Scholar 

  119. Amouroux J, Gicquel A, Cavadias S, Morvan D, Arefi F (1985) Progress in the applications of plasma surface modifications and correlations with the chemical properties of the plasma phase. Pure Appl Chem 57(9):1207–1222

    Google Scholar 

  120. Vardelle A, Fauchais P (1997) Vaporization and ultra-fine particle generation during the plasma spraying process. In: Berndt CC (ed) Thermal spray: a united forum for scientific and technological advances. ASM International, Materials Park, OH, pp 543–548

    Google Scholar 

  121. Espié G, Fauchais P, Labbe JC, Vardelle A, Hannoyer B (2001) Oxidation of iron particles during APS. In: Berndt CC, Khor KA, Lugscheider E (eds) Thermal spray 2001: New surface for a new millenium. ASM International, Materials Park, OH, pp 821–828

    Google Scholar 

  122. Volenik K, Chraska P, Dubsky J, Had J, Leitner J, Schneewein O (2003) Oxidation of Ni-based alloys sprayed by a water-stabilized plasma gun (WSP). In: Moreau C, Marple B (eds) Thermal spray 2003: advancing the science and applying the technology. ASM International, Materials Park, OH, pp 1033–1041

    Google Scholar 

  123. Espie G, Denoirjean A, Fauchais P, Labbe JC, Dudsky J, Scheeweiss O, Volenik K (2005) In flight oxidation of iron particles sprayed using gas and water stabilized plasma torches. Surf Coat Technol 195:17–28

    Google Scholar 

  124. Syed AA, Denoirjean A, Denoirjean P, Labbe JC, Fauchais P (2005) In-flight oxidation of stainless steel in plasma spraying. J Therm Spray Technol 14(1):177–124

    Google Scholar 

  125. Smith RW, Matasin ZZ (1992) Reactive plasma spraying of wear-resistant coatings. J Therm Spray Technol 1(1):57–63

    Google Scholar 

  126. Jiang XL, Gitzhoffer F, Boulos MI, Tiwari R (1994) Induction plasma reactive deposition of tungsten and titanium carbides. In: Berndt CC, Sampath S (eds) Thermal spray: industrial applications. ASM International, Materials Park, OH, pp 451–456

    Google Scholar 

  127. Eckardt T, Malleaer W, Stove D (1994) Reactive plasma spraying of silicon in controlled nitrogen atmosphere. In: Berndt CC, Sampath S (eds) Thermal spray: industrial applications. ASM International, Materials Park, OH, pp 515–520

    Google Scholar 

  128. Lugscheider E, Remer P, Zhao L (1996) Reactive plasma spraying of wear resistant coatings of Ti composites. In: Berndt CC (ed) Thermal spray: practical solutions for engineering problems. ASM International, Materials Park, OH, pp 927–932

    Google Scholar 

  129. Fauchais P, Vardelle A, Denoirjean A (1997) Reactive thermal plasmas: ultrafine particle synthesis and coating deposition. Surf Coat Technol 979:66–78

    Google Scholar 

  130. Dai S, Delplanque J-P, Rangel RH, Lavernia EJ (1998) Modeling of reactive spray atomization and deposition. In: Coddet C (ed) Thermal spray: meeting the challenges of the 21st century, vol 1. ASM International, Materials Park, OH, pp 341–346

    Google Scholar 

  131. Fan X, Ishigaki T (1998) Fabrication of composite SiC-MoSi2 powders through plasma reaction process. In: Coddet C (ed) Thermal spray: meeting the challenges of the 21st century, vol 2. ASM International, Materials Park, OH, pp 1161–1166

    Google Scholar 

  132. Denoirjean A, Lefort P, Fauchais P (2003) Nitridition process and mechanism of Ti-6Al-4V particles by plasma spraying. Phys Chem Chem Phys 5:5133–5138

    Google Scholar 

  133. Dallaire S (1992) Thermal spraying of reactive materials to form wear-resistant composite coatings. J Therm Spray Technol 1(1):41–47

    Google Scholar 

  134. Borisov Y, Borisova A (1993) Application of self-propagating high-temperature synthesis in thermal spraying technology. In: Bernicki TF (ed) Thermal spray: research, design and applications. ASM International, Materials Park, OH, pp 139–144

    Google Scholar 

  135. Shaw KG, McCoy KP, Trogolo JA (1994) Fabrication of composite spray powders using reaction systems. In: Berndt CC, Sampath S (eds) Thermal spray: industrial applications. ASM International, Materials Park, OH, pp 509–514

    Google Scholar 

  136. Deevi SC, Sikka VK, Swindeman CJ, Seals RD (1997) Reactive spraying of nickel-aluminide coatings. J Therm Spray Technol 6(3):335–344

