Industrial Applications of Thermal Spraying Technology

  • Pierre L. Fauchais
  • Joachim V. R. Heberlein
  • Maher I. Boulos


At its early stages of development, thermal spray technology was mostly used for the repair, rebuilding, retrofitting, and for surface protection against corrosion, erosion and wear. The wider acceptance of the technology for industrial-scale production has started in the late eighties and early nineties, with applications limited to high added-value components in the aeronautic and nuclear industry. Over the two past decades, a wide range of industrial-scale surface modification processes became available. The choice of a specific coating and/or thermal spray process, for a given service condition, depends, however, on the expectation of the user and the cost that could be tolerated for the application. This chapter presents the advantages and limitations of the different spray processes. Then the different coating applications are described, with coatings resistant to wear, corrosion and oxidation, providing thermal protection, clearance control, good bonding, electrical and electronic properties, free standing spray-formed parts, medical applications, replacement of hard chromium… potential applications. These applications are then presented according to the industrial users: aerospace, land-based turbines, automotive, electrical and electronic industries, corrosion applications for land-based and marine applications, medical engineering, ceramic and glass manufacturing, printing, pulp and paper, metal processing, petroleum and chemical industries, electrical utilities, textile and plastic, polymers, reclamation… The development of thermal sprayed coatings in the different countries is then discussed, the last part of the chapter being about the economic analysis of the different spray processes.

These are presently accepted for applications ranging from tribological and wear resistant applications including lubricity and low-friction surfaces, to resistance to corrosion and/or oxidation, thermal protection, freestanding components, electrical and optical components, electromagnetic shielding, electrical insulation, abradable seals, biomedical applications, superconducting oxides, components with coefficient of thermal expansion tailored to service conditions, magnetic coatings, solid oxide fuel cells, replacement of hard chromium, as well as ornamental applications.. This affected, in turn, the selection of the material to be applied for the coating, and the spray process to be used. The coating design process is often complicated, by the fact that in practice components are not always devoted to a single requirement such as wear or corrosion or electrical insulation or thermal insulation. In most cases, coatings must resist to different combined needs: for example, wear is often linked to corrosion.



Amorphous Calcium Phosphate


Atmospheric Plasma Spraying


Bioactive Glass


Basic Oxygen Furnace


Burner Rig Test


Acronym of each oxide deposits CaO, MgO, Al2O3, and SiO2


Carbon Nano-tubes


Carbon Fiber-Reinforced Plastics rolls


Composite surface of Stainless Steel and Carbon Steel welded together


Coefficient of Thermal Expansion


Corrosion and Wear


decibel Authorized


direct current




Diamond-Reinforced Composite


Electric Arc Furnace


Environmental Barrier Coating


Electron Beam-Physical Vapor Deposition




Electrolytic Hard Chrome


Electrochemical Impedance Spectroscopy


Fe-based Alloy Coatings


Fluidized-Bed Combustor


Face Center Cubic


Functionally Graded


Functionally Graded Coating


Ce0.8 Gd0.2 O1.9


Gas Shroud


Hydroxyapatite Ca10 (PO4)6 (OH)2


HA Top coating


Hardness Brinell


Hard Chromium Coating


High-Energy Plasma Spray


Hot Isostatically Pressed


High-Pressure Acid-Leach


50 vol. % HA and 50 vol. % TiO2 (HT)


