Skip to main content

Deregulation of the Hox Gene Network and Cancer

  • Chapter
Book cover HOX Gene Expression
  • 846 Accesses

Abstract

Although the Hox genes have been identified as master regulatory genes controlling embryonic development, an alternative view on the role of the Hox gene network suggests that it regulates crucial processes at cellular level in eukaryotic organisms. Our working hypothesis considers the Hox network, at the nuclear cell level, as a decoding system for external inductive signals to activate specific genetic programs. We thus identify a cancer as an anomalous structure growing inside the human body and following, from a cellular and architectural viewpoint, the rules controlling body shape during embryonic development. In this chapter we will describe, according to present data, how the Hox gene network acts in specific types of human solid tumours (breast, prostate, bladder, kidney). Furthermore we identify three research areas potentially able to produce, in the near future, important achievements to increase our understanding of (i) the function of the Hox gene network; (ii) the identification of the HOX target genes; (iii) the molecular basis of human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Scott MP. Hox genes, arms and the man. Nature 1997; 15:117–118.

    Article  CAS  Google Scholar 

  2. Cillo C, Faiella A, Cantile M et al. Homeobox genes and cancer. Exp Cell Res 1999; 248(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  3. Cillo C, Cantile M, Faiella A et al. Homeobox genes in normal and malignant cells. J Cell Physiol 2001; 188(2):161–169.

    Article  PubMed  CAS  Google Scholar 

  4. Garcia-Bellido A. Genetic control of wing disc development in Drosophila. Elsevier, Amsterdam: CIBA Foundation Symposium Edition, 1975:29.

    Google Scholar 

  5. Cillo C. HOX genes in human cancers. Invasion and Metastasis 1994–95; 14:38–49.

    CAS  Google Scholar 

  6. Castelli-Gair Hombria J, Lovergrove B. Beypnd homeosis-HOX function in morphogenesis and organogenesis. Differentiation 2003; 71:461–476.

    Article  CAS  Google Scholar 

  7. Sinisi AA, Chieffi P, Pasquali D et al. EPN: A novel epithelial cell line derived from human prostate tissue. In Vitro Cell Dev Biol Anim 2002; 38:165–172.

    Article  PubMed  CAS  Google Scholar 

  8. Leroy P, Berto F, Bourget I et al. Downregulation of Hox A7 is required for cell adhesion and migration on fibronectin during early HL-60 monocytic differentiation. J Leukoc Biol 2004; 75:680–8.

    Article  PubMed  CAS  Google Scholar 

  9. Chen H, Sukumar S. HOX genes: Emerging stars in cancer. Cancer Biol Ther 2003; 2:524–5.

    PubMed  Google Scholar 

  10. Abate-Shen C. Deregulated homeobox gene expression in cancer: Cause or consequence? Nat Rev Cancer 2002; 2:777–85.

    Article  PubMed  CAS  Google Scholar 

  11. Friedmann Y, Daniel CA, Strickland P et al. Hox genes in normal and neoplastic mouse mammary gland. Cancer Res 1994; 54(22):5981–5985.

    PubMed  CAS  Google Scholar 

  12. Chariot A, Moreau L, Senterre G et al. Retinoic acid induces three newly cloned HOXA1 transcripts in MCF7 breast cancer cells. Biochem Biophys Res Commun 1995; 215(2):713–720.

    Article  PubMed  CAS  Google Scholar 

  13. Chariot A, Castronovo V. Detection of HOXA1 expression in human breast cancer. Biochem Biophys Res Commun 1996; 222(2):292–297.

    Article  PubMed  CAS  Google Scholar 

  14. Boylan JF, Lohnes D, Taneja R et al. Loss of retinoic acid receptor gamma function in F9 cells by gene disruption results in aberrant Hoxa-1 expression and differentiation upon retinoic acid treatment. Proc Natl Acad Sci USA 1993; 90(20):9601–9605.

    Article  PubMed  CAS  Google Scholar 

  15. Chariot A, Castronovo V, Le P et al. Cloning and expression of a new HOXC6 transcript encoding a repressing protein. Biochem J 1996; 319 (Pt l):91–97.

    PubMed  CAS  Google Scholar 

  16. Boudreau N, Andrews C, Srebrow A et al. Induction of the angiogenic phenotype by Hox D3. J Cell Biol 1997; 139(1):257–264.

    Article  PubMed  CAS  Google Scholar 

  17. Care A, Felicetti F, Meccia E et al. HOXB7: A key factor for tumor-associated angiogenic switch. Cancer Res 2001; 61(17):6532–6539.

    PubMed  CAS  Google Scholar 

  18. Raman V, Martensen SA, Reisman D et al. Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature 2000; 405(6789):974–978.

    Article  PubMed  CAS  Google Scholar 

  19. Raman V, Tamori A, Vali M et al. HOXA5 regulates expression of the progesterone receptor. J Biol Chem 2000; 275(34):26551–26555.

    Article  PubMed  CAS  Google Scholar 

  20. Chen F, Capecchi MR. Paralogous mouse Hox genes, Hoxa9, Hoxb9, and Hoxd9, function together to control development of the mammary gland in response to pregnancy. Proc Natl Acad Sci USA 1999; 96(2):541–546.

    Article  PubMed  CAS  Google Scholar 

  21. Cantile M, Pettinato G, Procino A et al. In vivo expression of the whole HOX gene network in human breast cancer. Eur J Cancer 2003; 39:257–64.

    Article  PubMed  CAS  Google Scholar 

  22. Ma XJ, Wang Z, Ryan PD et al. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 2004; 5:607–16.

    Article  PubMed  CAS  Google Scholar 

  23. Singletary SE, Allred C, Ashley P et al. Revision of the american joint committee on cancer staging system for breast cancer. J Clin Oncol 2002; 20:3628–36.

    Article  PubMed  Google Scholar 

  24. Dalton LW, Pinder SE, Elston CE et al. Histologic grading of breast cancer: Linkage of patient outcome with level of pathologist agreement. Mod Pathol 2000; 13:730–5.

    Article  PubMed  CAS  Google Scholar 

  25. Bonner RF, Emmert-Buck M, Cole K et al. Laser capture microdissection: Molecular analysis of tissue. Science 1997; 278(5342):1481–1483.

    Article  PubMed  CAS  Google Scholar 

  26. Sandberg AA. Cytogenetics and molecular genetics of bone and soft-tissue tumors. Am J Med Genet 2002; 115:173–82.

    Article  PubMed  Google Scholar 

  27. Cordon-Cardo C. Molecular alterations in bladder cancer. Cancer Surv 1998; 32:115–31.

    PubMed  CAS  Google Scholar 

  28. Fujimoto K, Yamada Y, Okajima E et al. Cancer Res 1992; 52:1393–8.

    PubMed  CAS  Google Scholar 

  29. Wada T, Louhelainen J, Hemminki K et al. Clin Cancer Res 2000; 6:610–5.

    PubMed  CAS  Google Scholar 

  30. Shinohara N, Koyanagi T. Ras signal transduction in carcinogenesis and progression of bladder cancer: Molecular target for treatment? Urol Res 2002; 30:273–81.

    Article  PubMed  CAS  Google Scholar 

  31. Adshead JM, Ogden CW, Penny MA et al. The expression of PAX5 in human transitional cell carcinoma of the bladder: Relationship with de-differentiation. BJU Int 1999; 83:1039–44.

    Article  PubMed  CAS  Google Scholar 

  32. Cantile M, Cindolo L, Napodano G et al. Hyperexpression of locus C genes in the HOX network is strongly associated in vivo with human bladder transitional cell carcinomas. Oncogene 2003; 22:6462–8.

    Article  PubMed  CAS  Google Scholar 

  33. Simon R, Struckmann K, Schraml P et al. Amplification pattern of 12q13–q15 genes (MDM2, CDK4, GLI) in urinary bladder cancer. Oncogene 2002; 21:2476–83.

    Article  PubMed  CAS  Google Scholar 

  34. Yoon SJ, LeBlanc-Straceski J, Ward D et al. Organization of the human keratin type II gene cluster at 12q13. Genomics 1994; 24:502–8.

    Article  PubMed  CAS  Google Scholar 

  35. Jave-Suarez LF, Winter H, Langbein L et al. HOXC13 is involved in the regulation of human hair keratin gene expression. J Biol Chem 2002; 277:3718–26.

    Article  PubMed  CAS  Google Scholar 

  36. Lussier M, Filion M, Compton JG et al. The mouse keratin 19-encoding gene: Sequence, structure and chromosomal assign. Gene 1990; 95:203–13.

    Article  PubMed  CAS  Google Scholar 

  37. Moll R, Achtstatter T, Becht E et al. Cytokeratins in normal and malignant transitional epithelium. Maintenance of expression of urothelial differentiation features in transitional cell carcinomas and bladder carcinoma cell culture lines. Am J Pathol 1988; 132:123–44.

    PubMed  CAS  Google Scholar 

  38. Spitz F, Gonzalez F, Duboule D. A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell 2003; 113:405–417.

    Article  PubMed  CAS  Google Scholar 

  39. Hostikka SL, Capecchi MR. The mouse Hoxcll gene: Genomic structure and expression pattern. Mech Dev 1998; 70:133–45.

    Article  PubMed  CAS  Google Scholar 

  40. Gleason DF. Histologic grading and prostate cancer: A perpective. Hum Pathol 1992; 23:273–279.

    Article  PubMed  CAS  Google Scholar 

  41. Roberts SG, Blute ML, Bergstralh EJ et al. PSA doubling time as a predictor of clinical progression after biochemical failure following radical prostatectomy for prostate cancer. Mayo Clin Proc 2001; 76:576–81.

    Article  PubMed  CAS  Google Scholar 

  42. Singh D, Febbo PG, Ross K et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 2002; 1:203–9.

    Article  PubMed  CAS  Google Scholar 

  43. Miller GJ, Miller HL, van Bokhoven A et al. Aberrant HOXC expression accompanies the malignant phenotype in human prostate. Cancer Res 2003; 63:5879–5888.

    PubMed  CAS  Google Scholar 

  44. Cantile M, Kisslinger A, Cindolo L et al. cAMP induced modifications of HOX D gene expression in prostate cells allow the identification of a chromosomal area involved in vivo with neuroendocrine differentiation of human advanced prostate cncers. J Cell Physiol 2005; 205:202–210.

    Article  PubMed  CAS  Google Scholar 

  45. Bang YJ, Pirnia F, Fang WG et al. Terminal neuroendocrine differentiation of human prostate carcinoma cells in response to increased intracellular cyclic AMP. Proc Natl Acad Sci USA 1994; 91:5330–5334.

    Article  PubMed  CAS  Google Scholar 

  46. Lin DL, Whitney MC, Yao Z et al. Interleukin-6 induces androgen responsiveness in prostate cancer cells through upregulation of androgen receptor expression. Clin Cancer Res 2001; 7:1773–1781.

    PubMed  CAS  Google Scholar 

  47. Zakany J, Kmita M, Duboule D. A dual role for Hox genes in limb anterior-posterior asymmetry. Science 2004; 304:1669–1672.

    Article  PubMed  CAS  Google Scholar 

  48. Spitz F, Gonzalez F, Duboule D. A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell 2003; 113:405–417.

    Article  PubMed  CAS  Google Scholar 

  49. Podlasek CA, Duboule D, Bushman W. Male accessory sex organ morphogenesis is altered by loss of function of Hoxd-13. Dev Dyn 1997; 208:454–465.

    Article  PubMed  CAS  Google Scholar 

  50. Petrovics G, Zhang W, Makarem M et al. Elevated expression of PCGEM1, a prostate-specific gene with cell growth-promoting function, is associated with high-risk prostate cancer patients. Oncogene 2004; 23:605–611.

    Article  PubMed  CAS  Google Scholar 

  51. Kleiderlein JJ, Nisson PE, Jessee J et al. CCG repeats in cDNAs from human brain. Hum Genet 1998; 103:666–673.

    Article  PubMed  CAS  Google Scholar 

  52. Niwa N, Hiromi Y, Okabe M. A conserved developmental program for sensory organ formation in Drosophila melanogaster. Nat Gen 2004; 36:293–297.

    Article  CAS  Google Scholar 

  53. Sabarinadh C, Subramanian S, Tripathi A et al. Extreme conservation of noncoding DNA near HoxD complex of vertebrates. BMC Genomics 2004; 5(1):75.

    Article  PubMed  CAS  Google Scholar 

  54. Casolari JM, Brown CR, Komili S et al. Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 2004; 117:427–39.

    Article  PubMed  CAS  Google Scholar 

  55. Misteli T. Spatial positioning; a new dimension in genome function. Cell 2004; 119:153–6.

    Article  PubMed  CAS  Google Scholar 

  56. Lee JE, Hollenberg SM, Snider L et al. Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science 1995; 268:836–844.

    Article  PubMed  CAS  Google Scholar 

  57. Saxen L. Organogenesis of the kidney. Cambridge, UK: Cambridge Univ. Press, 1987:1–173.

    Google Scholar 

  58. Potter EL. Normal and abnormal development of the kidney. Chicago: Year Book Medical publishers Inc, 1972.

    Google Scholar 

  59. Patterson LT, Pembaur M, Potter SS. Hoxall and Hoxdll regulate branching morphogenesis of ureteric bud in the developing kidney. Development 2001; 128:2153–2161.

    PubMed  CAS  Google Scholar 

  60. Kreidberg JA, Sariola H, Loring JM et al. Wtl is required for early kidney development. Cell 1993; 74:679–691.

    Article  PubMed  CAS  Google Scholar 

  61. Torres M, Gomez-Pardo E, Dressier GR et al. Pax2 controls multiple steps of urogenital development. Development 1995; 121:4057–4065.

    PubMed  CAS  Google Scholar 

  62. Nishinakamura R, Matsumoto Y, Nakao K et al. Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development 2001; 128:3105–3115.

    PubMed  CAS  Google Scholar 

  63. Kume T, Deng K, Hogan BL. Murine forkhead/winged helix genes Foxcl (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development 2000; 127:1387–1395.

    PubMed  CAS  Google Scholar 

  64. Xu PX, Adams J, Peters H et al. Eyal-deficient mice lack ears and kidneys and show abnormal apoptosis oforgan primordia. Nat Genet 1999; 23:113–117.

    Article  PubMed  CAS  Google Scholar 

  65. Davies JA, Fisher CE. Genes and proteins in renal development. Exp Nephrol 2002; 10:102–113.

    Article  PubMed  CAS  Google Scholar 

  66. Pichel JG, Shen L, Sheng HZ et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 1996; 382:73–76.

    Article  PubMed  CAS  Google Scholar 

  67. Schuchardt A, D’Agati V, Larsson-Blomberg L et al. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 1994; 367:380–383.

    Article  PubMed  CAS  Google Scholar 

  68. Cacalano G, Farinas I, Wang LC et al. GFRalphal is an essencial receptor component for GDNF in the developing nervous system and kidney. Neuron 1998; 21:53–62.

    Article  PubMed  CAS  Google Scholar 

  69. Stark K, Vaino S, Vassileva G et al. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 1994; 372:679–683.

    Article  PubMed  CAS  Google Scholar 

  70. Wellik DM, Hawkes PJ, Capecchi MR. Hox11 paralogous genes are essencial for metanephric kidney induction. Genes and Development 2002; 16:1423–1432.

    Article  PubMed  CAS  Google Scholar 

  71. Warot X, Fromental-Ramain C, Fraulob V et al. Gene dosage-dependent effects of the Hox a13 and Hox d13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts. Development 1997; 124:4781–4791.

    PubMed  CAS  Google Scholar 

  72. Valerius MT, Patterson LT, Yuxin Feng et al. Hox all is upstream of Integrinα8 expression in the developing kidney. PNAS 2002; 99:8090–8095.

    Article  PubMed  CAS  Google Scholar 

  73. Chariot A, van Lint C, Chapelier M et al. CBP and histone deacetylase inhibition enhance the transactivation potential of the HOXB7 homeodomain-containing protein. Oncogene 1999; 18:4007–14.

    Article  PubMed  CAS  Google Scholar 

  74. Saleh MI, Koh YM, Tan SC et al. Clean-up, detection and determination of salbutamol in human urine and serum. Analyst 2000; 125:1569–72.

    Article  PubMed  CAS  Google Scholar 

  75. Petruk S, Sedkov Y, Smith S et al. Trithorax and dCBP acting in a complex to maintain expression of a homeotic gene. Science 2001; 294:1331–4.

    Article  PubMed  CAS  Google Scholar 

  76. Ernst P, Wang J, Huang M et al. MLL and CREB bind cooperatively to the nuclear coactivator CREB-binding protein. Mol Cell Biol 2001; 21:2249–58.

    Article  PubMed  CAS  Google Scholar 

  77. Shen WF, Krishnan K, Lawrence HJ et al. The HOX homeodomain proteins block CBP histone acetyltransferase activity. Mol Cell Biol 2001; 21:7509–22.

    Article  PubMed  CAS  Google Scholar 

  78. Shen WF, Chrobak D, Krishnan K et al. HOX B6 protein is bound to CREB-binding protein and represses globin expression in a DNA binding-dependent, PBX interaction-independent process. The Jour Biol Chem 2004; 279:39895–39904.

    Article  CAS  Google Scholar 

  79. Larhammar D, Lundin LG, Hallbook F. The human Hox-bearing chromosome regions did arise by block or chromosome (or even genome) duplications. Genome Res 2002; 12:1910–20.

    Article  PubMed  CAS  Google Scholar 

  80. Lu J, Getz G, Miska EA et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435:834–8.

    Article  PubMed  CAS  Google Scholar 

  81. Yekta S, Shih IH, Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA. Science 2004; 304:594–6.

    Article  PubMed  CAS  Google Scholar 

  82. Mansfield JH, Harfe BD, Nissen R et al. MicroRNA-responsive’ sensor’ transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet 2004; 36:1079–83.

    Article  PubMed  CAS  Google Scholar 

  83. Cobb J, Duboule D. Tracing microRNA patterns in mice. Nat Genet 2004; 36:1033–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemente Cillo .

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Cillo, C. (2007). Deregulation of the Hox Gene Network and Cancer. In: HOX Gene Expression. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68990-6_9

Download citation

Publish with us

Policies and ethics