    Google Scholar 

  137. Haller B, Bonnet JP, Fauchais P, Grimaud A, Labbe JC (2004) TiC based coatings prepared by combining SHS and plasma spraying. In: Rom CD (ed) ITSC2004 innovative equipment and process technology V. DVS, Düsseldorf, Germany

    Google Scholar 

  138. Bach FW, Babiak Z, Duda T, Rothardt T, Tegeder G (2001) Impact of self propagating high temperature synthesis of spraying materials on coatings based on aluminum and metal-oxides. In: Berndt CC, Khor KA, Lugsheider EF (eds) Thermal spray 2001: new surfaces for a new millenium. ASM International, Materials Park OH, pp 497–502

    Google Scholar 

  139. Haller B (2006) Study of a process combining plasma spraying and SHS: application to Ti-graphite mixtures, PhD Thesis (in French), University of Limoges, France

    Google Scholar 

  140. Dallaire S (1982) Influence of temperature on the bonding mechanism of plasma-sprayed coatings. Thin Solid Films 95:237–241

    Google Scholar 

  141. Borisov YuS, Borisova AL, Shvedova LK (1986) Transition metal-non metallic refractory compound composite powders for thermal spraying. In: Advances in thermal spraying. Pergamon Press, Canada, pp 323–329

    Google Scholar 

  142. Legoux JG, Dallaire S (1993) Copper-TiB2 coatings by plasma spraying reactive micropellets. In: Berndt CC (ed) Proceedings of the 1993 thermal spray conference. ASM International, Materials Park OH, pp 429–432

    Google Scholar 

  143. Cliche G, Dallaire S (1991) Synthesis and deposition of TiC-Fe coatings by plasma spraying. Surf Coat Technol 46:199–206

    Google Scholar 

  144. Dallaire S, Cliche G (1992) The influence of composition and process parameters on the microstructure of TiC-Fe multiphase and multilayer coatings. Surf Coat Technol 50:233–239

    Google Scholar 

  145. Dallaire S, Champagne B (1984) Plasma spray synthesis of TiB2-Fe coatings. Thin Solid Films 118:477–483

    Google Scholar 

  146. Neiser RA, Smith MF, Dykhuisen RC (1998) Oxidation in wire HVOF-sprayed steel. J Therm Spray Technol 7(4):537–545

    Google Scholar 

  147. Espié G, Fauchais P, Hannoyer B, Labbe JC, Vardelle A (1999) Effect of metal particles oxidation during the APS on the wettability. In: Fauchais P, Van der Mullen J, Heberlein J (eds) Heat and mass transfer under plasma condition, vol 891. Annals of NY Academy of Sciences, New York, NY, pp 143–151

    Google Scholar 

  148. FIDAP code distributed by Fluent Inc., Lebanon, NH, USA

    Google Scholar 

  149. Ponticaud C, Grimaud A, Denoirjean A, Lefort P, Fauchais P (2001) Titanium powder nitridation by reactive plasma spraying. In: Fauchais P, Amouroux J, Elchinger MF (eds) Progress in plasma processing of materials. Begell House, New York, NY, pp 527–536

    Google Scholar 

  150. Renouard-Vallet G (2003) Plasma spraying of dense YSZ electrolyte for SOFCs, PhD Thesis, University of Limoges, France and University of Sherbrooke, CN, (in French)

    Google Scholar 

  151. Padet JP (1991) Flowing fluids, methods and models. Masson, Paris, in French

    Google Scholar 

  152. Ben Ettouil F (2008) Fast modelling of powder treatment in d.c. plasma spraying, Ph.D Thesis, University of Limoges, France

    Google Scholar 

  153. Cheng D, Xu Q, Trapaga G, Lavernia EJ (2001) A numerical study of high-velocity oxygen fuel thermal spraying process. Part I: gas phase dynamics. Metallurg Mater Transact A 32A:1609–1620

    Google Scholar 

  154. Swank WP, Chang CH, Fincke JR, Haggard DC (1996) Measured and simulated particle flow field parameters in a high power plasma spray. In: Berndt CC (ed) Thermal spray: practical solution for engineering problems. ASM International, Materials Park, OH, pp 541–547

    Google Scholar 

  155. Crowe CT, Stock DE (1976) A computer solution for two-dimensional, fluid-particle flows. Int J Num Methods Eng 10:185–196

    Google Scholar 

  156. Dukowicz JK (1980) A particle-fluid numerical model for liquid sprays. J Comput Phys 35:229–253

    Google Scholar 

  157. Belashchenko VE, Chernyak YB (1993) Stochastic approach to the modeling and optimization of thermal spray coating formation. J Therm Spray Technol 2(2):159–164