(HA)/HA + TiO2 bond coat composite


High-Velocity Air Flame


High-Velocity Liquid Fuel


High-Velocity Oxy-fuel Flame


High-Velocity Plasma Spray


High-Velocity Suspension Flame Spraying


International Annealed Copper Standard


Induction plasma spraying


La MgAl11O19




La0.6 Sr0.4 Co0.2 Fe0.8 O32-δ


Mole unit


Metal Matrix Composites


Municipal Solid Waste Incinerators


Net Thermal Spraying Residual Stress


Oxide-Dispersion Strengthened


Original Equipment Manufacturer


Polyamide 12


Progressive Abradability Hardness


Plasma Enhanced Chemical Vapor Deposition




Poly Ether Imide


Pulsed Gas Dynamic Spraying


Plasma Sprayed


Plasma-Sprayed-Plasma Vapor Deposition


Plasma-Transferred Arc


Physical Vapor Deposition


Quality Control


Radio Frequency


Rolling Contact Fatigue


Relative air Humidity


Simulated Body Fluid


Specific Energy Requirement


Super solidus Liquid Phase Sintering


Spark Plasma Sintering


Suspension Plasma Spraying


Solution Precursor Plasma Spraying


Stainless Steel


Sm0.5 Sr0.5 Co O3


Special Treatment Steel


Spot-Welded Stainless Steel


Thermal Barrier Coating


Thermal Cycling Fatigue


Thermo Chemical Heat Treatment


Tricalcium Phosphate


Temperature Coefficient of Resistance


Thin Film-Low Pressure Plasma Spraying


Thermally Grown Oxide


Thermal Shock Rig


Tetra-Calcium Phosphate


Ultrahigh Temperature Ceramics


Vacuum Induction Plasma Spraying


Vacuum Plasma Spraying


Wire Arc


Yttria Partially Stabilized Zirconia


Yttria-Stabilized Zirconia


ZrO2–CaF2–Ag2O composite coating


  1. 1.
    Davis JR (ed) (2004) Handbook of thermal spray technology. Sections introduction to applications for thermal spray processing and selected applications. ASM International, Materials Park, OHGoogle Scholar
  2. 2.
    American Welding Society (1985) Thermal spraying, practice, theory and application. American Welding Society, Miami, FLGoogle Scholar
  3. 3.
    Cartier M (2003) Handbook of surface treatments and coatings. ASME Press, New York, 412 pGoogle Scholar
  4. 4.
    Zhum Gahr KH (1987) Microstructure and wear of materials. Elsevier, AmsterdamGoogle Scholar
  5. 5.
    Chattopadhyay R (2001) Surface wear: analysis, treatment, and prevention. ASM International, Materials Park, OH, 307 pGoogle Scholar
  6. 6.
    Pawlowski L (1995) The science and engineering of thermal spray coatings. Wiley, New YorkGoogle Scholar
  7. 7.
    Champagne VK (2007) The cold spray materials deposition process; fundamental and applications. Woodhead, Cambridge, 362 pGoogle Scholar
  8. 8.
    Sobolev VV, Guilemany JM, Nutting J (2004) High velocity oxy-fuel spraying. Maney for the Institute of Materials, Minerals and Mining, LondonGoogle Scholar
  9. 9.
    Bolelli G, Lusvarghi L (2006) Heat treatment effects on the tribological performance of HVOF sprayed Co-Mo-Cr-Si coatings. J Therm Spray Technol 15(4):802–810Google Scholar
  10. 10.
    Kulu P, Hailing J (1998) Recycled hard metal-base wear-resistant composite coatings. J Therm Spray Technol 7(2):173–178Google Scholar
  11. 11.
    Sakata K, Nakano K, Miyahara H, Matsubara Y, Ogi K (2007) Microstructure control of thermally sprayed Co-based self-fluxing alloy coatings by diffusion treatment. J Therm Spray Technol 16(5–6):991–997Google Scholar
  12. 12.
    Otsubo F, Era H, Kishitake K (2000) Structure and phases in nickel-base self-fluxing alloy coating containing high chromium and boron. J Therm Spray Technol 9(1):107–113Google Scholar
  13. 13.
    Kulu P, Pihl T (2002) Selection criteria for wear resistant powder coatings under extreme erosive wear conditions. J Therm Spray Technol 11(4):517–522Google Scholar
  14. 14.
    Miranda JC, Ramalho A (2001) Abrasion resistance of thermal sprayed composite coatings with a nickel alloy matrix and a WC hard phase. Effect of deposition technique and re-melting. Tribol Lett 11(1):37–48Google Scholar
  15. 15.
    Schwetzke R, Kreye H (1999) Microstructure and properties of tungsten carbide coatings sprayed with various high-velocity oxygen fuel spray systems. J Therm Spray Technol 8(3):433–439Google Scholar
  16. 16.
    Kasparova M, Zahalka F, Houdkova S (2011) WC-Co and Cr3C2-NiCr coatings in low- and high-stress abrasive conditions. J Therm Spray Technol 20(3):412–424Google Scholar
  17. 17.
    Houdkova S, Kasparova M, Zahalka F (2010) The influence of spraying angle on properties of HVOF sprayed hardmetal coatings. J Therm Spray Technol 19(5):893–901Google Scholar
  18. 18.
    Tillmann W, Vogli E, Baumann I, Kopp G, Weihs C (2010) Desirability-based multi-criteria optimization of HVOF spray experiments to manufacture fine structured wear-resistant 75Cr3C2-25(NiCr20) coatings. J Therm Spray Technol 19(1–2):393–408Google Scholar
  19. 19.
    Skandan G, Yao R, Sadangi R, Kear BH, Qiao Y, Liu L, Fischer TE (2000) Multimodal coatings: a new concept in thermal spraying. J Therm Spray Technol 9(3):329–331Google Scholar
  20. 20.
    Lima RS, Marple BR (2007) Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: a review. J Therm Spray Technol 16(1):40–63Google Scholar
  21. 21.
    Kim GE, Walker J (2007) Successful application of nanostructured titanium dioxide coating for high-pressure acid-leach application. J Therm Spray Technol 16(1):34–39Google Scholar
  22. 22.
    Gawne DT, Qiu Z, Bao Y, Zhang T, Zhang K (2001) Abrasive wear resistance of plasma-sprayed glass-composite coatings. J Therm Spray Technol 10(4):599–603Google Scholar
  23. 23.
    Cipri F, Bartuli C, Valente T, Casadei F (2007) Electromagnetic and mechanical properties of silica-aluminosilicates plasma sprayed composite coatings. J Therm Spray Technol 16(5–6):831–838Google Scholar
  24. 24.
    Kang AS, Grewal JS, Jain D, Kang S (2012) Wear behavior of thermal spray coatings on rotavator blades. J Therm Spray Technol 21(2):355–359Google Scholar
  25. 25.
    Kim HJ, Kweon YG, Chang RW (1994) Wear and erosion behavior of plasma-sprayed WC-Co coatings. J Therm Spray Technol 3(2):169–178Google Scholar
  26. 26.
    Wang BQ, Luer K (1994) The erosion-oxidation behavior of HVOF Cr3C2-NiCr cermet coating. Wear 174:177–185Google Scholar
  27. 27.
    Kenichi S, Nakahama S, Hattori S, Nakano K (2005) Slurry wear and cavitation erosion of thermal-sprayed cermets. Wear 258:768–775Google Scholar
  28. 28.
    Hawthorne HM, Arsenault B, Immarigeon JP, Legoux JG, Parameswaran VR (1999) Comparison of slurry and dry erosion behavior of some HVOF thermal sprayed coatings. Wear 225–229:825–834Google Scholar
  29. 29.
    Ji G-C, Li C-J, Wang Y-Y, Li W-Y (2007) Erosion performance of HVOF-sprayed Cr3C2-NiCr coatings. J Therm Spray Technol 16(4):557–565Google Scholar
  30. 30.
    Yang G-J, Li C-J, Zhang S-J, Li C-X (2008) High-temperature erosion of HVOF sprayed Cr3C2-NiCr coating and mild steel for boiler tubes. J Therm Spray Technol 17(5–6):782–787Google Scholar
  31. 31.
    Osawa S, Itsukaichi T, Ahmed R (2005) Influence of substrate properties on the impact resistance of WC cermet coatings. J Therm Spray Technol 14(4):495–501Google Scholar
  32. 32.
    Kulu P, Hussainova L, Veinthal R (2005) Solid particle erosion of thermal sprayed coatings. Wear 258:488–496Google Scholar
  33. 33.
    Ramesha CS, Devaraja DS, Keshavamurthya R, Sridharb BR (2011) Slurry erosive wear behavior of thermally sprayed Inconel-718 coatings by APS process. Wear 271:1365–1371Google Scholar
  34. 34.
    Higuera HV, Belzunce Varela J, Carriles Menéndez A, Poveda Martiınez S (2001) High temperature erosion wear of flame and plasma-sprayed nickel–chromium coatings under simulated coal-fired boiler atmospheres. Wear 247:214–222Google Scholar
  35. 35.
    Krishnamurthy N, Murali MS, Venkataraman B, Mukunda PG (2012) Characterization and solid particle erosion behavior of plasma sprayed alumina and calcia-stabilized zirconia coatings on Al-6061 substrate. Wear 274–275:15–27Google Scholar
  36. 36.
    Branagan DJ, Breitsameter M, Meacham BE, Belashchenko V (2005) High-performance nanoscale composite coatings for boiler applications. J Therm Spray Technol 14(2):196–204Google Scholar
  37. 37.
    Pantelis DI, Psyllaki P, Alexopoulos N (2000) Tribological behavior of plasma-sprayed Al2O3 coatings under severe wear conditions. Wear 237:197–204Google Scholar
  38. 38.
    Sanchez E, Bannier E, Cantavella V, Salvador MD, Klyatskina E, Morgiel J, Grzonka J, Boccaccini AR (2008) Deposition of Al2O3-TiO2 nanostructured powders by atmospheric plasma spraying. J Therm Spray Technol 17(3):329–337Google Scholar
  39. 39.
    Darut G, Ageorges H, Denoirjean A, Montavon G, Fauchias P (2008) Effect of the structural scale of plasma-sprayed alumina coatings on their friction coefficients. J Therm Spray Technol 17(5–6):788–797Google Scholar
  40. 40.
    Bolelli G, Rauch J, Cannillo V, Killinger A, Lusvarghi L, Gadow R (2009) Microstructural and tribological investigation of high-velocity suspension flame sprayed (HVSFS) Al2O3 coatings. J Therm Spray Technol 18(1):35–48Google Scholar
  41. 41.
    Ahn H-S, Kwon O-K (1999) Tribological behaviour of plasma-sprayed chromium oxide coating. Wear 225–229:814–824Google Scholar
  42. 42.
    Pratap Singh V, Sil A, Jayaganthan R (2011) Tribological behavior of plasma sprayed Cr2O3–3%TiO2 coatings. Wear 272:149–158Google Scholar
  43. 43.
    Tao S, Yin Z, Zhou X, Ding C (2010) Sliding wear characteristics of plasma-sprayed Al2O3 and Cr2O3 coatings against copper alloy under severe conditions. Tribol Int 43:69–75Google Scholar
  44. 44.
    Bolelli G, Cannillo V, Lusvarghi L, Manfredini T (2006) Wear behaviour of thermally sprayed ceramic oxide coatings. Wear 261:1298–1315Google Scholar
  45. 45.
    Ramachandran CS, Balasubramanian V, Ananthapadmanabhan PV, Viswabaskaran V (2012) Understanding the dry sliding wear behaviour of atmospheric plasma-sprayed rare earth oxide coatings. Mater Design 39:234–252Google Scholar
  46. 46.
    Dallaire S (2001) Hard arc-sprayed coating with enhanced erosion and abrasion wear resistance. J Therm Spray Technol 10(3):511–519Google Scholar
  47. 47.
    Yang Q, Senda T, Hirose A (2006) Sliding wear behavior of WC–12% Co coatings at elevated temperatures. Surf Coat Technol 200:4208–4212Google Scholar
  48. 48.
    Yandouzi M, Bu H, Brochu M, Jodoin B (2012) Nanostructured Al-based metal matrix composite coating production by pulsed gas dynamic spraying process. J Therm Spray Technol 21(3–4):609–619Google Scholar
  49. 49.
    Li W-Y, Zhang G, Zhang C, Elkedim O, Liao H, Coddet C (2008) Effect of ball milling of feedstock powder on microstructure and properties of TiN particle-reinforced Al alloy-based composites fabricated by cold spraying. J Therm Spray Technol 17(3):316–322Google Scholar
  50. 50.
    Qiao Y, Liu Y-R, Fischer TE (2001) Sliding and abrasive wear resistance of thermal-sprayed WC-CO coatings. J Therm Spray Technol 10(1):118–125Google Scholar
  51. 51.
    Jacobs L, Hyland MM, De Bonte M (1999) Study of the influence of microstructural properties on the sliding-wear behavior of HVOF and HVAF sprayed WC-cermet coatings. J Therm Spray Technol 8(1):125–132Google Scholar
  52. 52.
    Bolelli G, Bonferroni B, Laurila J, Lusvarghi L, Milantia A, Niemi K, Vuoristo P (2012) Micromechanical properties and sliding wear behaviour of HVOF-sprayed Fe-based alloy coatings. Wear 276–277:29–47Google Scholar
  53. 53.
    Alam S, Sasaki S, Shimura H (2001) Friction and wear characteristics of aluminum bronze coatings on steel substrates sprayed by a low pressure plasma technique. Wear 248:75–81Google Scholar
  54. 54.
    Ouyang JH, Sasaki S, Umeda K (2001) Microstructure and tribological properties of low-pressure plasma-sprayed ZrO2–CaF2–Ag2O composite coating at elevated temperature. Wear 249:440–451Google Scholar
  55. 55.
    Ahn J, Hwang B, Lee S (2005) Improvement of wear resistance of plasma-sprayed molybdenum blend coatings. J Therm Spray Technol 14(2):251–257Google Scholar
  56. 56.
    Rodriguez J, Martin A, Fernández R, Fernández JE (2003) An experimental study of the wear performance of NiCrBSi thermal spray coatings. Wear 255:950–955Google Scholar
  57. 57.
    Niebuhr D, Scholl M (2005) Synthesis and performance of plasma-sprayed polymer/steel coating system. J Therm Spray Technol 14(4):487–494Google Scholar
  58. 58.
    Li J, Liao H, Coddet C (2002) Friction and wear behavior of flame-sprayed PEEK coatings. Wear 252:824–831Google Scholar
  59. 59.
    Li Y, Ma Y, Xie B, Cao S, Wu Z (2007) Dry friction and wear behavior of flame-sprayed polyamide1010/n-SiO2 composite coatings. Wear 262:1232–1238Google Scholar
  60. 60.
    Żórawski W, Kozerski S (2008) Scuffing resistance of plasma and HVOF sprayed WC-12Co and Cr3C2-25(Ni20Cr) coatings. Surf Coat Technol 202:4453–4457Google Scholar
  61. 61.
    Edrisy A, Perry T, Alpas AT (2005) Investigation of scuffing damage in aluminum engines with thermal spray coatings. Wear 259:1056–1062Google Scholar
