Skip to main content

CMOS Electronic Microarrays in Diagnostics and Nanotechnology

  • Chapter

Part of the book series: Series on Integrated Circuits and Systems ((ICIR))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nature Genetics Supplement, vol. 21, pp. 1-60, 1999.

    Google Scholar 

  2. Chee M, Yang R, Hubbell E, Berno A, Huang X, Stern D, Winkler J, Lockhart D, Morris M, Fodor S, “Accessing Genetic Information with High-Density DNA Arrays,” Science, vol. 274, pp. 610-614, 1996.

    Article  Google Scholar 

  3. Pease A, Solas D, Sullivan E, Cronin M, Holmes C, Fodor S, “Light-Generated Oligonucleotide Arrays for Rapid DNA Sequence Analysis,” PNAS, vol. 99, pp. 5022-5026, 1994.

    Article  Google Scholar 

  4. Lipshutz RJ, Morris D, Chee M, Hubbell E, Kozal MJ, Shah N, Shen N, Yang R, Fodor SP , “Using oligonucleotide probe arrays to access genetic diver-sity,” Biotechniques, vol. 19, pp. 442-447, 1995.

    Google Scholar 

  5. Taton A, Mirkin C, Letsinger R, “Scanometric DNA Array Detection with Nanoparticle Probes,” Science, vol. 289, pp. 1757-1760, 2000.

    Article  Google Scholar 

  6. Sosnowski R, Tu E, Butler W, O’connel J, Heller M, “Rapid Determination of Single Base Mismatch Mutations in DNA Hybrids by Direct Electric Field Control,” PNAS, vol. 94, pp. 1119-1123, 1997.

    Article  Google Scholar 

  7. Harrington CA, Rosenow C, “Monitoring gene expression using DNA microarrays,” J Curr Opin Microbiol, vol. 3, pp. 285-291, 2000.

    Article  Google Scholar 

  8. Radtkey R, Feng L, Muralhidar M, Duhon M, Cantor D, DiPierro D, Fallon S, Tu E, McElfresh K, Nerenberg M, Sosnowski R, “Rapid, High Fidelity Analysis of Simple Sequence Repeats on an Electronically Active DNA Microchip,” Nucleic Acids Research, vol. 28, pp. 1-6, 2000.

    Article  Google Scholar 

  9. Gilles P, Wu D, Foster C, Dillon P, Chancock S, “Single Nucleotide Polymorphic Discrimination by and Electronic Dot Blot Assay on Semiconductor Microchips,” Nature Biotechnology, vol. 17, pp. 365-370, 1999.

    Article  Google Scholar 

  10. http://www.idahotech.com/products/index.html

  11. Belgrader P, Smith JK, Weedn VW, Northrup MA.,”Rapid PCR for identity testing using a battery-powered miniature thermal cycler,” J Forens Sci, vol. 43, p. 315, 1998.

    Google Scholar 

  12. Ibrahim MS, Lofts RS, Jahrling PB, Henchal EA, Weedn VW, Northrup MA, Belgrader P, “Real-Time Microchip PCR for Detecting Single-Base Differences in Viral and Human DNA,” Anal Chem, vol. 70, p. 2013, 1998.

    Article  Google Scholar 

  13. K. Petersen, “DNA-chip technologies Part 2: State-of-the-art and competing technologies” IVD Technology, Nov./Dec., p. 35, 1998.

    Google Scholar 

  14. Clinical Laboratory News, February, 1998.

    Google Scholar 

  15. Christel L. A., K. Petersen, W. McMillan and M.A. Northrup, “Rapid, auto- mated nucleic acid probe assays using silicon microstructures for nucleic acid concentration,” J Biomech Eng - Trans ASME, vol. 121, pp. 22-27, 1999.

    Article  Google Scholar 

  16. Hodko D, “DNA Microarrays in Portable Diagnostic Systems”, at “Miniaturization in Biomedicine” Conference, University of California, Irvine, October 30, 2003.

    Google Scholar 

  17. Heller ML, “An active microelectronics device for multiplex DNA analysis,” IEEE Engineering In Medicine and Biology, March/April, p. 100, 1996.

    Google Scholar 

  18. Heller MJ, Tu E, US Patent No. 5,605,662 “Active Programmable Electronic Devices for Molecular Biological Analysis and Diagnostics”, February 25, 1997.

    Google Scholar 

  19. Ackley DE, Swanson PD, Graham SO, Mather EL, LeClair TL, Butler WF, US Patent No. 6,726,880 “Advanced Active Electronic Devices for Molecular Biological Analysis and Diagnostics and Methods of Manufacturing Same”, April 27, 2004.

    Google Scholar 

  20. Kricka, LJ, “Revolution on a square centimeter,” Nature Biotechnology, vol. 16, pp. 513-514, 1998.

    Article  Google Scholar 

  21. Cheng J, Sheldon EL, Wu L, Uribe A. Gerrue LO, Carrino, J, Heller, MJ, O’Connell J, “Electric field controlled preparation and hybridization analysis of DNA/RNA from E. coli on microfabricated bioelectronic chips”, Nature Biotechnology, vol. 16, pp. 541-546, 1998.