    Google Scholar 

  158. Pfender E, Chang CH (1998) Plasma spray jets and plasma-particulate interaction: modeling and experiments. In: Coddet C (ed) Thermal spray: meeting the challenges of 21st century. ASM International, Materials Park, OH, pp 315–328

    Google Scholar 

  159. Mariaux G, Baudry C, Vardelle A (2001) 3-D modelling of gas flow and particles spray jet in plasma spraying. In: Berndt CC, Khor KA, Lugsheider E (eds) Thermal spray: new surfaces for a new millenium. ASM International, Materials Park, OH, pp 933–942

    Google Scholar 

  160. Mostaghimi J, Chandra S, Ghafouri-Azar R, Dolatabadi A (2003) Modeling thermal spray coating processes: a powerful tool in design and optimization. Surf Coat Technol 163–164:1–11

    Google Scholar 

  161. Gawne DT, Liu B, Bao Y, Zhang T (2005) Modelling of plasma–particle two-phase flow using statistical techniques. Surf Coat Technol 191(2–3):242–254

    Google Scholar 

  162. Mingheng L, Christofides PD (2004) Feedback control of HVOF thermal spray process accounting for powder size distribution. J Therm Spray Technol 13(1):108–120

    Google Scholar 

  163. Cheng D, Trapaga G, McKelliget JW, Lavernia EJ (2001) Mathematical modeling of high velocity oxygen fuel thermal spraying: an overview. Key Eng Mater 197:1–25

    Google Scholar 

  164. Bisson JF, Moreau C (2003) Effect of plasma fluctuations on in-flight particle parameters. J Therm Spray Technol 12(2):38–43

    Google Scholar 

  165. Proulx P, Mostaghimi J, Boulos MI (1983) Plasma-particle interaction effects in induction plasma modelling under dense loading conditions, 6th International Symposium on Plasma Chemistry, Montréal. Boulos MI (ed) University of Sherbrooke, CN, 1:59–68

    Google Scholar 

  166. Mostaghimi J, Proulx P, Boulos MI, Barnes RM (1985) Computer modeling of the emission patterns for a spectrochemical. ICP Spectro-Chem Acta 40B:153–166

    Google Scholar 

  167. Proulx P, Mostaghimi J, Boulos MI (1985) Computer modeling of the emission patterns for a spectrochemical ICP. Int J Heat Mass Transfer 28:1327–1336

    Google Scholar 

  168. Mostaghimi J, Pfender E (1984) Effects of metallic vapor on the properties of an argon arc plasma. Plasma Chem Plasma Proc 4(2):129–139

    Google Scholar 

  169. Proulx P, Mostaghimi J, Boulos MI (1987) Heating of powders in an r.f. inductively coupled plasma under dense loading conditions. Plasma Chem Plasma Proc 7(1):29–52

    Google Scholar 

  170. Vardelle A, Vardelle M, Fauchais P, Proulx P, Boulos MI (1992) Loading effect by oxide powders in DC plasma jets. In: Berndt CC (ed) Thermal spray: Int. advances in coatings technology. ASM International, Materials Park, OH, pp 543–548

    Google Scholar 

  171. Yang X, Eidelman S (1996) Numerical analysis of a high-velocity oxygen-fuel thermal spray system. J Therm Spray Technol 5(2):175–184

    Google Scholar 

  172. Taylor K, Jodoin B, Karov J (2006) Particle loading effect in cold spray. J Therm Spray Technol 15(2):273–279

    Google Scholar 

  173. Karthikeyan J, Berndt CC, Tikkanen J, Wang JY, King AH, Herman H (1997) Preparation of nanophase materials by thermal spray processing of liquid precursors. Nanostruct Mater 9:137–140

    Google Scholar 

  174. Bouyer E, Gitzhoffer F, Boulos MI (1997) Experimental study of suspension plasma spraying of hydroxyapatite. In: Fauchais P (ed) Progress in plasma processing of materials. Begell House, New York, NY, pp 735–750

    Google Scholar 

  175. Bouyer E, Müller M, Dard N, Gitzhofer F, Boulos MI (1997) Suspension plasma spraying for powder preparation. In: Fauchais P (ed) Progress in plasma processing of materials. Begell House, New York, NY, pp 751–759

    Google Scholar 

  176. Bouyer E, Branston DW, Lins G, Müller M, Verleger J, Von Bradke M (2001) Deposition of yttria-stabilized zirconia coatings using liquid precursors. In: Fauchais P (ed) Progress in plasma processing of materials. Begell House, New York, NY, pp 501–506