  62. 62.
    Kim J-H, Lee M-H (2010) A study on cavitation erosion and corrosion behavior of Al-, Zn-, Cu-, and Fe-based coatings prepared by arc spraying. J Therm Spray Technol 19(6):1224–1230Google Scholar
  63. 63.
    Hahn M, Fischer A (2010) Characterization of thermal spray coatings for cylinder running surfaces of diesel engines. J Therm Spray Technol 19(5):866–872Google Scholar
  64. 64.
    Kumar A, Boy J, Zatorski R, Stephenson LD (2005) Thermal spray and weld repair alloys for the repair of cavitation damage in turbines and pumps: a technical note. J Therm Spray Technol 14(2):177–182Google Scholar
  65. 65.
    Factor M, Roman I (2002) Use of microhardness as a simple means of estimating relative wear resistance of carbide thermal spray coatings: Part 2. Wear resistance of cemented carbide coatings. J Therm Spray Technol 11(4):482–495Google Scholar
  66. 66.
    Wu Y, Hong S, Zhang J, He Z, Guo W, Wang Q, Li G (2012) Microstructure and cavitation erosion behavior of WC–Co–Cr coating on 1Cr18Ni9Ti stainless steel by HVOF thermal spraying. Int J Refract Metals Hard Mater 32:21–26Google Scholar
  67. 67.
    Santa JF, Espitia LA, Blanco JA, Romo SA, Toro A (2009) Slurry and cavitation erosion resistance of thermal spray coatings. Wear 267:160–167Google Scholar
  68. 68.
    Lima MM, Godoy C, Modenesi PJ, Avelar-Batista JC, Davison A, Matthews A (2004) Coating fracture toughness determined by Vickers indentation: an important parameter in cavitation erosion resistance of WC–Co thermally sprayed coatings. Surf Coat Technol 177–178:489–496Google Scholar
  69. 69.
    Ding Z-X, Chen W, Wang Q (2011) Resistance of cavitation erosion of multimodal WC-12Co coatings sprayed by HVOF. Trans Nonferrous Met Soc China 21:2231–2236Google Scholar
  70. 70.
    Stewart S, Ahmed R (2002) Rolling contact fatigue of surface coatings—a review. Wear 253:1132–1144Google Scholar
  71. 71.
    Ahmed R, Hadfield M (2002) Mechanisms of fatigue failure in thermal spray coatings. J Therm Spray Technol 11(3):333–349Google Scholar
  72. 72.
    Savarimuthu AC, Taber HF, Megat I, Shadley JR, Rybicki EF, Cornell WC, Emery WA, Somerville DA, Nuse JD (2001) Sliding wear behavior of tungsten carbide thermal spray coatings for replacement of chromium electroplate in aircraft applications. J Therm Spray Technol 10(3):502–510Google Scholar
  73. 73.
    Zhang XC, Xu BS, Xuan FZ, Tu ST, Wang HD, Wu YX (2008) Rolling contact fatigue behavior of plasma-sprayed CrC–NiCr cermet coatings. Wear 265:1875–1883Google Scholar
  74. 74.
    Berger L-M, Lipp K, Spatzier J, Bretschneider J (2011) Dependence of the rolling contact fatigue of HVOF-sprayed WC–17%Co hardmetal coatings on substrate hardness. Wear 271:2080–2088Google Scholar
  75. 75.
    Ganesh Sundara Raman S, Rajasekaran B, Joshi SV, Sundararajan G (2007) Influence of substrate material on plain fatigue and fretting fatigue behavior of detonation gun sprayed Cu-Ni-In coating. J Therm Spray Technol 16(4):571–579Google Scholar
  76. 76.
    Akebono H, Komotori J, Shimizu M (2008) Effect of coating microstructure on the fatigue properties of steel thermally sprayed with Ni-based self-fluxing alloy. Int J Fatigue 30:814–821Google Scholar
  77. 77.
    Jin O, Mall S, Sanders JH, Sharma SK (2006) Durability of Cu–Al coating on Ti–6Al–4V substrate under fretting fatigue. Surf Coat Technol 201:1704–1710Google Scholar
  78. 78.
    Kim K, Korsunsky AM (2011) Effects of imposed displacement and initial coating thickness on fretting behaviour of a thermally sprayed coating. Wear 271(7–8):1080–1085Google Scholar
  79. 79.
    Mary C, Fouvry S, Martin JM, Bonnet B (2011) Pressure and temperature effects on Fretting Wear damage of a Cu–Ni–In plasma coating versus Ti17 titanium alloy contact. Wear 272:18–37Google Scholar
  80. 80.
    Hager CH Jr, Sanders JH, Sharma S (2008) Un-lubricated gross slip fretting wear of metallic plasma-sprayed coatings for Ti6Al4V surfaces. Wear 265:439–451Google Scholar
  81. 81.
    Koiprasert H, Dumrongrattana S, Niranatlumpong P (2004) Thermally sprayed coatings for protection of fretting wear in land-based gas-turbine engine. Wear 257:1–7Google Scholar
  82. 82.
    Hager CH Jr, Sanders J, Sharma S, Voevodin AA (2009) The use of nickel graphite composite coatings for the mitigation of gross slip fretting wear on Ti6Al4V interfaces. Wear 267:1470–1481Google Scholar
  83. 83.
    Carrasquero EJ, Lesage J, Puchi-Cabrera ES, Staia MH (2008) Fretting wear of HVOF Ni–Cr based alloy deposited on SAE 1045 steel. Surf Coat Technol 202:4544–4551Google Scholar
  84. 84.
    Tian W, Wang Y, Yang Y (2008) Fretting wear behavior of conventional and nanostructured Al2O3–13 wt%TiO2 coatings fabricated by plasma spray. Wear 265:1700–1707Google Scholar
  85. 85.
    Sathish S, Geetha M, Aruna ST, Balaji N, Rajam KS, Asokamani R (2011) Sliding wear behavior of plasma sprayed nanoceramic coatings for biomedical applications. Wear 271:934–941Google Scholar
  86. 86.
    Aoh J-N, Chen J-C (2001) On the wear characteristics of cobalt-based hardfacing layer after thermal fatigue and oxidation. Wear 250:611–620Google Scholar
  87. 87.
    D’Ans P, Dille J, Degrez M (2011) Thermal fatigue resistance of plasma sprayed yttria-stabilised zirconia onto borided hot work tool steel, bonded with a NiCrAlY coating: experiments and modeling. Surf Coat Technol 205:3378–3386Google Scholar
  88. 88.
    Eriksson R, Brodin H, Johansson S, Östergren L, Li X-H (2011) Influence of isothermal and cyclic heat treatments on the adhesion of plasma sprayed thermal barrier coatings. Surf Coat Technol 205:5422–5429Google Scholar
  89. 89.
    Kwon J-Y, Lee J-H, Kim H-C, Jung Y-G, Paik U, Lee K-S (2006) Effect of thermal fatigue on mechanical characteristics and contact damage of zirconia-based thermal barrier coatings with HVOF-sprayed bond coat. Mater Sci Eng A 429:173–180Google Scholar
  90. 90.
    Luo L, Liu S, Li J, Wu Y (2011) Thermal shock resistance of FeMnCrAl/Cr3C2–Ni9Al coatings deposited by high velocity arc spraying. Surf Coat Technol 205:3467–3471Google Scholar
  91. 91.
    Pan ZY, Wang Y, Wang CH, Sun XG, Wang L (2012) The effect of SiC particles on thermal shock behavior of Al2O3/8YSZ coatings fabricated by atmospheric plasma spraying. Surf Coat Technol 206:2484–2498Google Scholar
  92. 92.
    Gu L, Chen X, Fan X, Liu Y, Zou B, Wang Y, Cao X (2011) Improvement of thermal shock resistance for thermal barrier coating on aluminum alloy with various electroless interlayers. Surf Coat Technol 206:29–36Google Scholar
  93. 93.
    Kokini K, DeJonge J, Rangaraj S, Beardsley B (2002) Thermal shock of functionally graded thermal barrier coatings with similar thermal resistance. Surf Coat Technol 154:223–231Google Scholar
  94. 94.
    Liang B, Ding C (2005) Thermal shock resistances of nanostructured and conventional zirconia coatings deposited by atmospheric plasma spraying. Surf Coat Technol 197:185–192Google Scholar
  95. 95.
    Gilbert A, Kokini K, Sankarasubramanian S (2008) Thermal fracture of zirconia–mullite composite thermal barrier coatings under thermal shock: a numerical study. Surf Coat Technol 203:91–98Google Scholar
  96. 96.
    Ahmaniemi S, Vippola M, Vuoristo P, Mäntylä T, Buchmann M, Gadow R (2002) Residual stresses in aluminum phosphate sealed plasma sprayed oxide coatings and their effect on abrasive wear. Wear 252:614–623Google Scholar
  97. 97.
    Chen H, Hutchings IM (1998) Abrasive wear resistance of plasma-sprayed tungsten carbide–cobalt coatings. Surf Coat Technol 107:106–114Google Scholar
  98. 98.
    Venkateswarlu K, Rajinikanth V, Naveen T, Dhiraj Prasad Sinha (2009) Abrasive wear behavior of thermally sprayed diamond reinforced composite coating deposited with both oxy-acetylene and HVOF techniques. Wear 266:995–1002Google Scholar
  99. 99.
    Stoica V, Ahmed R, Itsukaichi T (2005) Influence of heat-treatment on the sliding wear of thermal spray cermet coatings. Surf Coat Technol 199:7–21Google Scholar
  100. 100.
    Valarezo A, Bolelli G, Choi WB, Sampath S, Cannillo V, Lusvarghi L, Rosa R (2010) Damage tolerant functionally graded WC–Co/stainless steel HVOF coatings. Surf Coat Technol 205:2197–2208Google Scholar
  101. 101.
    Bolelli, Cannillo V, Lusvarghi L, Rosa R, Valarezo A, Choi WB, Dey R, Weyant C, Sampath S (2012) Functionally graded WC–Co/NiAl HVOF coatings for damage tolerance, wear and corrosion protection. Surf Coat Technol 206:2585–2601Google Scholar
  102. 102.
    Stoica V, Ahmed R, Golshan M, Tobe S (2004) Sliding wear evaluation of hot isostatically pressed thermal spray cermet coatings. J Therm Spray Technol 13(1):93–107Google Scholar
  103. 103.
    Evdokimenko Yu I, Kisel’ VM, Kadyrov VK, Korol’ AA, Get’man OI (2001) High-velocity flame spraying of powder aluminum protective coatings. Powder Metallurgy Metal Ceram 40(3–4):121–126Google Scholar
  104. 104.
    Sørensen PA, Kiil S, Dam-Johansen K, Weinell CE (2009) Anticorrosive coatings: a review. J Coat Technol Res 6(2):135–176Google Scholar
  105. 105.
    Murakami K, Shimada M (2009) Development of thermal spray coatings with corrosion protection and antifouling properties. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 1041–1044Google Scholar
  106. 106.
    Pacheo da Silva C et al (1991) 2nd Plasma Technik Symposium 1. Plasma Technik, Wohlen, pp 363–373Google Scholar
  107. 107.
    Chun-long Y, Yun-qi A, Ya-tan S (2009) Three years corrosion tests of nanocomposite epoxy sealer for metalized coatings on the East China Sea. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 1090–1093Google Scholar
  108. 108.
    Schmidt DP, Shaw BA, Sikora E, Shaw WW, Laliberte LH (2006) Corrosion protection assessment of sacrificial coating systems as a function of exposure time in a marine environment. Prog Org Coat 57:352–364Google Scholar
  109. 109.
    Han M-S, Woo Y-B, Ko S-C, Jeong Y-J, Jang S-K, Kim S-J (2009) Effects of thickness of Al thermal spray coating for STS 304. Trans Nonferrous Met Soc China 19:925–929Google Scholar
  110. 110.
    Esfahani EA, Salimijazi H, Golozar MA, Mostaghimi J, Pershin L (2012) Study of corrosion behavior of arc sprayed aluminum coating on mild steel. J Therm Spray Technol. doi: 10.1007/s11666-012-9810-x Google Scholar
  111. 111.
    Gorlach IA (2009) A new method for thermal spraying of Zn–Al coatings. Thin Solid Films 517:5270–5273Google Scholar
  112. 112.
    Cramer SD, Covino BS Jr, Holcomb GR, Bullard SJ, Collins WK, Govier RD, Wilson RD, Laylor HM (1999) Thermal sprayed titanium anode for cathodic protection of reinforced concrete bridges. J Therm Spray Technol 8(1):133–145Google Scholar
  113. 113.
    Holcomb GR, Cramer SD, Bullard SJ, Covino Jr BS, Collins WK, Govier RD, McGill GE (1997) Characterization of thermal-sprayed titanium anodes for cathodic protection. In: Berndt CC (ed) Thermal spray: a united forum for scientific and technological advances. ASM International, Materials Park, OH, pp 141–150Google Scholar
  114. 114.
    Kawakita J, Kuroda S, Fukushima T, Kodama T (2005) Improvement of corrosion resistance of high-velocity oxyfuel-sprayed stainless steel coatings by addition of molybdenum. J Therm Spray Technol 14(2):225–230Google Scholar
  115. 115.
    Moskowitz LN (1993) Application of HVOF thermal spraying to solve corrosion problems in the petroleum industry—an industrial note. J Therm Spray Technol 2(1):21–29Google Scholar
  116. 116.
    Zeng Z, Sakoda N, Tajiri T, Kuroda S (2008) Structure and corrosion behavior of 316L stainless steel coatings formed by HVAF spraying with and without sealing. Surf Coat Technol 203:284–290Google Scholar
  117. 117.
    Meng H (2010) The performance of different WC-based cermet coatings in oil and gas applications–a comparison. In: ITSC 2010 Thermal spray: global solutions, future applications. DVS, Düsseldorf, e-ProcGoogle Scholar
  118. 118.
    Souza VAD, Neville A (2007) Aspects of microstructure on the synergy and overall material loss of thermal spray coatings in erosion–corrosion environments. Wear 263:339–346Google Scholar
  119. 119.
    Ishikawa Y, Kawakita J, Osawa S, Itsukaichi T, Sakamoto Y, Takaya M, Kuroda S (2005) Evaluation of corrosion and wear resistance of hard cermet coatings sprayed by using an improved HVOF process. J Therm Spray Technol 14(3):384–390Google Scholar
  120. 120.
    Fedrizzi L, Valentinelli L, Rossi S, Segna S (2007) Tribocorrosion behaviour of HVOF cermet coatings. Corros Sci 49:2781–2799Google Scholar
  121. 121.
    Zhang J, Wang Z, Lin P, Lu W, Zhou Z, Jiang S (2011) Effect of sealing treatment on corrosion resistance of plasma-sprayed NiCrAl/Cr2O3-8 wt.%TiO2 coating. J Therm Spray Technol 20(3):508–513Google Scholar
  122. 122.
    Tuominen J, Vuoristo P, Mäntylä T, Kylmälahti M, Vihinen J et al (2000) Improving corrosion properties of high-velocity oxy-fuel sprayed inconel 625 by using a high-power continuous wave neodymium-doped yttrium aluminum garnet laser. J Therm Spray Technol 9(4):513–519Google Scholar
  123. 123.
    Kim S-J, Lee S-J (2011) Effects of F−Si sealer on electrochemical characteristics of 15%Al−85%Zn alloy thermal spray coating. Trans Nonferrous Met Soc China 21:2798–2804Google Scholar
  124. 124.
    Dent AH, Horlock AJ, McCartney DG, Harris SJ (1999) The corrosion behavior and microstructure of high-velocity oxy-fuel sprayed nickel-base amorphous/nanocrystalline coatings. J Therm Spray Technol 8(3):399–404Google Scholar
  125. 125.
    Ishikawa K, Suzuki T, Tobe S, Kitamura Y (2001) Resistance of thermal-sprayed duplex coating composed of aluminum and 80Ni-20Cr alloy against aqueous corrosion. J Therm Spray Technol 10(3):520–525Google Scholar
  126. 126.
    Pardo A, Merino MC, Mohedano M, Casajús P, Coy AE, Arrabal R (2009) Corrosion behaviour of Mg/Al alloys with composite coatings. Surf Coat Technol 203:1252–1263Google Scholar
  127. 127.
    Arrabal R, Pardo A, Merino MC, Mohedano M, Casajús P, Merino S (2010) Al/SiC thermal spray coatings for corrosion protection of Mg–Al alloys in humid and saline environments. Surf Coat Technol 204:2767–2774Google Scholar
  128. 128.
    Pokhmurska H, Wielage B, Lampke T, Grund T, Student M, Chervinska N (2008) Post-treatment of thermal spray coatings on magnesium. Surf Coat Technol 202:4515–4524Google Scholar
  129. 129.
    Mohan P, Patterson T, Yao B, Sohn Y (2010) Degradation of thermal barrier coatings by fuel impurities and CMAS: thermochemical interactions and mitigation approaches. J Therm Spray Technol 19(1–2):156–167Google Scholar
  130. 130.
    Jones RL (1997) Some aspects of the hot corrosion of thermal barrier coatings. J Therm Spray Technol 6(1):77–84Google Scholar
  131. 131.
    Hitchman LN, Knapp J (2010) Failure of thermal barrier coatings subjected to CMAS attack. J Therm Spray Technol 19(1–2):148–155Google Scholar
  132. 132.
    Li L, Hitchman N, Knapp J (2010) Failure of thermal barrier coatings subjected to CMAS attack. J Therm Spray Technol 19(1–2):148–155Google Scholar
  133. 133.
    Habibi MH, Li Wang, Guo SM (2012) Evolution of hot corrosion resistance of YSZ, Gd2Zr2O7, and Gd2Zr2O7 + YSZ composite thermal barrier coatings in Na2SO4 + V2O5 at 1050 °C. J Eur Ceram Soc 32:1635–1642Google Scholar
  134. 134.
    Xie X, Guo H, Gong S, Xu H (2012) Hot corrosion behavior of double-ceramic-layer LaTi2Al9O19/YSZ thermal barrier coatings. Chin J Aeronautics 25:137–142Google Scholar
  135. 135.
    Mei H, Liu Y, Cheng L, Zhang L (2012) Corrosion mechanism of a NiCoCrAlTaY coated Mar-M247 superalloy in molten salt vapor. Corros Sci 55:201–204Google Scholar
  136. 136.
    Sidhu TS, Prakash S, Agrawal RD (2006) Hot corrosion resistance of high-velocity oxyfuel sprayed coatings on a nickel-base superalloy in molten salt environment. J Therm Spray Technol 15(3):387–399Google Scholar
  137. 137.
    Chatha SS, Sidhu HS, Sidhu BS (2012) High temperature hot corrosion behaviour of NiCr and Cr3C2–NiCr coatings on T91 boiler steel in an aggressive environment at 750 °C. Surf Coat Technol 206:3839–3850Google Scholar
  138. 138.
    Tani K, Harada Y (2007) Enhancement of service life of steam generating tubes in oil-fired boiler for power generation employing plasma spray technology. J Therm Spray Technol 16(1):111–117Google Scholar
  139. 139.
    Bala N, Singh H, Prakash S (2010) Accelerated hot corrosion studies of cold spray Ni–50Cr coating on boiler steels. Mater Design 31:244–253Google Scholar
  140. 140.
    Matsubara Y, Sochi Y, Tanabe M, Takeya A (2007) Advanced coatings on furnace wall tubes. J Therm Spray Technol 16(2):195–201Google Scholar
  141. 141.
    Chatha SS, Sidhu HS, Sidhu BS (2012) The effects of post-treatment on the hot corrosion behavior of the HVOF-sprayed Cr3C2–NiCr coating. Surf Coat Technol 206:4212–4224Google Scholar
  142. 142.
    Tao K, Zhou X-L, Cui H, Zhang J-S (2009) Oxidation and hot corrosion behaviors of HVAF-sprayed conventional and nanostructured NiCrC coatings. Trans Nonferrous Met Soc China 19:1151–1160Google Scholar
  143. 143.
    Jansen F, Xi W, Dorfman MR, Peters JA, Nagy DR (2002) Performance of di-calcium silicate coatings in hot-corrosive environment. Surf Coat Technol 149:57–61Google Scholar
  144. 144.
    Hirata T, Ota S, Morimoto T (2003) Influence of impurities in Al2O3 ceramics on hot corrosion resistance against molten salt. J Eur Ceram Soc 23:91–97Google Scholar
  145. 145.
    Gibbons GJ, Hansell RG (2008) Thermal-sprayed coatings on aluminium for mould tool protection and upgrade. J Mater Process Technol 204:184–191Google Scholar
  146. 146.
    Mizuno H, Kitamura J (2007) MoB/CoCr cermet coatings by HVOF spraying against erosion by molten Al-Zn alloy. J Therm Spray Technol 16(3):404–413Google Scholar
  147. 147.
    Koolloos MFJ, Houben JM (2000) Behavior of plasma-sprayed thermal barrier coatings during thermal cycling and the effect of a preoxidized NiCrAIY bond coat. J Therm Spray Technol 9(1):49–58Google Scholar
  148. 148.
    Fossati A, DiFerdinando M, Bardi U, Scrivani A, Giolli C (2012) Influence of surface finishing on the oxidation behaviour of VPS MCrAlY coatings. J Therm Spray Technol 21(2):314–324Google Scholar
  149. 149.
    Jiang SM, Li HQ, Ma J, Xu CZ, Gong J, Sun C (2010) High temperature corrosion behavior of a gradient NiCoCrAlYSi coating II: oxidation and hot corrosion. Corros Sci 52:2316–2322Google Scholar
  150. 150.
    Yuan FH, Chen ZX, Huang ZW, Wang ZG, Zhu SJ (2008) Oxidation behavior of thermal barrier coatings with HVOF and detonation-sprayed NiCrAlY bond coats. Corros Sci 50:1608–1617Google Scholar
  151. 151.
    Pint BA, Wright IG, Brindley WJ (2000) Evaluation of thermal barrier coating systems on novel substrates. J Therm Spray Technol 9(2):198–203Google Scholar
  152. 152.
    Limarga AM, Widjaja S, Yip TH (2005) Mechanical properties and oxidation resistance of plasma-sprayed multilayered Al2O3/ZrO2 thermal barrier coatings. Surf Coat Technol 197:93–102Google Scholar
  153. 153.
    Ramesh MR, Prakash S, Nath SK, Pawan Kumar Sapra, Krishnamurthy N (2011) Evaluation of thermocyclic oxidation behavior of HVOF-sprayed NiCrFeSiB coatings on boiler tube steels. J Therm Spray Technol 20(5):992–1000Google Scholar
  154. 154.
    Kaur M, Singh H, Prakash S (2011) Surface engineering analysis of detonation-gun sprayed Cr3C2–NiCr coating under high-temperature oxidation and oxidation–erosion environments. Surf Coat Technol 206:530–541Google Scholar
  155. 155.
    Sidhu TS, Malik A, Prakash S, Agrawal RD (2007) Oxidation and hot corrosion resistance of HVOF WC-NiCrFeSiB coating on Ni- and Fe-based superalloys at 800 °C. J Therm Spray Technol 16(5–6):844–849Google Scholar
  156. 156.
    Singh H, Puri D, Prakash S, Rama Rao VV (2006) On the high-temperature oxidation protection behavior of plasma-sprayed stellite-6 coatings. Metallurgical Mater Trans A 37A:3048–3056Google Scholar
  157. 157.
    Bala N, Singh H, Prakash S (2011) Characterization and high-temperature oxidation behavior of cold-sprayed Ni-20Cr and Ni-50Cr coatings on boiler steels. Metallurgical Mater Trans A 42A:3399–3416Google Scholar
  158. 158.
    Hill H, Weber S, Raab U, Theisen W, Wagner L (2012) Influence of processing and heat treatment on corrosion resistance and properties of high alloyed steel coatings. J Therm Spray Technol 21(5):987–994Google Scholar
  159. 159.
    Kembaiyan KT, Keshavan K (1995) Combating severe fluid erosion and corrosion of drill bits using thermal spray coatings. Wear 186–187:487–492Google Scholar
  160. 160.
    Uozato S, Nakata K, Ushio M (2003) Corrosion and wear behaviors of ferrous powder thermal spray coatings on aluminum alloy. Surf Coat Technol 169–170:691–694Google Scholar
  161. 161.
    Al-Fadhli HY, Stokes J, Hashmi MSJ, Yilbas BS (2006) The erosion–corrosion behaviour of high velocity oxy-fuel (HVOF) thermally sprayed inconel-625 coatings on different metallic surfaces. Surf Coat Technol 200:5782–5788Google Scholar
  162. 162.
    Lima CRC, de Souza NFC, Camargo F (2012) Study of wear and corrosion performance of thermal sprayed engineering polymers. Surf Coat Technol 220:140–143Google Scholar
  163. 163.
    Flores JF, Neville A, Kapur N, Gnanavelu A (2009) An experimental study of the erosion–corrosion behavior of plasma transferred arc MMCs. Wear 267:213–222Google Scholar
  164. 164.
    Sidhu BS, Prakash S (2006) Erosion-corrosion of plasma as sprayed and laser remelted Stellite-6 coatings in a coal fired boiler. Wear 260:1035–1044Google Scholar
  165. 165.
    Wang B (1996) Erosion-corrosion of thermal sprayed coatings in FBC boilers. Wear 199:24–32Google Scholar
  166. 166.
    Uusitalo MA, Vuoristo PMJ, Mäntylä TA (2002) Elevated temperature erosion–corrosion coatings in chlorine containing environments of thermal sprayed. Wear 252:586–594Google Scholar
  167. 167.
    Billah BM, Ahmad Khalid F, Nusair Khan A (2012) Behavior of calcia-stabilized zirconia coating at high temperature, deposited by air plasma spraying system. J Therm Spray Technol 21(1):121–131Google Scholar
  168. 168.
    Miller RA (1997) Thermal barrier coatings for aircraft engines: history and directions. J Therm Spray Technol 6(1):35–42Google Scholar
  169. 169.
    Schulz U, Bernardi O, Ebach-Stahl A, Vaßen R, Sebold D (2008) Improvement of EB-PVD thermal barrier coatings by treatments of a vacuum plasma-sprayed bond coat. Surf Coat Technol 203:160–170Google Scholar
  170. 170.
    Bose S, de Masi-Marcin J (1997) Thermal barrier coating experience in gas turbine engines at Pratt & Whitney. J Therm Spray Technol 6(1):99–104Google Scholar
  171. 171.
    Cipitria A, Golosnoy IO, Clyne TW (2009) A sintering model for plasma-sprayed zirconia TBCs. Part I: Free-standing coatings. Acta Mater 57:980–992Google Scholar
  172. 172.
    Markocsan N, Nylén P, Wigren J, Li X-H, Tricoire A (2009) Effect of thermal aging on microstructure and functional properties of zirconia-base thermal barrier coatings. J Therm Spray Technol 18(2):201–208Google Scholar
  173. 173.
    Golosnoy IO, Cipitria A, Clyne TW (2009) Heat transfer through plasma-sprayed thermal barrier coatings in gas turbines: a review of recent work. J Therm Spray Technol 18(5–6):809–821Google Scholar
  174. 174.
    Hernandez MT, Karlsson AM, Bartsch M (2009) On TGO creep and the initiation of a class of fatigue cracks in thermal barrier coatings. Surf Coat Technol 203:3549–3558Google Scholar
  175. 175.
    Vaßen R, Giesen S, Stöver D (2009) Lifetime of plasma-sprayed thermal barrier coatings: comparison of numerical and experimental results. J Therm Spray Technol 18(5–6):835–845Google Scholar
  176. 176.
    Toscano J, Vaβen R, Gil A, Subanovic M, Naumenko D, Singheiser L, Quadakkers WJ (2006) Parameters affecting TGO growth and adherence on MCrAlY-bond coats for TBC’s. Surf Coat Technol 201:3906–3910Google Scholar
  177. 177.
    Pint BA, Haynes JA, Zhang Y (2010) Effect of superalloy substrate and bond coating on TBC lifetime. Surf Coat Technol 205:1236–1240Google Scholar
  178. 178.
    Chen Z, Mabon J, Wen J-G, Trice R (2009) Degradation of plasma-sprayed yttria-stabilized zirconia coatings via ingress of vanadium oxide. J Eur Ceram Soc 29:1647–1656Google Scholar
  179. 179.
    Feuerstein A, Knapp J, Taylor T, Ashary A, Bolcavage A, Hitchman N (2008) Technical and economical aspects of current thermal barrier coating systems for gas turbine engines by thermal spray and EBPVD: a review. J Therm Spray Technol 17(2):199–213Google Scholar
  180. 180.
    Vaßen R, Jarligo MO, Steinke T, Mack DE, Stöver D (2010) Overview on advanced thermal barrier coatings. Surf Coat Technol 205:938–942Google Scholar
  181. 181.
    Vaßen R, Stuke A, Stöver D (2009) Recent developments in the field of thermal barrier coatings. J Therm Spray Technol 18(2):181–186Google Scholar
  182. 182.
    Richer P, Yandouzi M, Beauvais L, Jodoin B (2010) Oxidation behaviour of CoNiCrAlY bond coats produced by plasma, HVOF and cold gas dynamic spraying. Surf Coat Technol 204:3962–3974Google Scholar
  183. 183.
    Karger M, Vaßen R, Stöver D (2011) Atmospheric plasma sprayed thermal barrier coatings with high segmentation crack densities: spraying process, microstructure and thermal cycling behaviour. Surf Coat Technol 206:16–23Google Scholar
  184. 184.
    Hospach A, Mauer G, Vaßen R, Stöver D (2012) Characteristics of ceramic coatings made by thin film low pressure plasma spraying (LPPS-TF). J Therm Spray Technol 21(3–4):435–440Google Scholar
  185. 185.
    Muehlberger E, Meyer P (2009) LPPS – thin film processes: overview of origin and future possibilities. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 737–740Google Scholar
  186. 186.
    Fauchais P, Montavon G, Lima RS, Marple BR (2011) Engineering a new class of thermal spray nano-based microstructures from agglomerated nanostructured particles, suspensions and solutions: an invited review. J Phys D Appl Phys 44:093001Google Scholar
  187. 187.
    Musil J, Alaya M, Oberacker R (1997) Plasma-sprayed duplex and graded partially stabilized zirconia thermal barrier coatings: deposition process and properties. J Therm Spray Technol 6(4):449–455Google Scholar
  188. 188.
    Soechting FO (1999) A design perspective on thermal barrier coatings. J Therm Spray Technol 8(4):505–511Google Scholar
  189. 189.
    Beele W, Marijnissen G, van Lieshout A (1999) The evolution of thermal barrier coatings—status and upcoming solutions for today’s key issues. Surf Coat Technol 120–121:61–67Google Scholar
  190. 190.
    Gupta M, Curry N, Nylén P, Markocsan N, Vaßen R (2012) Design of next generation thermal barrier coatings — experiments and modeling. Surf Coat Technol 220:20–26Google Scholar
  191. 191.
    Cao XQ, Vaßen R, Stöver D (2004) Ceramic materials for thermal barrier coatings. J Eur Ceram Soc 24:1–10Google Scholar
  192. 192.
    Haynes JA, Ferber MK, Porter WD (2000) Thermal cycling behavior of plasma-sprayed thermal barrier coatings with various MCrAIX bond coats. J Therm Spray Technol 9(1):38–48Google Scholar
  193. 193.
    Hamacha R, Fauchais P, Nardou E (1996) Influence of dopant on the behaviour under thermal cycling of two plasma sprayed zirconia coatings, Part 1: Relationship between powder characteristics and coating properties. J Therm Spray Technol 5(4):431–438Google Scholar
  194. 194.
    Ma B, Li Y, Su K (2009) Characterization of ceria–yttria stabilized zirconia plasma-sprayed coatings. Appl Surf Sci 255:7234–7237Google Scholar
  195. 195.
    Markocsan N, Nylén P, Wigren J, Li X-H (2007) Low thermal conductivity coatings for gas turbine applications. J Therm Spray Technol 16(4):498–505Google Scholar
  196. 196.
    Curry N, Donoghue J (2012) Evolution of thermal conductivity of dysprosia stabilised thermal barrier coating systems during heat treatment. Surf Coat Technol 209:38–43Google Scholar
  197. 197.
    Chen X, Zou B, Wang Y, Ma H, Cao X (2011) Microstructure and thermal cycling behavior of air plasma-sprayed YSZ/LaMgAl11O19 composite coatings. J Therm Spray Technol 20(6):1328–1338Google Scholar
  198. 198.
    Chen X, Gu L, Zou B, Wang Y, Cao X (2012) New functionally graded thermal barrier coating system based on LaMgAl11O19/YSZ prepared by air plasma spraying. Surf Coat Technol 206:2265–2274Google Scholar
  199. 199.
    Jarligo MO, Mack DE, Vaßen R, Stöver D (2009) Application of plasma-sprayed complex perovskites as thermal barrier coatings. J Therm Spray Technol 18(2):187–193Google Scholar
  200. 200.
    Ma W, Jarligo MO, Mack DE, Pitzer D, Malzbender J, Vaßen R, Stöver D (2008) New generation perovskite thermal barrier coating materials. J Therm Spray Technol 17(5–6):831–837Google Scholar
  201. 201.
    Yu J, Zhao H, Zhou X, Tao S, Ding C (2011) Effect of thermal aging on microstructure and mechanical properties of plasma-sprayed samarium zirconate coatings. J Therm Spray Technol 20(5):1056–1062Google Scholar
  202. 202.
    Xie XY, Guo HB, Gong SK (2010) Mechanical properties of LaTi2Al9O19 and thermal cycling behaviors of plasma-sprayed LaTi2Al9O19/YSZ thermal barrier coatings. J Therm Spray Technol 19(6):1179–1185Google Scholar
  203. 203.
    Guo H, Zhang H, Ma G, Gong S (2009) Thermo-physical and thermal cycling properties of plasma-sprayed BaLa2Ti3O10 coating as potential thermal barrier materials. Surf Coat Technol 204:691–696Google Scholar
  204. 204.
    Liu Y, Gao YF, Tao SY, Zhou XM, Li WD, Luo HJ, Ding CX (2008) Microstructure of plasma sprayed La2O3-modified YSZ coatings. J Therm Spray Technol 17(5–6):603–607Google Scholar
  205. 205.
    Paul S, Cipitria A, Golosnoy IO, Xie L, Dorfman MR, Clyne TW (2007) Effects of impurity content on the sintering characteristics of plasma-sprayed zirconia. J Therm Spray Technol 16(5–6):798–803Google Scholar
  206. 206.
    Mihm S, Duda T, Gruner H, Thomas G, Dzur B (2012) Method and process development of advanced atmospheric plasma spraying for thermal barrier coatings. J Therm Spray Technol 21(3–4):400–408Google Scholar
  207. 207.
    Tan Y, Srinivasan V, Nakamura T, Sampath S, Bertrand P, Bertrand G (2012) TBC optimizing compliance and thermal conductivity of plasma sprayed thermal barrier coatings via controlled powders and processing strategies. J Therm Spray Technol 21(5):950–962Google Scholar
  208. 208.
    Guo HB, Vaßen R, Stöver D (2004) Atmospheric plasma sprayed thick thermal barrier coatings with high segmentation crack density. Surf Coat Technol 186:353–363Google Scholar
  209. 209.
    Zhu D, Choi SR, Miller RA (2004) Development and thermal fatigue testing of ceramic thermal barrier coatings. Surf Coat Technol 188–189:146–152Google Scholar
  210. 210.
    Shin I-H, Koo J-M, Seok C-S, Yang S-H, Lee T-W, Kim B-S (2011) Estimation of spallation life of thermal barrier coating of gas turbine blade by thermal fatigue test. Surf Coat Technol 205:S157–S160Google Scholar
  211. 211.
    Kim D-J, Shin I-H, Koo J-M, Seok C-S, Lee T-W (2010) Failure mechanisms of coin-type plasma-sprayed thermal barrier coatings with thermal fatigue. Surf Coat Technol 205:S451–S458Google Scholar
  212. 212.
    Jang H-J, Park D-H, Junga Y-G, Jang J-C, Choi S-C, Pai U (2006) Mechanical characterization and thermal behavior of HVOF-sprayed bond coat in thermal barrier coatings (TBCs). Surf Coat Technol 200:4355–4362Google Scholar
  213. 213.
    Li Y, Li C-J, Yang G-J, Xing L-K (2010) Thermal fatigue behavior of thermal barrier coatings with the MCrAlY bond coats by cold spraying and low-pressure plasma spraying. Surf Coat Technol 205:2225–2233Google Scholar
  214. 214.
    von Niessen K, Gindrat M, Refke A (2010) Vapor phase deposition using plasma spray-PVD™. J Therm Spray Technol 19(1–2):502–509Google Scholar
  215. 215.
    Gell M, Jordan EH, Teicholz M, Cetegen BM, Padture N, Xie L, Chen D, Ma X, Roth J (2008) Thermal barrier coatings made by the solution precursor plasma spray process. J Therm Spray Technol 17(1):124–135Google Scholar
  216. 216.
    Mutasim Z, Brentnall W (1997) Thermal barrier coatings for industrial gas turbine applications: an industrial note. J Therm Spray Technol 6(1):105–108Google Scholar
  217. 217.
    Nelson WA, Orenstein RM (1997) Land based gas turbines TBC experience in land-based gas turbines. J Therm Spray Technol 6(2):176–180Google Scholar
  218. 218.
    Parks WP, Hoffman EE, Lee WY, Wright IG (1997) Thermal barrier coatings issues in advanced land-based gas turbines. J Therm Spray Technol 6(2):187–192Google Scholar
  219. 219.
    Tamura M, Takahashi M, Ishii J, Suzuki K, Sato M, Shimomur K (1999) Multilayered thermal barrier coating for land-based gas turbines. J Therm Spray Technol 8(1):68–72Google Scholar
  220. 220.
    Wright IG, Gibbons TB (2007) Recent developments in gas turbine materials and technology and their implications for syngas firing. Int J Hydrogen Energy 32:3610–3621Google Scholar
  221. 221.
    Lebedev AS, Kostennikov SV (2008) Trends in increasing gas-turbine units efficiency. Therm Eng 55(6):461–468Google Scholar
  222. 222.
    Pomeroy MJ (2005) Coatings for gas turbine materials and long-term stability issues. Mater Design 26:223–231Google Scholar
  223. 223.
    Curry N, Markocsan N, Li X-H, Tricoire A, Dorfman M (2011) Next generation thermal barrier coatings for the gas turbine industry. J Therm Spray Technol 20(1–2):108–115Google Scholar
  224. 224.
    Beardsley MB (1997) Thick thermal barrier coatings for diesel engines. J Therm Spray Technol 6(2):181–186Google Scholar
  225. 225.
    Ahmaniemi S, Tuominen J, Vuoristo P, Mäntylä T (2002) Sealing procedures for thick thermal barrier coatings. J Therm Spray Technol 11(3):320–332Google Scholar
  226. 226.
    Hejwowski T, Weronski A (2002) The effect of thermal barrier coatings on diesel engine performance. Vacuum 65:427–432Google Scholar
  227. 227.
    Buyukkaya E, Cerit M (2007) Thermal analysis of a ceramic coating diesel engine piston using 3-D finite element method. Surf Coat Technol 202:398–402Google Scholar
  228. 228.
    Parlak A, Yasar H, Eldogan O (2005) The effect of thermal barrier coating on a turbo-charged diesel engine performance and exergy potential of the exhaust gas. Energy Convers Manag 46:489–499Google Scholar
  229. 229.
    İşcan B, Aydın H (2012) Improving the usability of vegetable oils as a fuel in a low heat rejection diesel engine. Fuel Process Technol 98:59–64Google Scholar
  230. 230.
    Pulci G, Tului M, Tirillo J, Marra F, Lionetti S, Valente T (2011) High temperature mechanical behavior of UHTC coatings for thermal protection of re-entry vehicles. J Therm Spray Technol 20(1–2):139–144Google Scholar
  231. 231.
    Davis JB, Marshall DB, Oka KS, Housley RM, Morgan PED (1999) Ceramic composites for thermal protection systems. Composites A 30:483–488Google Scholar
  232. 232.
    Fan X, Liu Y, Xu Z, Wang Y, Zou B, Gu L, Wang C, Chen X, Khan ZS, Yang D, Cao X (2011) Preparation and characterization of 8YSZ thermal barrier coatings on rare earth-magnesium alloy. J Therm Spray Technol 20(4):948–957Google Scholar
  233. 233.
    Huang W, Fan X, Zhao Y, Zhou X, Meng X, Wang Y, Zou B, Cao X, Wang Z (2012) Fabrication of thermal barrier coatings onto polyimide matrix composites via air plasma spray process. Surf Coat Technol 207:421–429Google Scholar
  234. 234.
    Cojocaru CV, Wang Y, Moreau C, Lima RS, Mesquita-Guimarães J, Garcia E, Miranzo P, Osendi MI (2011) Mechanical behavior of air plasma-sprayed YSZ functionally graded mullite coatings investigated via instrumented indentation. J Therm Spray Technol 20(1–2):101–107Google Scholar
  235. 235.
    Suzuki M, Sodeoka S, Inoue T (2008) Zircon-based ceramics composite coating for zircon-based ceramics composite. J Therm Spray Technol 17(3):404–409Google Scholar
  236. 236.
    Ma X, Matthews A (2009) Evaluation of abradable seal coating mechanical properties. Wear 267:1501–1510Google Scholar
  237. 237.
    Johnston RE (2011) Mechanical characterization of AlSi-hBN, NiCrAl-Bentonite, and NiCrAl-Bentonite-hBN freestanding abradable coatings. Surf Coat Technol 205:3268–3273Google Scholar
  238. 238.
    Rajendran R (2012) Gas turbine coatings – an overview. Eng Fail Anal 26:355–369Google Scholar
  239. 239.
    Ma X, Matthews A (2007) Investigation of abradable seal coating performance using scratch testing. Surf Coat Technol 202:1214–1220Google Scholar
  240. 240.
    Bardi U, Giolli C, Scrivani A, Rizzi G, Borgioli F, Fossati A, Partes K, Seefeld T, Sporer D, Refke A (2008) Development and investigation on new composite and ceramic coatings as possible abradable seals. J Therm Spray Technol 17(5–6):805–811Google Scholar
  241. 241.
    Steinke T, Mauer G, Vaßen R, Stöver D, Roth-Fagaraseanu D, Hancock M (2010) Process design and monitoring for plasma sprayed abradable coatings. J Therm Spray Technol 19(4):756–764Google Scholar
  242. 242.
    Sporer D, Dorfman M, Xie L, Refke A, Giovannetti I, Giannozzi M (2007) Processing and properties of advanced ceramic abradable coatings. In: Marple MR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2007: global coating solutions. ASM International, Materials Park, OH, pp 495–500Google Scholar
  243. 243.
    Stringer J, Marshall MB (2012) High speed wear testing of an abradable coating. Wear 294–295:257–263Google Scholar
  244. 244.
    Faraoun HI, Grosdidier T, Seichepine J-L, Goran D, Aourag H, Coddet C, Zwick J, Hopkins N (2006) Improvement of thermally sprayed abradable coating by microstructure control. Surf Coat Technol 201:2303–2312Google Scholar
  245. 245.
    Johnston RE (2009) The sensitivity of abradable coating residual stresses to varying material properties. J Therm Spray Technol 101318(5–6):1004–1013Google Scholar
  246. 246.
    Bounazef M, Guessasmaa S, Ait Saadi B (2004) The wear, deterioration and transformation phenomena of abradable coating BN–SiAl–bounding organic element, caused by the friction between the blades and the turbine casing. Mater Lett 58:3375–3380Google Scholar
  247. 247.
    Dowson P, Walker MS, Watson AP (2004) Development of abradable and rub-tolerant seal materials for application in centrifugal compressors and steam turbines. Seal Technol Dec:5–10Google Scholar
  248. 248.
    Lekatou A, Regoutas E, Karantzalis AE (2008) Corrosion behaviour of cermet-based coatings with a bond coat in 0.5 M H2SO4. Corros Sci 50:3389–3400Google Scholar
  249. 249.
    Yılmaz S (2009) An evaluation of plasma-sprayed coatings based on Al2O3 and Al2O3–13 wt.% TiO2 with bond coat on pure titanium substrate. Ceram Int 35:2017–2022Google Scholar
  250. 250.
    Cho TY, Hong Yoon J, Young Cho J, Kon Joo Y, Ho Kang J, Zhang S, Gon Chun H, Young Hwang S, Chol Kwon S (2009) Surface properties and tensile bond strength of HVOF thermal spray coatings of WC-Co powder onto the surface of 420J2 steel and the bond coats of Ni, NiCr, and Ni/NiCr. Surf Coat Technol 203:3250–3253Google Scholar
  251. 251.
    Schulz U, Fritscher K, Ebach-Stahl A (2008) Cyclic behavior of EB-PVD thermal barrier coating systems with modified bond coats. Surf Coat Technol 203:449–455Google Scholar
  252. 252.
    Zhao X, Xiao P (2008) Effect of platinum on the durability of thermal barrier systems with a γ+γ′ bond coat. Thin Solid Films 517:828–834Google Scholar
  253. 253.
    Tang F, Schoenung JM (2005) Local accumulation of thermally grown oxide in plasma-sprayed thermal barrier coatings with rough top-coat/bond-coat interfaces. Scr Mater 52:905–909Google Scholar
  254. 254.
    Chen WR, Irissou E, Wu X, Legoux J-G, Marple BR (2011) The oxidation behavior of TBC with cold spray CoNiCrAlY bond coat. J Therm Spray Technol 20(1–2):132–138Google Scholar
  255. 255.
    Das S, Datta S, Basu D, Das GC (2009) Glass–ceramics as oxidation resistant bond coat in thermal barrier coating system. Ceram Int 35:1403–1406Google Scholar
  256. 256.
    Lu Y-P, Li M-S, Li S-T, Wang Z-G, Zhu R-F (2004) Plasma-sprayed hydroxyapatite-titania composite bond coat for hydroxyapatite coating on titanium substrate. Biomaterials 25:4393–4403Google Scholar
  257. 257.
    Goller G (2004) The effect of bond coat on mechanical properties of plasma sprayed bioglass-titanium coatings. Ceram Int 30:351–355Google Scholar
  258. 258.
    Guanhong S, Xiaodong H, Jiuxing J, Yue S (2011) Parametric study of Al and Al2O3 ceramic coatings deposited by air plasma spray onto polymer substrate. Appl Surf Sci 257:7864–7870Google Scholar
  259. 259.
    Liu A, Guo M, Gao J, Zhao M (2006) Influence of bond coat on shear adhesion strength of erosion and thermal resistant coating for carbon fiber reinforced thermosetting polyimide. Surf Coat Technol 201:2696–2700Google Scholar
  260. 260.
    Beauvais S, Guipont V, Jeandin M, Juve D, Treheux D, Robisson A, Saenger R (2005) Influence of defect orientation on electrical insulating properties of plasma-sprayed alumina coatings. J Electroceram 15:65–74Google Scholar
  261. 261.
    Toma F-L, Scheitz S, Berger L-M, Sauchuk V, Kusnezoff M, Thiele S (2011) Comparative study of the electrical properties and characteristics of thermally sprayed alumina and spinel coatings. J Therm Spray Technol 20(1–2):195–204Google Scholar
  262. 262.
    Toma F-L, Berger L-M, Scheitz S, Langner S, Rödel C, Potthoff A, Sauchuk V, Kusnezoff M (2012) Comparison of the microstructural characteristics and electrical properties of thermally sprayed Al2O3 coatings from aqueous suspensions and feedstock powders. J Therm Spray Technol 21(3–4):480–488Google Scholar
  263. 263.
    Kim H-J, Odoul S, Lee C-H, Kweon Y-G (2001) The electrical insulation behavior and sealing effects of plasma-sprayed alumina-titania coatings. Surf Coat Technol 140:293–301Google Scholar
  264. 264.
    Prudenziati M, Gualtieri ML (2008) Electrical properties of thermally sprayed Ni- and Ni20Cr-based resistors. J Therm Spray Technol 17(3):385–394Google Scholar
  265. 265.
    Prudenziati M, Cirri G, Dal Bo P (2006) Novel high-temperature reliable heaters in plasma spray technology. J Therm Spray Technol 15(3):329–331Google Scholar
  266. 266.
    Prudenziati M (2008) Development and the implementation of high-temperature reliable heaters in plasma spray technology. J Therm Spray Technol 17(2):234–243Google Scholar
  267. 267.
    Gärtner F, Stoltenhoff T, Schmidt T, Kreye H (2006) The cold spray process and its potential for industrial applications. J Therm Spray Technol 15(2):223–232Google Scholar
  268. 268.
    Marx S, Paul A, Köhler A, Hüttl G (2006) Cold spraying: innovative layers for new applications. J Therm Spray Technol 15(2):177–183Google Scholar
  269. 269.
    Wu X-K, Zhang J-S, Zhou X-L, Cui H, Liu J-C (2012) Advanced cold spray technology: deposition characteristics and potential applications. Sci China Technol Sci 55(2):357–368Google Scholar
  270. 270.
    Gui M, Kang SB, Euh K (2004) Al-SiC powder preparation for electronic packaging aluminum composites by plasma spray processing. J Therm Spray Technol 13(2):214–222Google Scholar
  271. 271.
    Yamakawa O, Nihonmatsu H, Morisasa M, Hotta H (2009) Plasma sprayed ceramic tray members for firing ceramic capacitor. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 624–627Google Scholar
  272. 272.
    Donner K-R, Gärtner F, Klassen T (2011) Metallization of thin Al2O3 layers in power electronics using cold gas spraying. J Therm Spray Technol 20(1–2):299–306Google Scholar
  273. 273.
    Lin KH, Xu ZH, Lin ST (2011) A study on microstructure and dielectric performances of alumina/copper composites by plasma spray coating. J Mater Eng Perform 20(2):231–237Google Scholar
  274. 274.
    Osbond P (1992) Plasma sprayed anti-reflection coatings for micro-wave optical components. Adv Mater 4:807–809Google Scholar
  275. 275.
    Lisjak D, Bégard M, Bruehl M, Bobzin K, Hujanen A, Lintunen P, Bolelli G, Lusvarghi L, Ovtar S, Drofenik M (2011) Hexaferrite/polyester composite coatings for electromagnetic-wave absorbers. J Therm Spray Technol 20(3):638–644Google Scholar
  276. 276.
    Rieger G, Wecker J, Rodewald W, Sattler W, Bach FW, Duda T, Unterberg W (2000) Nd-Fe-B permanent magnets (thick films) produced by a vacuum-plasma-spraying process. J Appl Phys 87(9):5329–5331Google Scholar
  277. 277.
    Sampath S (2010) Thermal spray applications in electronics and sensors: past, present, and future. J Therm Spray Technol 19(5):921–949Google Scholar
  278. 278.
    Voyer J, Schulz P, Schreiber M (2008) Electrically conductive flame sprayed aluminum coatings on textile substrates. J Therm Spray Technol 17(5–6):818–823Google Scholar
  279. 279.
    Geibel A, Froyen L, Delaey L, Leuven KU (1996) Plasma spray forming: an alternate route for manufacturing free-standing components. J Therm Spray Technol 5(4):419–430Google Scholar
  280. 280.
    Devasenapathi A, Ng HW, Yu SCM, Indra AB (2002) Forming near net shape free-standing components by plasma spraying. Mater Lett 57:882–886Google Scholar
  281. 281.
    Chráska P, Neufuss K, Herman H (1997) Plasma spraying of zircon. J Therm Spray Technol 6(4):445–448Google Scholar
  282. 282.
    Neufuss K, Chráska P, Kolman B, Sampath S, Trávnícek Z (1997) Properties of plasma-sprayed freestanding ceramic parts. J Therm Spray Technol 6(4):434–438Google Scholar
  283. 283.
    Shi S, Hwang J-Y (2003) Plasma spray fabrication of near-net-shape ceramic objects. J Miner Mater Charact Eng 2(2):145–150Google Scholar
  284. 284.
    Patel RR, Keshri AK, Dulikravich GS, Agarwal A (2010) An experimental and computational methodology for near net shape fabrication of thin walled ceramic structures by plasma spray forming. J Mater Process Technol 210:1260–1269Google Scholar
  285. 285.
    Brožek V, Ctibor P, Cheong DI, Yang S-H (2009) Plasma spraying of zirconium carbide-hafnium carbide-tungsten cermets. Powder Metallurgy Prog 9:1–49Google Scholar
  286. 286.
    Helali M, Hashmi MSJ (1996) Production of free-standing objects by high velocity oxy-fuel (HVOF) thermal spraying process. J Mater Process Technol 56:431–438Google Scholar
  287. 287.
    Pattison J, Celotto S, Morgan R, Bray M, O’Neill W (2007) Cold gas dynamic manufacturing: a non-thermal approach to freeform fabrication. Int J Machine Tools Manuf 47:627–634Google Scholar
  288. 288.
    Chen JZ, Herman H, Safai S (1993) Evaluation of NiAI and NiAI-B deposited by vacuum plasma spray. J Therm Spray Technol 2(4):357–361Google Scholar
  289. 289.
    Saeidi S, Voisey KT, McCartney DG (2009) The effect of heat treatment on the oxidation behavior of HVOF and VPS CoNiCrAlY coatings. J Therm Spray Technol 18(2):209–216Google Scholar
  290. 290.
    Fan X, Ishigaki T (2001) Mo5Si3-B and MoSi2 deposits fabricated by radio frequency induction plasma spraying. J Therm Spray Technol 10(4):611–617Google Scholar
  291. 291.
    Waki H, Kitamura T, Kobayashi A (2009) Effect of thermal treatment on high-temperature mechanical properties enhancement in LPPS, HVOF, and APS CoNiCrAlY coatings. J Therm Spray Technol 18(4):500–509Google Scholar
  292. 292.
    Chraska P, Neufuss K, Herman H (1997) Plasma spraying of zircon. J Therm Spray Technol 6(4):445–448Google Scholar
  293. 293.
    Chen H, Gao Y, Luo H, Tao S (2011) Preparation and thermophysical properties of La2Zr2O7 coatings by thermal spraying of an amorphous precursor. J Therm Spray Technol 20(6):1201–1208Google Scholar
  294. 294.
    Henne R, Müller M, Proß E, Schiller G, Gitzhofer F, Boulos M (1999) Near-net-shape forming of metallic bipolar plates for planar solid oxide fuel cells by induction plasma spraying. J Therm Spray Technol 8(1):110–116Google Scholar
  295. 295.
    Agarwal A, McKechnie T, Seal S (2003) Net shape nanostructured aluminum oxide structures fabricated by plasma spray forming. J Therm Spray Technol 12(3):350–359Google Scholar
  296. 296.
    Laha T, Agarwal A, McKechnie T, Seal S (2004) Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite. Mater Sci Eng A 381:249–258Google Scholar
  297. 297.
    Hussain T, McCartney DG, Shipway PH, Marrocco T (2011) Corrosion behavior of cold sprayed titanium coatings and free standing deposits. J Therm Spray Technol 20(1–2):260–274Google Scholar
  298. 298.
    Herman H, Sampath S, Tiwari R, Neiser R (1994) Plasma spray forming of intermetallics and their composites. J Therm Spray Technol 3(3):295–296Google Scholar
  299. 299.
    Weiss LE, Prinz FB, Adams DA, Siewiorek DP (1992) Thermal spray shape deposition. J Therm Spray Technol 1(3):231–237Google Scholar
  300. 300.
    Yang Y, Oh N, Liu Y, Chen W, Oh S, Appleford M, Kim S, Kim K, Park S, Bumgardner J, Haggard W, Ong J (2006) Enhancing osseo-integration using surface-modified titanium implants. JOM 58:71–76Google Scholar
  301. 301.
    Ong JL, Appleford M, Oh S, Yang Y, Chen W-H et al (2006) The characterization and development of bioactive hydroxyapatite coatings. JOM 58(7):67–69Google Scholar
  302. 302.
    Gross KA, Walsh W, Swarts E (2004) Analysis of retrieved hydroxyapatite-coated hip prostheses. J Therm Spray Technol 13(2):190–199Google Scholar
  303. 303.
    Khor KA, Cheang P, Wang Y (1997) The thermal spray processing of HA powders and coatings. JOM Feb:51–57Google Scholar
  304. 304.
    Roy M, Bandyopadhyay A, Bose S (2011) Induction plasma sprayed nano hydroxyapatite coatings on titanium for orthopaedic and dental implants. Surf Coat Technol 205:2785–2792Google Scholar
  305. 305.
    Legoux J-G, Chellat F, Lima RS, Marple BR, Bureau MN, Shen H, Candeliere GA (2006) Development of osteoblast colonies on new bioactive coatings. J Therm Spray Technol 15(4):628–633Google Scholar
  306. 306.
    Chang C, Shi J, Huang J, Hu Z, Ding C (1998) Effects of power level on characteristics of vacuum plasma sprayed hydroxyapatite coating. J Therm Spray Technol 7(4):484–488Google Scholar
  307. 307.
    Prevéy PS (2000) X-ray diffraction characterization of crystallinity and phase composition in plasma-sprayed hydroxyapatite coatings. J Therm Spray Technol 9(3):369–376Google Scholar
  308. 308.
    Khor KA, Yip CS, Cheang P (1997) Ti-6AI-4 hydroxyapatite composite coatings prepared by thermal spray techniques. J Therm Spray Technol 6(1):109–115Google Scholar
  309. 309.
    Wang Y, Khor KA, Cheang P (1998) Thermal spraying of functionally graded calcium phosphate coatings for biomedical implants. J Therm Spray Technol 7(1):50–57Google Scholar
  310. 310.
    Hasan S, Stokes J (2011) Design of experiment analysis of the Sulzer Metco DJ high velocity oxy-fuel coating of hydroxyapatite for orthopedic applications. J Therm Spray Technol 20(1–2):186–194Google Scholar
  311. 311.
    Lima RS, Dimitrievska S, Bureau MN, Marple BR, Petit A, Mwale F, Antoniou J (2010) HVOF-sprayed Nano TiO2-HA coatings exhibiting enhanced biocompatibility. J Therm Spray Technol 19(1–2):336–343Google Scholar
  312. 312.
    Lima RS, Li H, Khor KA, Marple BR (2006) Biocompatible nanostructured high-velocity oxyfuel sprayed titania coating: deposition, characterization, and mechanical properties. J Therm Spray Technol 15(4):623–627Google Scholar
  313. 313.
    Morks MF, Kobayashi A (2008) Development of ZrO2/SiO2 bioinert ceramic coatings for biomedical application. J Mech Behav Biomed Mater 1:165–171Google Scholar
  314. 314.
    Vitale-Brovarone C, Verné E (2005) SiO2-CaO-K2O coatings on alumina and Ti6Al4V substrates for biomedical applications. J Mater Sci Mater Med 16:863–871Google Scholar
  315. 315.
    Xie Y, Zheng X, Ding C, Zhai W, Chang J, Ji H (2009) Preparation and characterization of CaO-ZrO2-SiO2 coating for potential application in biomedicine. J Therm Spray Technol 18(4):678–685Google Scholar
  316. 316.
    Bolelli G, Cannillo V, Gadow R, Killinger A, Lusvarghi L, Rauch J (2009) Microstructural and in vitro characterisation of high-velocity suspension flame sprayed (HVSFS) bioactive glass coatings. J Eur Ceram Soc 29:2249–2257Google Scholar
  317. 317.
    Fernandez J, Gaona M, Guilemany JM (2007) Effect of heat treatments on HVOF hydroxyapatite coatings. J Therm Spray Technol 16(2):220–228Google Scholar
  318. 318.
    Yu L-G, Khor KA, Li H, Cheang P (2003) Effect of spark plasma sintering on the microstructure and in vitro behavior of plasma sprayed HA coatings. Biomaterials 24:2695–2705Google Scholar
  319. 319.
    Bellucci D, Bolelli G, Cannillo V, Gadow R, Killinger A, Lusvarghi L, Sola A, Stiegler N (2012) High velocity suspension flame sprayed (HVSFS) potassium-based bioactive glass coatings with and without TiO2 bond coat. Surf Coat Technol 206:3857–3868Google Scholar
  320. 320.
    Liang Y, Xie Y, Ji H, Huang L, Zheng X (2010) Chemical stability and biological properties of plasma-sprayed CaO-SiO2-ZrO2 coatings. J Therm Spray Technol 19(6):1171–1178Google Scholar
  321. 321.
    Jeffery B, Peppler M, Lima RS, McDonald A (2010) Bactericidal effects of HVOF-sprayed nanostructured TiO2 on Pseudomonas aeruginosa. J Therm Spray Technol 19(1–2):344–349Google Scholar
  322. 322.
    Sanpo N, Lu Tan M, Cheang P, Khor KA (2009) Antibacterial property of cold-sprayed HA-Ag/PEEK coating. J Therm Spray Technol 18(1):10–15Google Scholar
  323. 323.
    Sanpo N, Ming Ang S, Cheang P, Khor KA (2009) Antibacterial property of cold sprayed chitosan-Cu/Al coating. J Therm Spray Technol 18(4):600–608Google Scholar
  324. 324.
    Sahraoui T, Fenineche N-E, Montavon G, Coddet C (2004) Alternative to chromium: characteristics and wear behavior of HVOF coatings for gas turbine shafts repair (heavy-duty). J Mater Process Technol 152:43–55Google Scholar
  325. 325.
    Heydarzadeh SM, Ghadami F (2010) Comparative tribological study of air plasma sprayed WC–12% coating versus conventional hard chromium electro deposit. Tribol Int 43:882–886Google Scholar
  326. 326.
    Bolelli G, Cannillo V, Lusvarghi L, Ricco S (2006) Mechanical and tribological properties of electrolytic hard chrome and HVOF-sprayed coatings. Surf Coat Technol 200:2995–3009Google Scholar
  327. 327.
    Deng C, Liu M, Wu C, Zhou K, Song J (2007) Impingement resistance of HVAF WC-based coatings. J Therm Spray Technol 16(5–6):604–609Google Scholar
  328. 328.
    Guilemany JM, Espallargas N, Suegama PH, Benedetti AV, Fernández J (2005) High-velocity oxyfuel Cr3C2-NiCr replacing hard chromium coatings. J Therm Spray Technol 14(3):335–341Google Scholar
  329. 329.
    Picas JA, Forna A, Matthäus G (2006) HVOF coatings as an alternative to hard chrome for pistons and valves. Wear 261:477–484Google Scholar
  330. 330.
    Staia MH, Suárez M, Chicot D, Lesage J, Iost A, Puchi-Cabrera ES (2012) Cr2C3–NiCr VPS thermal spray coatings as candidate for chromium replacement. Surf Coat Technol 220:225–231Google Scholar
  331. 331.
    Lu W, Wu Y, Zhang J, Hong S, Zhang J, Li G (2011) Microstructure and corrosion resistance of plasma sprayed Fe-based alloy coating as an alternative to hard chromium. J Therm Spray Technol 20(5):1063–1070Google Scholar
  332. 332.
    Abdi S, Lebaili S (2008) Alternative to chromium, a hard alloy powder NiCrBCSi (Fe) coatings thermally sprayed on 60CrMn4 steel. Phase and comportements. Phys Proc 2:1005–1014Google Scholar
  333. 333.
    Matthäus G, Henry J, Ackermann D (2009) Further developments in internal diameter HVOF application of WC-CoCr for hard chrome replacement in critical applications such as landing gear. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 722–724Google Scholar
  334. 334.
    Krishnan N, Vardelle A, Legoux JG (2008) A life cycle comparison of hard chrome and thermal sprayed coatings: a case example of aircraft landing gears. In: Lugscheider E (ed) Thermal spray conference: Crossing the border. DVS, Dûsseldorf, e-ProcGoogle Scholar
  335. 335.
    Henne R (2007) Solid oxide fuel cells: a challenge for plasma deposition processes. J Therm Spray Technol 16(3):381–403Google Scholar
  336. 336.
    Takenoiri S, Kadokawa N, Koseki K (2000) Development of metallic substrate supported planar solid oxide fuel cells fabricated by atmospheric plasma spraying. J Therm Spray Technol 3639(3):360–363Google Scholar
  337. 337.
    Barthel K, Rambert S, Barthel S, Rambert S, Siegmann S (2000) Microstructure and polarization resistance of thermally sprayed composite cathodes for solid oxide fuel cell use. J Therm Spray Technol 9(3):343–347Google Scholar
  338. 338.
    Sun F, Zhang N, Liao H, Li J (2012) Effect of heat treatment temperature on performance of plasma-sprayed apatite-lanthanum silicate coatings as electrolytes for IT-SOFC. J Therm Spray Technol 21(6):1257–1267Google Scholar
  339. 339.
    Puranen J, Lagerbom J, Hyvärinen L, Kylmälahti M, Himanen O, Pihlatie M, Kiviaho J, Vuoristo P (2011) The structure and properties of plasma sprayed iron oxide doped manganese cobalt oxide spinel coatings for SOFC metallic interconnectors. J Therm Spray Technol 20(1–2):154–159Google Scholar
  340. 340.
    Harris J, Qureshi M, Kesler O (2012) Deposition of composite LSCF-SDC and SSC-SDC cathodes by axial-injection plasma spraying. J Therm Spray Technol 21(3–4):461–468Google Scholar
  341. 341.
    Shen Y, Alexandra V, Almeida B, François Gitzhofer (2011) Preparation of nanocomposite GDC/LSCF cathode material for IT-SOFC by induction plasma spraying. J Therm Spray Technol 20(1–2):145–153Google Scholar
  342. 342.
    Wang Y, Legoux J-G, Neagu R, Hui S, Marple BR (2012) Suspension plasma spray and performance characterization of half cells with NiO/YSZ anode and YSZ electrolyte. J Therm Spray Technol 21(1):7–15Google Scholar
  343. 343.
    Michaux P, Montavon G, Grimaud A, Denoirjean A, Fauchais P (2010) Elaboration of porous NiO/8YSZ layers by several SPS and SPPS routes. J Therm Spray Technol 19(1–2):317–327Google Scholar
  344. 344.
    Zotov N, Hospach A, Mauer G, Sebold D, Vaßen R (2012) Deposition of La12xSrxFe12yCoyO32d coatings with different phase compositions and microstructures by low-pressure plasma spraying-thin film (LPPS-TF) processes. J Therm Spray Technol 21(3–4):441–447Google Scholar
  345. 345.
    Fedtke P, Wienecke M, Bunescu M-C, Barfels T, Deistung K, Pietrzak M (2004) Yttria-stabilized zirconia films deposited by plasma spraying and sputtering. J Solid State Electrochem 8:626–632Google Scholar
  346. 346.
    Gross KA, Tikkanen J, Keskinen J, Pitkänen V, Eerola M, Siikamaki R, Rajala M (1999) Liquid flame spraying for glass coloring. J Therm Spray Technol 8(4):583–589Google Scholar
  347. 347.
    Arcondéguy A, Grimaud A, Denoirjean A, Gasgnier G, Huguet C, Pateyron B, Montavon G (2007) Flame-sprayed glaze coatings: effects of operating parameters and feedstock characteristics onto coating structures. J Therm Spray Technol 16(5–6):978–990Google Scholar
  348. 348.
    Arcondéguy A, Gasgnier G, Montavon G, Pateyron B, Denoirjean A, Grimaud A, Huguet C (2008) Effects of spraying parameters onto flame-sprayed glaze coating structures. Surf Coat Technol 202:4444–4448Google Scholar
  349. 349.
    Blink J, Farmer J, Choi J, Saw C (2009) Applications in the nuclear industry for thermal spray amorphous metal and ceramic coatings. Metallurgical Mater Trans A 40A:1344–1354Google Scholar
  350. 350.
    Farmer JC, Choi J-S (2007) Criticality-control applications in the nuclear industry for thermal spray amorphous metal and ceramic coatings, UCRL-TR-234171. Lawrence Livermore National Laboratory, Aug 31, pp 1–7Google Scholar
  351. 351.
    Blink J, Choi J, Farmer J (2007) Applications in the nuclear industry for thermal spray amorphous metal and ceramic coatings, UCRL-CONF-232603. Lawrence Livermore National Laboratory, July 9, pp 1–14Google Scholar
  352. 352.
    Farmer J, Choi J, Saw C, Haslam J, Day D, Hailey P, Lian T, Rebak R, Perepezko J, Payer J, Branagan D, Beardsley B, D’Amato A, Aprigliano L (2009) Iron-based amorphous metals: high-performance corrosion-resistant material development. Metallurgical Mater Trans A 40A:1289–1305Google Scholar
  353. 353.
    Branagan D (2004) Properties of amorphous/partially crystalline coatings. US Patent 20040253381Google Scholar
  354. 354.
    Berard G, Brun P, Lacombe J, Montavon G, Denoirjean A, Antou G (2008) Influence of a sealing treatment on the behavior of plasma-sprayed alumina coatings operating in extreme environments. J Therm Spray Technol 17(3):410–419Google Scholar
  355. 355.
    Haslam JJ, Farmer JC, Hopper RW, Wilfinger KR (2005) Ceramic coatings for a corrosion-resistant nuclear waste container evaluated in simulated ground water at 90 °C. Metallurgical Mater Trans A 36A:1085–1095Google Scholar
  356. 356.
    Hardwicke CU, Lau Y-C (2013) Advances in thermal spray coatings for gas turbines and energy generation: a review. J Therm Spray Technol 22(5):564–576Google Scholar
  357. 357.
    Matejıcek J, Chraska P, Linke J (2007) Thermal spray coatings for fusion applications—review. J Therm Spray Technol 16(1):64–83Google Scholar
  358. 358.
    Longo FN (1992) Industrial guide–markets, materials, and applications for thermal-sprayed coatings. J Therm Spray Technol 1(2):143–145Google Scholar
  359. 359.
    Dorfman M, Sharma A (2013) Commentary challenges and strategies for growth of thermal spray markets: the six-pillar plan. J Therm Spray Technol Comment 22(5):559–563Google Scholar
  360. 360.
    Tucker RC (ed) (2013) ASM handbook, vol 5A: Thermal spray technology. ASM International, Materials Park, OHGoogle Scholar
  361. 361.
    Thintri Inc. (2013) Thermal spray wear coatings find growing markets and greater competition. Spraytime 20(1):1–36Google Scholar
  362. 362.
    Vetter J, Barbezat G, Crummenauer J, Avissar J (2005) Surface treatment selections for automotive applications. Surf Coat Technol 200:1962–1968Google Scholar
  363. 363.
    Barbezat G (2006) Application of thermal spraying in the automobile industry. Surf Coat Technol 201:2028–2031Google Scholar
  364. 364.
    Barbezat G (2005) Advanced thermal spray technology and coating for lightweight engine blocks for the automotive industry. Surf Coat Technol 200:1990–1993Google Scholar
  365. 365.
    Barbezat G (2003) Low-cost high-performance coatings produced by internal plasma spraying for the production of high efficiency engines. In: Moreau C, Marple B (eds) International thermal spray conference 2003. ASM International, Materials Park, OH, pp 139–142Google Scholar
  366. 366.
    Smyth RT, Anderson JC (1975) Production of resistors by arc plasma spraying. Electrocompon Sci Technol 2:135–145Google Scholar
  367. 367.
    Ducos M (2006) Evaluating the costs of thermal spraying, ALIDERTE course. ALIDERTE, Limoges (in French)Google Scholar
  368. 368.
    Nelson GM, Nychka JA, McDonald AG (2011) Flame spray deposition of titanium alloy-bioactive glass composite coatings. J Therm Spray Technol 20(6):1339–1351Google Scholar
  369. 369.
    Drnovšek N, Novak S, Dragin U, Čeh M, Gorenšek M, Gradišar M (2012) Bioactive glass enhances bone ingrowth into the porous titanium coating on orthopaedic implants. Int Orthop 36:1739–1745Google Scholar
  370. 370.
    Juhasz JA, Best SM (2012) Bioactive ceramics: processing, structures and properties. J Mater Sci 47:610–624Google Scholar
  371. 371.
    Landor I, Vavrik P, Sosna A, Jahoda D, Hahn H, Daniel M (2007) Hydroxyapatite porous coating and the osteointegration of the total hip replacement. Arch Orthop Trauma Surg 127(2):81–89Google Scholar
  372. 372.
    Hamashima K (2007) Application of new boride cermet coating to forming of glass sheets. J Therm Spray Technol 16(1):32–33Google Scholar
  373. 373.
    Döring J-E, Hoebener F, Langer G (2008) Review of applications of thermal spraying in the printing industry in respect to OEMs. In: Lugscheider E (ed) Thermal spray conference: Crossing the border. DVS, Düsseldorf, e-ProcGoogle Scholar
  374. 374.
    Pawlowski L (1996) Technology of thermally sprayed anilox rolls: state of art, problems, and perspectives. J Therm Spray Technol 5(3):317–334Google Scholar
  375. 375.
    Lima RS, Marple BR (2005) Superior performance of high-velocity oxyfuel-sprayed nanostructured TiO2 in comparison to air plasma-sprayed conventional Al2O3-13TiO2. J Therm Spray Technol 14(3):397–404Google Scholar
  376. 376.
    Vuoristo P, Nylén P (2009) Industrial and research activities in thermal spray technology in the Nordic region of Europe. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 517–522, e-ProcGoogle Scholar
  377. 377.
    Yoshiya A, Shigemura S, Nagai M, Yamanaka M (2009) Advances of thermal sprayed carbon roller in paper industry. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 601–606Google Scholar
  378. 378.
