Skip to main content

Fundamentals of Combustion and Thermal Plasma

  • Chapter
  • First Online:
Thermal Spray Fundamentals

Abstract

Except for Cold Spray, thermal spray processes are based either on combustion or thermal plasmas. This chapter recalls the basic phenomena involved allowing understanding how the high temperature jets are generated and what are their properties. First the bases of combustion are presented with flames, detonation, and explosions: their stability limits, their temperatures and velocities. Then bases of thermal plasmas are discussed with a short presentation of how are calculated their compositions, specific masses, enthalpies, viscosities, and electrical and thermal conductivities with finally the results for the main gases used in thermal spraying. At last the basic concepts in modeling are presented: conservation equations (continuity, momentum, and energy), electromagnetic field equations, and at last laminar and turbulent flows. Bases presented in this chapter are then used in the different chapters related to the various spray processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

1D:

One dimension

2D:

Two dimensions

3D:

Three dimensions

d.c.:

Direct current

LHS:

Left hand side

r.f.:

Radio frequency

RHS:

Right hand side

References

  1. Glassman I (1977) Combustion. Academic, New York, NY

    Google Scholar 

  2. Linde catalogue, Acetylene… there is no better fuel gas for Oxyfuel gas processes, Linde AG, Head Office, Klosterhofstr. 1, 80331 Munich, Germany

    Google Scholar 

  3. Mackie JC, Smith JC (1990) Inhibition of C2 oxidation by methane under oxidative coupling conditions. Energy Fuels 4(3):277–85

    Article  Google Scholar 

  4. Kee RJ, Rupley FM, Miller JA (1998) A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics, Sandia National Laboratories Report, SAND89-8009

    Google Scholar 

  5. Boulos M, Fauchais P, Pfender E (1994) Thermal plasmas, fundamentals and applications. Plenum Press, New York and London

    Book  Google Scholar 

  6. Bourdin E, Boulos M, Fauchais P (1983) Transient conduction to a single sphere under plasma conditions. Int J Heat Mass Transfer 26:567–579

    Article  Google Scholar 

  7. Nogues E, Fauchais P, Vardelle M, Granger P (2007) Relation between the arc-root fluctuations, the cold boundary layer thickness and the particle thermal treatment. J Therm Spray Technol 16(5–6):919–926

    Article  Google Scholar 

  8. Oran ES, Boris JP (2001) Numerical simulation of reactive flow, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  9. Hirsch C (1988) Numerical computation of internal and external flows; vol I: Fundamentals of numerical discretization and numerical computation of internal and external flows and vol II: Computational methods for inviscid and viscous flows. Wiley, New York, NY

    Google Scholar 

  10. Hoffman KA, Chiang ST (1993) Computational fluid dynamics for engineers, vol 1. Engineering Educational Systems, Kansas

    Google Scholar 

  11. Kundu Pijush K, Ira Cohen M (2008) Fluid mechanics. Academic (4th revised ed.)

    Google Scholar 

  12. Falkovich G (2011) Fluid mechanics (a short course for physists). Cambridge University Press, Cambridge

    Book  Google Scholar 

  13. Launder BE, Spalding DB (1972) Lectures in mathematical models of turbulence. Academic, London

    Google Scholar 

  14. Launder BE, Spalding DB (1974) The numerical computation of turbulent flow. Comput Methods Appl Mech Eng 35:269–289

    Article  Google Scholar 

  15. Reynolds WC, Cebeci T (1976) Calculation of turbulent flows. In: Bradshaw P (ed) Turbulence. Springer, Berlin, p 193

    Chapter  Google Scholar 

  16. Rodi W (1980) Turbulence models for environmental problems. In: Kollmann W (ed) Prediction methods for turbulent flows. Hemisphere Publishing Company, Washington, DC, p 260

    Google Scholar 

  17. Schiestel R. Modeling and simulation of turbulent flows, new technologies. Dunod University, Paris, France (in French)

    Google Scholar 

  18. Favre A, Kovasznay LSG, Dumas R, Gaviglio J, Coantic M (1977) The turbulence in fluid mechanics. Gauthier-Villars Editors, Paris