    Google Scholar 

  177. Yang G-J, Li C-J, Han F, Mav S-F (2003) TiO2 photocatalyst by thermal spraying with liquid feedstock. In: Moreau C, Murple B (eds) Thermal spray 2003: Advancing the science and applying the technology. ASM International, Materials Park, OH, pp 675–680

    Google Scholar 

  178. Yang G, Zhang H, Biswas P (1996) Computer modeling of the emission patterns for a spectrochemical ICP. Nanostruct Mater 7(6):675–689

    Google Scholar 

  179. Blazdell P, Kuroda S (2000) Plasma spraying of submicron ceramic suspensions using a continuous ink jet printer. Surf Coat Technol 123(2–3):239–246

    Google Scholar 

  180. Wittmann K, Blein F, Coudert J-F, Fauchais P (2001) Control of the injection of an alumina suspension containing nanograins in a D.C. plasma. In: Berndt CC, Khor KA, Lugscheider E (eds) Thermal spray 2001: New surface for a new millennium. ASM International, Materials Park, OH, pp 375–382

    Google Scholar 

  181. Gitzhofer F, Bonneau M-E, Boulos MI (2001) Double-doped ceria electrolyte synthesized by solution plasma spraying with induction plasma technology. In: Berndt CC, Khor KA, Lugscheider E (eds) Thermal spray 2001: new surface for a new millennium. ASM International, Materials Park, OH, pp 61–68

    Google Scholar 

  182. Wittmann K, Fazilleau J, Coudert J-F, Fauchais P, Blein F (2002) A new process to deposit thin coatings by injecting nanoparticles suspensions in a d.c. plasma jet. In: Lugscheider E (ed) Proceedings of ITSC 2002. DVS, Düsseldorf, Germany, pp 519–522

    Google Scholar 

  183. Kuroda S, Blazdell P (2002) Suspension plasma spraying of ceramics by using an ink printer. In: Lugscheider E (ed) Proceedings of ITSC 2002. DVS, Düsseldorf, Germany, pp 539–543

    Google Scholar 

  184. Fazilleau J, Delbos C, Violier M, Coudert J-F, Fauchais P, Bianchi L, Wittmann-Ténèze K (2003) Influence of substrate temperature on formation of micrometric splats obtained by plasma spraying liquid suspension. In: Moreau C, Murple B (eds) Thermal spray 2003: advancing the science and applying the technology. ASM International, Materials Park, OH, pp 889–895

    Google Scholar 

  185. Delbos C, Fazilleau J, Coudert J-F, Fauchais P, Bianchi L, Wittmann-Ténèze K (2003) Plasma spray elaboration of fine nanostructured YSZ coatings by liquid suspension injection. In: Moreau C, Murple B (eds) Thermal spray 2003: advancing the science and applying the technology. ASM International, Materials Park, OH, pp 661–667

    Google Scholar 

  186. Fazilleau J, Delbos C, Coudert J-F, Fauchais P, Denoirjean A, Bianchi L, Wittmann-Ténèze K (2003) Studies of micrometric splats obtained by suspension DC plasma spraying. In: R. d’Agostino (ed) 16th International Symposium on Plasma Chemistry (electronic version). University of Bari, Italy

    Google Scholar 

  187. Delbos C, Fazilleau J, Rat V, Coudert J-F, Fauchais P, Bianchi L Finely structured ceramic coatings elaborated by liquid suspension injection in a DC plasma jet. In: Proceedings of ITSC 2004. DVS Düsseldorf, Germany (electronic version).

    Google Scholar 

  188. Fauchais P, Rat V, Delbos C, Coudert JF, Chartier T, Bianchi L (2005) Understanding of suspension dc plasma spraying of finely structured coating for SOFC. IEEE Trans Plasma Sci 33:920–930

    Google Scholar 

  189. Fauchais P, Vardelle M, Coudert JF, Vardelle A, Delbos C, Fazilleau J (2005) Plasma spraying from thick to thin coatings and micro to nano structured coatings. Pure Appl Chem 77:475–485

    Google Scholar 

  190. Fazilleau J, Delbos C, Rat V, Coudert JF, Fauchais P, Pateyron B (2006) Phenomena involved in suspension plasma spraying, part 1: suspension injection and behavior. Plasma Chem Plasma Proc 26(4):371–391

    Google Scholar 

  191. Fauchais P, Montavon G (2010) Latest developments in suspension and liquid precursor thermal spraying. J Therm Spray Technol 19:226–239

    Google Scholar 

  192. Viswanathan V, Laha T, Balani K, Agarwal A, Seal S (2006) Challenges and advances in nanocomposite processing techniques. Mater Sci Eng R54:121–285