    Nagai M, Shigemura S, Yoshiya A (2009) Thermal-sprayed CFRP roll with resistant to thermal shock and wear - for papermaking machine. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 607–611Google Scholar
  379. 379.
    Iyengar RK (2009) Thermal spray coating for steel processing. Technovations International, Littleton, MAGoogle Scholar
  380. 380.
    Process Industries: Power,
  381. 381.
    Kaushal G, Singh H, Prakash S (2011) High-temperature erosion-corrosion performance of high-velocity oxy-fuel sprayed Ni-20Cr coating in actual boiler environment. Metallurgical Mater Trans A 42(7):1836–1846Google Scholar
  382. 382.
    Espallargas N, Berget J, Guilemany JM, Benedetti AV, Suegama PH (2008) Cr3C2–NiCr and WC–Ni thermal spray coatings as alternatives to hard chromium for erosion–corrosion resistance. Surf Coat Technol 202:1405–1417Google Scholar
  383. 383.
    Wang B-Q, Verstak A (1999) Elevated temperature erosion of HVOF Cr3C2/TiC– NiCrMo cermet coating. Wear 233–235:342–351Google Scholar
  384. 384.
    Higuera HV, Belzunce Varela FJ, Carriles Menéndez A, Poveda Martinez S (2001) A comparative study of high-temperature erosion wear of plasma-sprayed NiCrBSiFe and WC–NiCrBSiFe coatings under simulated coal-fired boiler conditions. Tribol Int 34:161–169Google Scholar
  385. 385.
    Sidhu TS, Prakash S, Agrawal RD (2005) Studies on the properties of high-velocity oxy-fuel thermal spray coatings for higher temperature applications. Mater Sci 41(6):805–823Google Scholar
  386. 386.
    Sidhu HS, Sidhu BS, Prakash S (2006) Comparative characteristic and erosion behavior of NiCr coatings deposited by various high-velocity oxyfuel spray processes. J Mater Eng Perform 5(6):699–704Google Scholar
  387. 387.
    Sanz A (2001) Tribological behavior of coatings for continuous casting of steel. Surf Coat Technol 146–147:55–64Google Scholar
  388. 388.
    Gross KA, Kovalevskis A (1996) Mold manufacture with plasma spraying. J Therm Spray Technol 5(4):469–475Google Scholar
  389. 389.
    Weiss LE, Thuel DG, Schultz L, Prinz FB (1994) Arc-sprayed steel-faced tooling. J Therm Spray Technol 3(3):275–281Google Scholar
  390. 390.
    Kim H-J, Kweon Y-G (1996) The application of thermal sprayed coatings for pig iron ingot molds. J Therm Spray Technol 5(4):463–468Google Scholar
  391. 391.
    Gibbons GJ, Hansell RG (2006) Down-selection and optimization of thermal-sprayed coatings for aluminum mould tool protection and upgrade. J Therm Spray Technol 15(3):340–347Google Scholar
  392. 392.
    Khan FF, Bae G, Kang K, Na H, Kim J, Jeong T, Lee C (2011) Evaluation of die-soldering and erosion resistance of high velocity oxy-fuel sprayed MoB-based cermet coatings. J Therm Spray Technol 20(5):1022–1034Google Scholar
  393. 393.
    Maranho O, Rodrigues D, Boccalini M, Sinatora A (2009) Bond strength of multicomponent white cast iron coatings applied by HVOF thermal spray process. J Therm Spray Technol 18(4):708–713Google Scholar
  394. 394.
    Seonga BG, Hwanga SY, Kima MC, Kimb KY (2001) Reaction of WC-Co coating with molten zinc in a zinc pot of a continuous galvanizing line. Surf Coat Technol 138:101–110Google Scholar
  395. 395.
    Huang XO, Wang RJ, Zhang TJ, Luo HJ, Lü YF (2007) Several application cases of thermal spraying technology on industrial components and its considerations. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2007: Global coating solutions. ASM International, Materials Park, OH, e-ProcGoogle Scholar
  396. 396.
    Vicenzi J, Marques CM, Bergmann CP (2008) Hot and cold erosive wear of thermal sprayed NiCr-based coatings: influence of porosity and oxidation. Surf Coat Technol 202:3688–3697Google Scholar
  397. 397.
    Bolelli G, Lusvarghi L, Giovanardi R (2008) A comparison between the corrosion resistances of some HVOF-sprayed metal alloy coatings. Surf Coat Technol 202:4793–4809Google Scholar
  398. 398.
    Godoya C, Lima MM, Castro MMR, Avelar-Batista JC (2004) Structural changes in high-velocity oxy-fuel thermally sprayed WC–Co coatings for improved corrosion resistance. Surf Coat Technol 188–189:1–6Google Scholar
  399. 399.
    Choa JE, Hwang SY, Kim KY (2006) Corrosion behavior of thermal sprayed WC cermet coatings having various metallic binders in strong acidic environment. Surf Coat Technol 200:2653–2662Google Scholar
  400. 400.
    Bolelli G, Giovnardi R, Lusvarghi L, Manfredini T (2006) Corrosion resistance of HVOF-sprayed coatings for hard chrome replacement. Corros Sci 48:3375–3397Google Scholar
  401. 401.
    Perry JM, Neville A, Wilson VA, Hodgkiess T (2001) Assessment of the corrosion rates and mechanisms of a WC-Co-Cr HVOF coating in static and liquid-solid impingement saline environments. Surf Coat Technol 137:43–51Google Scholar
  402. 402.
    Petrovicova E, Schadler LS (2002) Thermal spraying of polymers. Int Mater Rev 47(4):169–190Google Scholar
  403. 403.
    Notomi A, Sakakibara N (2009) Recent application of thermal spray to thermal power plants. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 1106–1111Google Scholar
  404. 404.
    Yilmaz R, Kurt AO, Demir A, Tatli Z (2007) Effects of TiO2 on the mechanical properties of the Al2O3–TiO2 plasma sprayed coating. J Eur Ceram Soc 27:1319–1323Google Scholar
  405. 405.
    Lathabai S, Ottmuller M, Fernandez I (1998) Solid particle erosion behaviour of thermal sprayed ceramic, metallic and polymer coatings. Wear 221:93–108Google Scholar
  406. 406.
    Lins VFC, Branco JRT, Diniz FRC, Brogan JC, Berndt CC (2007) Erosion behavior of thermal sprayed, recycled polymer and ethylene–methacrylic acid composite coatings. Wear 262:274–281Google Scholar
  407. 407.
    Berndt CC, Brogan JA, Montavon G, Claudon A, Coddet C (1998) Mechanical properties of metal- and ceramic-polymer composites formed via thermal spray consolidation. J Therm Spray Technol 7(3):337–339Google Scholar
  408. 408.
    Leivo E, Wilenius T, Kinos T, Vuoristo P, Mäntylä T (2004) Properties of thermally sprayed fluoropolymer PVDF, ECTFE, PFA and FEP coatings. Prog Org Coat 49:69–73Google Scholar
  409. 409.
    Zhang T, Gawne DT, Bao Y (1997) The influence of process parameters on the degradation of thermally sprayed polymer coatings. Surf Coat Technol 96:337–344Google Scholar
  410. 410.
    Chen H, Zhao H, Qu J, Shao H (1999) Erosion-corrosion of thermal-sprayed nylon coatings. Wear 233–235:431–435Google Scholar
  411. 411.
    Zhang G, Liao H, Cherigui M, Paulo Davim J, Coddet C (2007) Effect of crystalline structure on the hardness and interfacial adherence of flame sprayed (poly-ether–ether–ketone) coatings. Eur Polym J 43:1077–1082Google Scholar
  412. 412.
    Zhang G, Liao H, Yu H, Ji V, Huang W, Mhaisalkar SG, Coddet C (2006) Correlation of crystallization behavior and mechanical properties of thermal sprayed PEEK coating. Surf Coat Technol 200:6690–6695Google Scholar
  413. 413.
    Zhang C, Zhang G, Ji V, Liao H, Costil S, Coddet C (2009) Microstructure and mechanical properties of flame-sprayed PEEK coating remelted by laser process. Prog Org Coat 66:248–253Google Scholar
  414. 414.
    Sweet GK (1993) Applying thermoplastic/thermoset powder with a modified plasma system. In: Berndt CC, Bernicki F (eds) Proceedings of the 1993 national thermal spray conference. ASM International, Materials Park, OH, pp 381–384Google Scholar
  415. 415.
    Brogan JA, Margolies S, Sampath H, Herman CC, Berndt SD (1995) Adhesion of combustion-sprayed polymer coatings. In: Berndt CC, Sampath S (eds) Thermal spray science and technology. ASM International, Materials Park, OH, pp 521–526Google Scholar
  416. 416.
    Henne RH, Schitter C (1995) Plasma spraying of high performance thermoplastics. In: Berndt CC, Sampath S (eds) Thermal spray science and technology. ASM International, Materials Park, OH, pp 527–532Google Scholar
  417. 417.
    Ivosevic M, Coguill SL, Galbraith SL (2009) Polymer thermal spraying: a novel coating process. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 1078–1083Google Scholar
  418. 418.
    Song JX, Han YF, Li SS, Xiao CB (2005) Repair of NiCrAlYSi overlay coating on Ni3Al base alloy IC6. Intermetallics 13:351–355Google Scholar
  419. 419.
    Ducos M (1988) Plasma transferred arc reclamation. In: Laroche G, Orfeuil M (eds) Plasmas in industry. Dopee Diffusion, France, pp 251–262 (in French)Google Scholar
  420. 420.
    Isakaev E, Yablonsky A, Kogan A, Katarzhis V, Kutnov V, Ivanov P (1999) The repair of railway frogs using plasma sprayed coatings, heat and mass transfer under plasma conditions. Ann NY Acad Sci 891:231–235Google Scholar
  421. 421.
    Tapphorn R, Henness J, Gabel H (2009) Kinetic metallization-a repair process for damaged IVD-Al coatings, Mg, and Al alloy components. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 261–266Google Scholar
  422. 422.
    Champagne VK (2008) The repair of magnesium rotorcraft components by cold spray. J Fail Anal Prevent 8:164–175Google Scholar
  423. 423.
    Kashirin A, Klyuev O, Buzdygar T, Shkodkin A (2007) DYMET technology evolution and application. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2007: Global coating solutions. ASM International, Materials Park, OH, pp 141–145Google Scholar
  424. 424.
    Guilemany JM, Torrell M, Miguel JR (2007) Properties of HVOF coating of Ni based alloy for MSWI boilers protection. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2007: Global coating solutions. ASM International, Materials Park, OH, pp 1115–1119, e-ProcGoogle Scholar
  425. 425.
    de Botton O (1988) Master of Science in Technology and Policy. MIT, Cambridge, MAGoogle Scholar
  426. 426.
    Ducos M, Durand JP (2001) Thermal coatings in Europe, a business perspective. In: Berndt CC, Khor KH, Lugscheider E (eds) Thermal spray 2001. ASM International, Materials Park, OH, pp 1267–1276Google Scholar
  427. 427.
    MAGETEX (n.d.) Thermal coatings in Europe: a business prospective. MAGETEX, Les bureaux de Sèvres, 2 rue Troyon, 92316 SèvresGoogle Scholar
  428. 428.
    Wigren J, Kristina Täng (2007) Quality considerations for the evaluation of thermal spray coatings. J Therm Spray Technol 16(4):533–540Google Scholar
  429. 429.
    Lee C (2009) Market direction and application opportunities for T/S growth in Korea. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 505–510, e-ProcGoogle Scholar
  430. 430.
    Sundararajan G, Mahajan YR, Joshi SV (2009) Thermal spraying in India: status and prospects. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 511–516Google Scholar
  431. 431.
    Tani K, Nakahira H (1992) Status of thermal spray technology in Japan. J Therm Spray Technol 1(4):333–339Google Scholar
  432. 432.
    Nakahira A (2009) Current status and future prospect of thermal spray coating applications and coating service market of job shops in Japan. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 499–504, e-ProcGoogle Scholar
  433. 433.
    Fukumoto M (2008) The current status of thermal spraying in Asia; Hwang SY Status of thermal spraying in Korea; Li C-J The current state of thermal spray activities in China; Tani K, Nakahira A The current status of thermal spray in Japan; Khor MKA Thermal spray activities in Singapore. J Therm Spray Technol 17(1): 5–13Google Scholar
  434. 434.
    de Munter AJ, Bult A, de Jong JA (2002) On the economical and environmental aspects of TSA coatings. In: Lugscheider E (ed) International thermal spray conference 2002. DVS, Düsseldorf, e-ProcGoogle Scholar
  435. 435.
    Celotto S, Pattison J, Ho JS, Johnson AN, O’Neill W (2007) The economics of the cold spray process. In: Champagne V (ed) Cold spray materials deposition process - fundamentals and applications. Woodhead, SawstonGoogle Scholar
  436. 436.
    Molz R, Hawley D (2007) A method of evaluating thermal spray process performance. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2007: Global coating solutions. ASM International, Materials Park, OH, e-ProcGoogle Scholar
  437. 437.
    Sacriste D, Goubot N, Dhers J, Ducos M, Vardelle A (2001) An evaluation of the electric arc spray and (HPPS) processes for the manufacturing of high power plasma spraying MCrAlY coatings. J Therm Spray Technol 10(2):352–358Google Scholar
  438. 438.
    Moign A, Vardelle A, Legoux JG, Themelis NJ (2009) LCA Comparison of electroplating and other thermal spray processes. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: Proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 1207–1212, e-ProcGoogle Scholar
  439. 439.
    International Thermal Spray Association, What is thermal spray.

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Pierre L. Fauchais
    • 1
  • Joachim V. R. Heberlein
    • 2
  • Maher I. Boulos
    • 3
  1. 1.Sciences des Procédés Céramiques et de Traitements de Surface (SPCTS)Université de LimogesLimogesFrance
  2. 2.Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of Chemical EngineeringUniversity of SherbrookeSherbrookeCanada

Personalised recommendations