    Google Scholar 

  19. Pozorski J, Minier JP (1994) Lagrangian modeling of turbulent flows. EDF Report HE.106, 44/94

    Google Scholar 

  20. Shih TH, Liou WW, Shabbir A, Yang Z, Zhu J (1995) A new eddy viscosity model for high Reynolds number turbulent flows model development and validation. Comput Fluids 24:227–238

    Article  Google Scholar 

  21. Sagaut P (1998) Introduction to large eddy scale simulations for the modeling of uncompresible flows, vol 30 (in French). Mathématiques et Applications. Springer

    Google Scholar 

  22. Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    Book  Google Scholar 

  23. Archambeau F, Méchitoua N, Sakiz M (2004) Code_Saturne: a finite volume code for the computation of turbulent incompressible flows—industrial applications. Int J Finite Vol 1(1):1–62

    Google Scholar 

  24. Pope SB (2004) Ten questions concerning the large-eddy simulation of turbulent flows. New J Phys 6(35):1–24

    Google Scholar 

  25. Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of compressible flows. Comput Methods Appl Mech Eng 197(1–4):173–201

    Article  Google Scholar 

  26. Yap C (1987) Turbulent heat and momentum transfer in recirculating and impinging flows. Ph.D., University of Manchester, G.B

    Google Scholar 

  27. Chen YS, Kim SW (1987) Computation of turbulent flows, turbulence closure models using and extended k-ε. NASA, CR-179204

    Google Scholar 

  28. Legros E. Contribution to 3D modelling of the plasma spray process and application to a two-torch process. University of Limoges, France, Nov 2003 (in French)

    Google Scholar 

  29. Storey SH, van Zeggeren F (1970) The computation of chemical equilibria. Cambridge University Press, Cambridge

    Google Scholar 

  30. Thermodata Data Bank, Scientific Group Thermodata Europe (SGTE), 6 rue du Tour de l’Eau, 38402 St Martin d'HÒres, France

    Google Scholar 

  31. Janaf Thermochemical Tables, Part I and II, Published by the American Chemical Society and The American Institute of Physics for the National Bureau of Standards (1985) Michigan

    Google Scholar 

  32. Gurvich LV, Veyts IV, Alcock CB (1990) Thermodynamic properties of individual substances, 4th ed. Hemisphere Publishing Corporation, A member of the Taylor and Francis Group, New York

    Google Scholar 

  33. Benson SW (1976) Thermochemical kinetics, 2nd edn. Wiley, New York, NY

    Google Scholar 

  34. Kee RJ, Rupley FM, Miller JA, Chemkin II (1989) A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics, Sandia Nat. Lab. Sept. See also Kee RJ, Dixon-Lewis G, Warnatz J, Coltrin ME, Miller JA (1986) Sandia National Laboratories, Report SAND 86-8246

    Google Scholar 

  35. Bandyopadhyay R, Nylén P (2003) A computational fluid dynamic analysis of gas and particle flow in flame spraying. J Therm Spray Technol 12(4):492–503

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Nomenclature

Nomenclature

In the following when no unit is given in parenthesis, it means that the quantity is dimensionless

a :

Thermal diffusivity of the combustion wave (κ/ρ c p) (m2/s)

B :

Magnetic induction (T)

c k :

Concentration of species of type k

c p :

Specific heat at constant pressure (J/K kg)

D :

Detonation velocity (m/s)

e :

Elementary charge (C)

E :

Electric field strength (V/m) or energy (J)

E I :

Ionization energy (J or eV)

F :

External forces per unit mass (N/kg)

F k :

Represents external forces (N)

F kj :

Rate of momentum transfer between species k and other species j (kg/m2 s2)

F/A :

Molar ratio of fuel to oxidizer

g :

Statistical weight

h :

Planck’s constant (6.6 × 10−34 J s)

h m :

Enthalpy per unit mass (J/kg)

k B :

Boltzmann constant (1.13 × 10 J/kg particle)

k R :

Specific reaction rate constant

I k :

Mass flux of particles of type k (kg/m2 s)

I p :

Heat flux potential: \( {I}_{\mathrm{p}}={\displaystyle {\int}_{T_{\mathrm{o}}}^{T_{\mathrm{p}}}\kappa (T)\mathrm{d}T}\left(\mathrm{W}/\mathrm{m}\right) \)

I s :

Heat flux potential: \( {I}_{\mathrm{s}}={\displaystyle {\int}_{T_{\mathrm{o}}}^{T_{\mathrm{s}}}\kappa (T)\mathrm{d}T}\left(\mathrm{W}/\mathrm{m}\right) \)

j :

Current density (A/m2)

k f :

Forward reaction rate, k f = A × T Β × exp(−E/kT) (m3/part s)

k r :

Reverse reaction rate, for a binary reaction (m3/part s)

K x :

Molar equilibrium constant (K x = k f/k r)

M :

Arbitrary specification of all chemical species

M e :

Mach number

(M i ):

Concentration of species i (m−3)

m :

Mass (kg)

N i :

Number species i

n′:

Total number of compounds involved in a chemical reaction

n :

Number density of particles (m−3)

n i :

Number density of species i: n i  = N i /V (m−3)

p i :

Pressure of species i (Pa)

p :

Total pressure (Pa)

q :

Chemical energy release at constant pressure (J/kg)

Q :

Partition function

R :

Perfect gas law constant (J/K kg)

R′:

Equivalence ratio or richness: R = (F/A)/(F/A)stoichiometry

R*:

Radical

RR:

Reaction rate (units depend on the species number involved)

r :

Radial coordinate (m)

S :

Entropy (J/K)

SL :

Flame velocity (m/s)

S R :

Optically thin radiation losses (W/m3)

S u :

Combustion wave velocity (m/s)

T :

Temperature (K)

t :

Time (s)

u :

Axial velocity component (m/s)

V :

Volume (m3)

v :

Radial velocity component (m/s)

v g :

velocity of the center of mass (m/s)

v k :

Velocity of particles of type k (m/s)

W :

Heat flux (W/m2)

x :

Coordinate (m)

z :

Axial coordinate (m); ion charge number

∇:

Spatial derivative (m−1)

\( \frac{\partial }{\partial t} \) :

Time derivative (s−1)

α′:

Multiplication factor of radicals

α :

Thermal diffusion factor (A/V m)

ΔE I :

Lowering of the ionization energy (J or eV)

ε o :

Dielectric constant (A s/V m)

Φ :

Electric potential (V)

Φ :

Dummy variable

Φ :

Time averaged dummy variable

Φ′ :

Time fluctuating dummy variable

Γ k :

Mass generation rate of species of type k (kg/m3 s)

γ :

Ratio of specific heats

κ :

Thermal conductivity (W/m K)

κ′:

Integrated mean thermal conductivity \( {\kappa}^{\prime }=\left[1/\left({T}_{\mathrm{p}}-{T}_{\mathrm{s}}\right)\right]{\displaystyle {\int}_{T_{\mathrm{s}}}^{T_{\mathrm{p}}}\kappa (T)\dot{c}\mathrm{d}T\left(\mathrm{W}/\mathrm{m}\;\mathrm{K}\right)} \)

κ total :

Thermal conductivity also noted κ (W/m K)

κ htr :

Translational thermal conductivity of heavy species (W/m K)

κ etr :

Translational thermal conductivity of electrons (W/m K)

κ R :

Reactional thermal conductivity (W/m K)

μ :

Molecular viscosity (Pa s)

ν j :

Stoichiometric coefficient of the reactants

ν j :

Stoichiometric coefficient of the products

ρ i :

Specific mass (kg/m3)

ρ :

Total mass density (kg/m3)

ρ el :

Space charge density (C/m3)

σ :

Electrical conductivity (S/m)

\( {\overline{\overline{\tau}}}_k \) :

Stress tensor of species k (Pa)

ζ :

Dummy variable (m)

a:

Atoms

amb:

Ambipolar

b:

Burned gas

e:

Electrons

eff:

Effective value

i:

Ions

j :

Summation index

k :

Summation index

LES:

Large Eddy Simulation

max:

Maximum

NS:

Navier–Stokes

o :

Reference value

r :

Radial direction

u:

Unburned gas

w:

Wall

z :

Axial direction

φ :

Circumferential direction

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fauchais, P.L., Heberlein, J.V.R., Boulos, M.I. (2014). Fundamentals of Combustion and Thermal Plasma. In: Thermal Spray Fundamentals. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68991-3_3

Download citation

Publish with us

Policies and ethics