    Google Scholar 

  193. Gadow R, Kern F, Killinger A (2008) Manufacturing technologies for nanocomposite ceramic structural materials and coatings. Mater Sci Eng B148

    Google Scholar 

  194. Gell M, Jordan EH, Sohn YH, Goberman D, Shaw L, Xiao TD (2001) Development and implementation of plasma sprayed nanostructured ceramic coatings. Surf Coat Technol 146–147:48–54

    Google Scholar 

  195. Chen H, Lee SW, Choi CH, Hur BY, Zeng Y, Zheng XB, Ding CX (2004) Plasma sprayed nanostrucutred zirconia coatings deposited from different powders with nano-scale substructure. J Mater Sci 39:4701–4703

    Google Scholar 

  196. Gell M, Jordan EH, Teicholz M, Cetegen BM, Padture N, Xie L, Chen D, Ma X, Roth J (2008) Thermal barrier coatings made by the solution precursor plasma spray process. J Therm Spray Technol 17(1):124–135

    Google Scholar 

  197. Chen D, Jordan EH, Gell M (2008) Effect of solution concentration on splat formation and coating microstructure using the solution precursor plasma spray process. Surf Coat Technol 202:2132–2138

    Google Scholar 

  198. Pawlowski L (2008) Finely grained nanometric and submicrometric coatings by thermal spraying: a review. Surf Coat Technol 202(18):4318–4328

    Google Scholar 

  199. Chen D, Jordan E, Gell M (2007) Thermal and crystallization behavior of zirconia precursor used in the solution precursor plasma spray process. J Mater Sci 42:5576–5580

    Google Scholar 

  200. Fauchais P, Montavon G, Lima R, Marple B (2011) Engineering a new class of thermal spray nano-based microstructures from agglomerated nanostructured particles, suspensions and solutions: an invited review. J Phys D Appl Phys 44:093001, 53p

    Google Scholar 

  201. Kolman D (1997) Modeling of thermal plasma chemical vapor deposition of diamond with liquid feedstock injection. PhD Thesis, University of Minnesota, MN

    Google Scholar 

  202. Shan Y, Mosthagimi J (2003) Modeling of transport and evaporation of liquid droplets sprayed into RF-ICPs. In: Moreau C, Marple B (eds) Thermal spray 2003: advancing the science and applying the technology. ASM International, Materials Park, OH, pp 1017–1022

    Google Scholar 

  203. Shan Y, Coyle TW, Mostaghimi J (2007) Numerical simulation of droplet break-up and collision in solution precursor plasma spraying. J Therm Spray Technol 16:698–704

    Google Scholar 

  204. Marchand C, Vardelle A, Mariaux G, Lefort P (2008) Modelling of the plasma spray process with liquid feedstock injection. Surf Coat Technol 202:4458–4464

    Google Scholar 

  205. Basu S, Jordan EH, Cetegen BM (2008) Fluid mechanics and heat transfer of liquid precursor droplets injected into high-temperature plasmas. J Therm Spray Technol 17:60–72

    Google Scholar 

  206. Meillot E, Vincent S, Caruyer C, Caltagirone J-P, Damiani D (2009) From DC time-dependent thermal plasma generation to suspension plasma-spraying interactions. J Therm Spray Technol 18:875–886

    Google Scholar 

  207. Saha A, Seal S, Cetegen B, Jordan E, Ozturk A, Basu S (2009) Thermo-physical processes in cerium nitrate precursor droplets injected into high temperature plasma. Surf Coat Technol 203:2081–2091

    Google Scholar 

  208. Wang AHK, Herman H (1998) Nanomaterial deposits formed by dc plasma spraying of liquid feedstocks. J Am Ceram Soc 81(1):121–128

    Google Scholar 

  209. Karthikeyan J, Berndt CC, Tikkanen J, Reddy S, Herman H (1997) Plasma spray synthesis of nanomaterial powders and deposits. Surf Coat Technol 238(2):275–286

    Google Scholar 

  210. Kassner H, Siegert R, Hathiramani D, Vassen R, Stöver D (2008) Application of the suspension plasma spraying (SPS) for the manufacture of ceramic coatings. J Therm Spray Technol 17(1):115–123

    Google Scholar 

  211. Toma FL, Bertrand G, Rampon R, Klein D, Coddet C (2006) Relationship between the Suspension Properties and Liquid Plasma Sprayed Coating Characteristics. In: ITSC 2006. ASM International, Materials Park, OH, e-proceedings

    Google Scholar 

  212. Rampon R, Bertrand G, Toma FL, Coddet C (2006) Liquid plasma sprayed coatings of Yttria stabilized for SOFC electrolyte. In: ITSC 2006. ASM International, Materials Park, OH, e-proceedings

    Google Scholar 

  213. Bouyer L, Ma X, Ozturk A, Jordan EH, Padture NP, Cetegen BM, Xiao DT, Gell M (2004) Processing parameter effects on solution precursor plasma spray process spray patterns. Surf Coat Technol 183(1):51–61

    Google Scholar 

  214. Bouyer E, Gitzhofer F, Boulos M (1996) Parametric study of suspension plasma sprayed hydroxyapatite. In: Berndt CC (ed) Thermal spray: practical solutions for engineering problems. ASM International, Materials Park, OH, pp 683–691

    Google Scholar 

  215. Filkova I, Cedik P (1984) Nozzle atomization in spray drying. In: Mujumdar AS (ed) Advances drying, vol 3. Hemisphere Publication Corporation, New York, NY, pp 181–215

    Google Scholar 

  216. Rampon P, Filiatre C, Bertrand G (2008) Suspension plasma spraying of YPSZ coatings for SOFC: suspension atomization and injection. J Therm Spray Technol 17(1):105–114

    Google Scholar 

  217. Marchand O, Girardot L, Planche MP, Bertrand P, Bailly Y, Bertrand G (2011) An insight into suspension plasma spray: injection of the suspension and its interaction with the plasma flow. J Therm Spray Technol 20(6):1310–1320

    Google Scholar 

  218. Lefebvre AH (1989) Atomizations and sprays. Hemisphere Publication Corporation, New York, NY

    Google Scholar 

  219. Jordan EH, Gell M, Bonzani P, Chen D, Basu S, Cetegen B, Wu F, Ma X (2007) Making dense coatings with the solution precursor plasma spray process. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2007: global coating solution. ASM International, Materials Park, OH, pp 463–470, e-proceedings

    Google Scholar 

  220. Cotler EM, Chen D, Molz RJ (2011) Pressure-based liquid feed system for suspension plasma spray coatings. J Therm Spray Technol 20(4):967–973

    Google Scholar 

  221. Fauchais P, Etchart-Salas R, Delbos C, Tognovi M, Rat V, Coudert JF, Chartier T (2007) Suspension and solution plasma spraying of finely structured coatings. J Phys D Appl Phys 40:2394–2406

    Google Scholar 

  222. Siegert R, Doring JE, Marque´s JL, Vassen R, Sebold D, Stöver D (2002) Influence of injection parameters on the suspension plasma spraying coating properties. In: Lugscheider E (ed) ITSC 2005. DVS, Düsseldorf, Germany, e-proceedings

    Google Scholar 

  223. Oberste-Berghaus J, Legoux J-G, Moreau C (2005) Injection conditions and in-flight particle states in suspension plasma spraying of aluminia and zirconia nano-ceramics. In: ITSC 2005. DVS, Düsseldorf, Germany, e-proceedings

    Google Scholar 

  224. Siegert R, Doring J-E, Marque J-L, Vassen R, Sebold D, Stöver D (2004) Denser ceramic coatings obtained by the optimization of the suspension plasma spraying technique. In: ITSC 2004. DVS, Düsseldorf, Germany, e-proceedings

    Google Scholar 

  225. Hwang SS, Liu Z, Reitz RD (1996) Breakup mechanisms and drag coefficients of high-speed vaporizing liquid drops. Atomization Sprays 6:353–376

    Google Scholar 

  226. Hussary NA, Heberlein JVR (2001) Atomization and particle-jet interactions in the wire-arc spraying process. J Therm Spray Technol 10(4):604–610

    Google Scholar 

  227. Gelfand BE (1996) Droplet break-up phenomena in flows with velocity lag. Prog Energ Combust Sci 22:201–265

    Google Scholar 

  228. Watanabe T, Ebihara K (2003) Numerical simulation of coalescence and break-up of rising droplets. Comput Fluids 32:823–834

    Google Scholar 

  229. Ozturk A, Cetegen M (2004) Modeling of plasma assisted formation of precipitates in zirconia containing liquid precursor droplets. Mater Sci Eng A 384:331–351

    Google Scholar 

  230. Ozturk A, Cetegen M (2005) Experiments on ceramic formation from liquid precursor spray axially injected into an oxy-acetylene flame. Acta Mater 53:5203–5211

    Google Scholar 

  231. Basu S, Jordan EH, Cetegen BM (2006) Fluid mechanics and heat transfer of liquid precursor droplets injected into high temperature plasmas. J Therm Spray Technol 15(4):576–581

    Google Scholar 

  232. Taylor GI (1963) The shape and acceleration of a drop in a high speed air stream, technical report in the Scientific Papers of Taylor GI, (ed)., G.K. Batchelor

    Google Scholar 

  233. Lee CS, Reitz RD (2001) Effect of liquid properties on the break-up mechanism of high-speed liquid drops. Atomization Sprays 11:1–18

    Google Scholar 

  234. Carruyer C, Vincent S, Meillot E (2011) Caltagirone, modelling of the fragmentation of a water jet in the liquid precursor plasma spraying, 5th International Workshop on Suspension and Solution Plasma Spraying, Tours Sept. 4–6 (2011), CEA Le Ripault

    Google Scholar 

  235. Vincent S, Meillot E, Carruyer C, Caltagirone J-P (2011) Analysis by modelling of of the interaction between a thermal flow and a liquid, 5th International Workshop on Suspension and Solution Plasma Spraying, Tours Sept. 4–6 (2011), CEA Le Ripault

    Google Scholar 

  236. Jordan EH, Gell M, Benzani P, Chen D, Basa S, Cetegen B, Wa F, Ma XC (2007) Making dense coatings with the solution precursor plasma spray process. In: Marple BR et al (eds) Thermal spray 2007: global coating solutions. ASM International, Materials Park, OH, pp 463–467

    Google Scholar 

  237. Marchand C, Chazelas C, Mariaux G, Vardelle A (2007) Liquid precursor plasma spraying: modelling the interaction between the transient plasma jet and the droplets. In: Marple BR et al (eds) Thermal spray 2007: global coating solutions. ASM International, Materials Park, OH, pp 196–201

    Google Scholar 

  238. Etchart-Salas R, Rat V, Coudert JF, Fauchais P, Caron N, Wittman K, Alexandre S (2007) Influence of plasma instabilities in ceramic suspension plasma spraying. J Therm Spray Technol 16(5–6):857–865

    Google Scholar 

  239. Bouyer E, Gitzhofer F, Boulos MI (1997) Suspension plasma spraying for hydroxyapatite powder preparation by RF plasma. IEEE Trans Plasma Sci 25(5):1066–1072

    Google Scholar 

  240. Bouyer E, Gitzhofer F, Boulos MI (1997) The suspension plasma spraying of bioceramics by induction plasma. JOM 49(2):58–68

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Nomenclature

Nomenclature

Units are indicated in parentheses, when no unit is indicated the parameter is dimensionless

a :

Accommodation coefficient

a i :

Sound velocity (m/s)

A :

Particle projected surface area perpendicular to the flow (A = πd p 2/4) (m2)

Bi:

Biot number \( \left(\frac{\kappa }{\kappa_{\mathrm{p}}}\right) \)

c :

The molar density of the bulk gas (mol/m3)

C D :

Drag coefficient (F D/A)/(0.5ρv 2)

c i :

Mass fraction of metal vapor at the location i

c pi :

Specific heat at constant pressure in the state i (J/kg.K)

c vi :

Specific heat at constant volume in the state i (J/kg.K)

d d :

Drop diameter (m)

d l :

Drop or liquid jet diameter (m)

d p :

Particle diameter (m)

D vg :

Diffusion coefficient of metal vapor through the surrounding gas (m2/s)

F B :

Basset history term (N)

F c :

Coriolis force (N)

F b :

Body force per unit particle mass (N)

F d :

Force related to the pressure jump in the detonation wave \( {F}_{\mathrm{d}}=\frac{\pi {d}_{\mathrm{p}}^2}{4}\Delta p \) (N)

F D :

Drag force exerted by the fluid on the particle (N)

F g :

Gravity force (N)

F i :

Inertia force (m p.γ p) (N)

F p :

Pressure gradient force (N)

F S :

Surface tension force (N)

F T :

Thermophoresis force (N)

g :

Gravity acceleration (9.81 m/s2)

h :

Heat transfer coefficient (W/m2⋅K)

h g :

Enthalpy (J/m3)

hi :

Specific enthalpy of the plasma calculated at i (J/kg)

I :

Arc current (A)

I(T):

Heat conduction potential \( \left({\displaystyle {\int}_{T_{300}}^T\kappa (s)\cdot ds}\right) \) (W/m)

Kn:

Knudsen number \( \left(\raisebox{1ex}{$\lambda $}\!\left/ \!\raisebox{-1ex}{$ dp$}\right.\right) \)

k d :

Mass transfer coefficient (m/s)

L :

Mixing length in turbulent model (m)

m ocg :

Carrier gas mass flow rate (kg/s)

m p :

Particle mass (kg)

M :

Molecular weight (kg/mol)

Ma:

Mach number (v g/a g)

N max :

Maximum molar flux of vaporization from a droplet (m2/s)

Nu:

Nusselt number (hd/κ)