    Article  Google Scholar 

  22. Kassegne K, Reese H, Hodko D, Yang JM, Sarkar K, Smolko D, Swanson P, Raymond DE, Heller MJ, Madou MJ, “Numerical modeling of transport and accumulation of DNA on electronically active biochips,” Sensors and Actuators B, vol. 94, p. 81, 2003.

    Article  Google Scholar 

  23. Huang Y, Mather EL, Bell JL, Madou MJ, “MEMS-based sample prepara- tion for molecular diagnostics,” Anal Bioanal Chem, vol. 372, p. 49, 2002.

    Article  Google Scholar 

  24. Westin L, Xu X, Miller C, Wang L, Edman CF, Nerenberg M, “Anchored mul-tiplex amplification on a microelectronic chip array,” Nature Biotechnology, vol. 18, p. 199, 2000.

    Article  Google Scholar 

  25. Yang JM, Bell J, Huang Y, Tirado M, Thomas T, Forster AH, Haigis RW, Swanson PD, Wallace RB, Martinsons B, Krihak M, “An integrated, stacked microlaboratory for biological agent detection with DNA and immunoassays,” Biosen Bioelect, vol. 17, p. 605, 2002.

    Article  Google Scholar 

  26. Heller MJ, Cable JM, Esener SC, US Patent No. 6,652,808 “Methods for the Electronic Assembly and Fabrication of Devices”, November 25, 2003.

    Google Scholar 

  27. Edman CF, Heller MJ, Gurtner C, Formosa R, US Patent No. 6,706,473 “Systems and Devices for Photoelectronic Transport and Hybridization of Oligonucleotides”, March 16, 2004.

    Google Scholar 

  28. Dehlinger D, Sullivan B, Esener S, Swanson P, Hodko D, and Heller MJ, “Reconfigurable CMOS Electronic Microarray System for the Assisted Self-Assembly of Higher-Order Nanostructures”, in Nanomanufacturing Handbook, Busnaina A Ed. Chapter 5, CRC Press, 2006.

    Google Scholar 

  29. Sullivan B, Dehlinger D, Zlatanovic, Esener S, Heller MJ, “Electrophoretically Actuated Nanoscale Optoentropic Transduction Mechanisms,” NSTI Nanotech 2006, vol. 2, pp. 209-212, 2006.

    Google Scholar 

  30. Dehlinger D, Sullivan B, Esener S, Swanson P, Hodko D, and Heller MJ, “Next Generation Microelectronic Array Devices”, in Handbook of Nanotechnology, Bhushan, B Ed. Part B, Chapter 14, Springer, 2006.

    Google Scholar 

  31. Heller MJ, Ozkan CS and Ozkan M, “Electric Field Devices for Assisted Assembly of DNA Nanocomponents and Other Nanofabrication Applications”, in BioMEMS and Biomedical Nanotechnology VI, Ferrari M Ed., vol. 2, Chapter 6, Springer, 2006.

    Google Scholar 

  32. Heller MJ, Dehlinger DA Sullivan BD, “Parallel Assisted Assembly of Multilayer DNA and Protein Nanoparticle Structures Using a CMOS Electronic Array”, DNA-Based Nanoscale Integration Symposium, W. Fritzsche (ed), American Institute of Physics, NY, pp. 73-81, 2006

    Google Scholar 

  33. Swanson P, Gelbart R, Atlas E, Yang L, Grogan T, Butler WF, Ackley DE, Sheldon E, “A fully multiplexed CMOS biochip for DNA Analysis,” Sensors and Actuators B, vol. 64, pp. 22-30, 2000.

    Article  Google Scholar 

  34. Svrcek V, Slaoui A, Muller JC, “Silicon nanocrystals as light converter for solar cells,” Thin Solid Films, vol. 451, pp. 384-388, 2004.

    Article  Google Scholar 

  35. Mwaura JK, Pinto MR, Witker D, Ananthakrishnan N, Schanze KS, Reynolds JR, “Photovoltaic cells based on sequentially adsorbed multilayers of conjugated poly(p-phenylene ethynylene)s and a water-soluble fullerene derivative,” Langmuir, vol. 22, pp. 10119-10126, 2005.

    Article  Google Scholar 

  36. Kapur VK, Bansal A, Le P, Asensio O, “Non-vacuum processing of CuIn1- xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks,” Thin Solid Films, vol. 431, pp. 53-57, 2003.

    Article  Google Scholar 

  37. Kim DW, Choi HS, Lee C, Blumstein A, Kang Y, “Investigation on methanol permeability of Nafion modified by self-assembled clay-nanocomposite multilayers,” Electrochimica Acta, vol. 50, pp. 659-662, 2004.

    Article  Google Scholar 

  38. Hacker V, Wallnofer E, Baumgartner W, Schaffer T, Besenhard JO, Schrottner H, Schmied M, “Carbon nanofiber-based active layers for fuel cell cathodes -preparation and characterization,” Electrochemistry Communications, vol. 7, pp. 377-382, 2005.

    Article  Google Scholar 

  39. Catledge SA, Fries MD, Vohra YK, Lacefield WR, Lemons JE, Woodard S, Venugopalan R, “Nanostructured Ceramics for Biomedical Implants,” