Skip to main content

Fundus Autofluorescence

  • Chapter

Fundus spectrophotometric studies by Delori et al.1,2 have shown that fundus autofluorescence (FAF) in vivo is mainly derived from retinal pigment epithelium (RPE) lipofuscin. In the past, lipofuscin accumulation has been largely studied in vitro using fluorescence microscopic techniques.3–5 Excessive accumulation of lipofuscin represents a common pathogenetic pathway in various complex retinal diseases and is believed to precede photoreceptor degeneration.6–8

Keywords

  • Optical Coherence Tomography
  • Retinal Pigment Epithelium
  • Retinal Pigment Epithelium Cell
  • Macular Hole
  • Central Serous Chorioretinopathy

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-0-387-68987-6_24
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-0-387-68987-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   159.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Delori FC, Dorey CK, Staurenghi G, Arend O, Goger DG, Weiter JJ. In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci 1995;36:718–729.

    PubMed  CAS  Google Scholar 

  2. Delori FC, Staurenghi G, Arend O, Dorey CK, Goger DG, Weiter JJ. In vivo measurement of lipofuscin in Stargardt’s disease-fundus flavimaculatus. Invest Ophthalmol Vis Sci 1995;36:2327–2331.

    PubMed  CAS  Google Scholar 

  3. Feeney-Burns L, Berman ER, Rothman H. Lipofuscin of human retinal pigment epithelium. Am J Ophthalmol 1980;90:783–791.

    PubMed  CAS  Google Scholar 

  4. Weiter JJ, Delori FC, Wing GL, Fitch KA. Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes. Invest Ophthalmol Vis Sci 1986;27:145–152.

    PubMed  CAS  Google Scholar 

  5. Dorey KC, Wu G, Ebenstein D, Garsd A, Weiter JJ. Cell loss in aging retina: relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci 1989;30:1691–1699.

    PubMed  CAS  Google Scholar 

  6. Wing GL, Blanchard GC, Weiter JJ. The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium. Invest Ophthalmol Vis Sci 1978;17:601–607.

    PubMed  CAS  Google Scholar 

  7. Weiter JJ, Delori FC, Wing GL, Fitch KA. Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes. Invest Ophthalmol Vis Sci 1986;27:145–152.

    PubMed  CAS  Google Scholar 

  8. Dorey CK, Wu G, Ebenstein D, Garsd A, Weiter JJ. Cell loss in the aging retina: relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci 1989;30:1691–1699.

    PubMed  CAS  Google Scholar 

  9. von Rückmann A, Fitzke FW, Bird AC. Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br J Ophthalmol 1995;79:407–412.

    CrossRef  Google Scholar 

  10. Bellmann C, Holz FG, Schapp O, Volcker HE, Otto TP. Topography of fundus autofluorescence with a new confocal scanning laser ophthalmoscope [in German]. Ophthalmologe 1997;94:385–391.

    PubMed  CrossRef  CAS  Google Scholar 

  11. Holz FG, Bellmann C, Margaritidis M, Schutt F, Otto TP, Volcker HE. Patterns of increased in vivo fundus autofluorescence in the junctional zone of geographic atrophy of the retinal pigment epithelium associated with age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 1999;237:145–152.

    PubMed  CrossRef  CAS  Google Scholar 

  12. Bindewald A, Jorzik JJ, Loesch A, Schutt F, Holz FG. Visualization of retinal pigment epithelial cells in vivo using digital high-resolution confocal scanning laser ophthalmoscopy. Am J Ophthalmol 2004;137:556–558.

    PubMed  CrossRef  Google Scholar 

  13. Delori FC, Fleckner MR, Goger DG, Weiter JJ, Dorey CK. Autofluorescence distribution associated with drusen in age-related macular degeneration. Invest Ophthalmol Vis Sci 2000;41:496–504.

    PubMed  CAS  Google Scholar 

  14. Kennedy CJ, Rakozcy PE, Constable IJ. Lipofuscin in the retinal pigment epithelium: a review. Eye 1995;9:763–771.

    PubMed  Google Scholar 

  15. Katz ML. Incomplete proteolysis may contribute to lipofuscin accumulation in the retinal pigment epithelium. Adv Exp Med Biol 1989;266:109–116.

    PubMed  CAS  Google Scholar 

  16. Eldred GE, Katz ML. Fluorophores of human retinal pigment epithelium: separation and spectral characterization. Exp Eye Res 1988;47:71–86.

    PubMed  CrossRef  CAS  Google Scholar 

  17. Kitagawa K, Nishida S, Ogura Y. In vivo quantitation of autofluorescence in human RPE. Ophthalmologica 1989;199:116–121.

    PubMed  CAS  CrossRef  Google Scholar 

  18. Green WR, Enger C. Age-related macular degeneration histopathologic studies. Ophthalmology 1993;100:1519–1535.

    PubMed  CAS  Google Scholar 

  19. von Rückmann A, Fizke FW, Bird AC. Fundus autofluorescence in age related macular disease imaged with a laser scanning ophthalmoscope. Invest Ophthalmol Vis Sci 1997;38:478–486.

    Google Scholar 

  20. Allikmets R, Shroyer NF, Singh N, et al. Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science 1997;277:1805–1807.

    PubMed  CrossRef  CAS  Google Scholar 

  21. Delori FC, Staurenghi G, Arend O, et al. In vivo measurement of Stargardt’s disease—fundus flavimaculatus. Invest Ophthalmol Vis Sci 1995;36:2327–2331.

    PubMed  CAS  Google Scholar 

  22. Eagle RC, Lucier AC, Bernadino VB, Janoff M. Retinal pigment epithelial abnormalities in fundus flavimaculatus; a light and electron microscopical study. Ophthalmology 1980;87:1189–2000.