N v :

Molar flux of vapor (mol/m2⋅s)

p :

Total pressure (Pa)

p i :

Partial pressure of species i (Pa)

p o :

Saturation vapor pressure of a liquid (Pa)

P :

Torch power (kW)

P l :

Splat parameter (m)

P eff :

Torch effective power (kW)

Pr:

Prandtl number (μ⋅c p/κ)

q :

Heat flux (W/m2)

Q :

Heat transferred to a particle in 1 s (W)

r :

Plasma or particle radius (m)

r d :

Liquid droplet radius (m)

r s :

Initial liquid drop radius (m)

R :

Plasma torch internal or particle radius (m)

R′:

Universal ideal gas constant (R′ = 8.32 J/K ⋅ mol)

Re:

Reynolds’ number (ρ⋅U R.d p/μ)

R inj :

Internal radius of injection tube (m)

S p :

Surface area of the particle (πd 2p /4) or of the splat (π⋅D 2p /4) (m2)

S :

Cross section of injection tube (m2)

Sc:

Schmidt number (ν/D v,g)

Sh:

Sherwood number (k d.d p/D v,g)

St:

Stokes number St = ρ p d 2p v p/(μ g l BL)

Ste:

Stephan number; Ste = c pi(T m − T s)/ΔH m

t d :

Drop fragmentation time (s)

t r :

Time of flight of particles (s)

t s :

Vaporization time (s)

T a :

Ambient temperature (K)

T f :

Mean film temperature ((T s + T )/2) (K)

T s :

Particle surface temperature (K)

T :

Temperature of the flow out of the boundary layer around the particle (K)

U :

Mean arc voltage (V)

U(t):

Transient arc voltage (V)

u :

Gas velocity component in the axial direction (m/s)

u p :

Particle velocity component in the axial direction (m/s)

u R :

Relative velocity between the particle and its surrounding (m/s)

u r :

Relative velocity gas–liquid (m/s)

v :

Gas velocity component in the radial direction (m/s)

v p :

Particle velocity component in the radial direction (m/s)

V :

Volume (m3)

V p :

Particle volume (m3)

V s :

Liquid drop volume (m3)

w s :

Work resulting from the drag force (J)

We:

Weber number (\( \mathrm{We}=\frac{\rho_{\mathrm{g}}\times {u}_{\mathrm{r}}^2\times {d}_{\mathrm{l}}}{\sigma_{\mathrm{l}}} \))

Z :

Ohnesorge number \( \left(Z=\frac{\mu_{\mathrm{l}}}{\sqrt{\rho_{\mathrm{l}}\times {d}_{\mathrm{l}}\times {\sigma}_{\mathrm{l}}}}\right) \)

γ :

Isentropic coefficient (c p/c v)

δ :

Boundary layer thickness (m)

ΔE s :

Variation of surface energy (J)

ΔH m :

Latent heat of fusion (J/kg)

ΔH v :

Latent heat of vaporization (J/kg)

ε :

Particle emissivity (integrated over all wave lengths)

ϕ(r):

Function representing temperature, enthalpy, velocity

γ p :

Particle acceleration (m/s2)

η th :

Torch thermal efficiency (%)

κ :

Thermal conductivity of the fluid (W/m K)

κ p :

Thermal conductivity of the particle (W/m K)

\( \overline{\kappa} \) :

Mean integrated thermal conductivity \( \left(\frac{1}{ T\mathit{\infty}-{T}_{\mathrm{s}}}{\displaystyle {\int}_{T_{\mathrm{s}}}^{T\mathit{\infty}}\kappa (s)\cdot ds}\right) \) (W/m K)

λ :

Plasma mean free path (m)

μ i :

Fluid viscosity (Pa⋅s)

ν cg :

Carrier gas velocity (m/s)

ν i :

Kinematic viscosity (μ/ρ) (m2/s)

ρ g :

Gas mass density (kg/m3)

ρ i :

Fluid density or specific mass (kg/m3)

σ :

Droplet surface tension (N/m)

σ s :

Stephan–Boltzmann constant (5.670×10−8 W/m2⋅K4)

ξ :

Ratio of the cylindrical splat to droplet diameter (ξ = D p/d p)

i:

Index that relates to temperature at which the property is evaluated, or to indicate a specific species

i = s:

Property evaluated at surface temperature

i = ∞ or g:

Property evaluated at plasma temperature

i = g:

Gas

i = p:

Particle

i = l:

Liquid

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fauchais, P.L., Heberlein, J.V.R., Boulos, M.I. (2014). Gas Flow–Particle Interaction. In: Thermal Spray Fundamentals. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68991-3_4

Download citation

Publish with us

Policies and ethics