    PubMed  Google Scholar 

  23. Frangieh GT, Green WR, Fine SL. A histopathologic study of Best’s macular dystrophy. Arch Ophthalmol 1982;100:1115–1121.

    PubMed  CAS  Google Scholar 

  24. Lopez PF, Maumenee IH, de la Cruz Z, Green WR. Autosomal dominant fundus flavimaculatus: clinicopathologic correlation. Ophthalmology 1990;97:798–809.

    PubMed  CAS  Google Scholar 

  25. Framme C, Roider J, Sachs HG, Brinkmann R, Gabel VP. Noninvasive Imaging and Monitoring of retinal pigment epithelium patterns using fundus autofluorescence—review. Curr Med Imag Rev 2005;1:89–103.

    CrossRef  Google Scholar 

  26. Eldred GE, Lasky MR. Retinal age-pigments generated by self-assembling lysosomotropic detergents. Nature 1993;361:145–152.

    CrossRef  Google Scholar 

  27. Eldred GE. Age pigment structure. Nature 1993;364(6436):396.

    PubMed  CrossRef  CAS  Google Scholar 

  28. Parish CA, Hashimoto M, Nakanishi K, et al. Isolation and one-step preparation of A2E and iso-A2E, fluorophores from human retinal pigment epithelium. Proc Natl Acad Sci USA 1998;95:14609–14613.

    PubMed  CrossRef  CAS  Google Scholar 

  29. Holz FG, Schutt F, Kopitz J, et al. Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 1999;40:737–743.

    PubMed  CAS  Google Scholar 

  30. Spaide RF. Fundus autofluorescence and age-related macular degeneration. Ophthalmology 2003;110:392–399.

    PubMed  CrossRef  Google Scholar 

  31. Holz FG, Bellmann C, Rohrschneider K, Burk ROW, Volcker HE. Simultaneous confocal scanning laser fluorescein- and indocyanine green angiography. Am J Ophthalmol 1998;125:227–236.

    PubMed  CrossRef  CAS  Google Scholar 

  32. von RRückmann A, Fitzke FW, Fan J, Halfyard A, Bird AC. Abnormalities of fundus autofluorescence in central serous retinopathy. Am J Ophthalmol 2002;133:780–786.

    CrossRef  Google Scholar 

  33. Bindewald A, Bird AC, Dandekar SS, et al. Classification of fundus autofluorescence patterns in early age-related macular disease. Invest Ophthalmol Vis Sci 2005;46:3309–3314.

    PubMed  CrossRef  Google Scholar 

  34. Keilhauer CN, Delori FC. Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin. Invest Ophthalmol Vis Sci 2006;47(8):3556–3564.

    PubMed  CrossRef  Google Scholar 

  35. Staurenghi G, Wolf S, Holz FG, Bellman C, Staudt S, Schutt F, Volcker HE. Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci 2001;42:1051–1056.

    Google Scholar 

  36. Eandi CM, Ober M, Iranmanesh R, et al. Acute central serous chorioretinopathy and fundus autofluorescence. Retina 2005;25:989–993.

    PubMed  CrossRef  Google Scholar 

  37. Spaide RF, Klancnik JM Jr. Fundus autofluorescence and central serous chorioretinopathy. Ophthalmology 2005;112:825–833.

    PubMed  CrossRef  Google Scholar 

  38. Sjaarda RN, Thompson JT. Macular hole. In: Ryan SJ, ed. Retina. Philadelphia: Elsevier, 2006.

    Google Scholar 

  39. Johnson RN, Gass JDM. Idiopathic macular holes. Observations, stages of formation, and implications for surgical intervention. Ophthalmology 1988;95:917–924.

    PubMed  CAS  Google Scholar 

  40. Gass JDM. Reappraisal of biomicroscopic classification of stages of development of a macular hole. Am J Ophthalmol 1995;119:752–759.

    PubMed  CAS  Google Scholar 

  41. von Ruckmann A, Fitzke FW, Gregor ZJ. Fundus autofluorescence in patients with macular holes imaged with a laser scanning ophthalmoscope. Br J Ophthalmol 1998;82:346–351.

    CrossRef  Google Scholar 

  42. Ciardella AP, Lee GC, Langton K. Autofluorescence as a novel approach to diagnosing macular holes. Am J Ophthalmol 2004;137:956–959.

    PubMed  CrossRef  Google Scholar 

  43. Framme C, Roider J. Fundus autofluorescence in macular hole surgery. Ophthalmic Surg Lasers 2001;32:383–390.

    PubMed  CAS  Google Scholar 

  44. Roth DB, Smiddy WE, Feuer W. Vitreous surgery for chronic macular holes. Ophthalmology 1997;104:2047–2052.

    PubMed  CAS  Google Scholar 

  45. Thompson JT, Sjaarda RN, Lansing MB. The results of vitreous surgery for chronic macular holes. Retina 1997;17:493–501.

    PubMed  CrossRef  CAS  Google Scholar 

  46. Lois N, Halfyard AS, Bird AC, Holder GE, Fitzke FW. Fundus autofluorescence in Stargardt macular dystrophy—fundus flavimaculatus. Am J Ophthalmol 2004;138:55–63.

    PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Ciardella, A.P., Eandi, C.M. (2009). Fundus Autofluorescence. In: Arevalo, J.F. (eds) Retinal Angiography and Optical Coherence Tomography. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68987-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68987-6_24

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-68986-9

  • Online ISBN: 978-0-387-68987-6

  • eBook Packages: MedicineMedicine (R0)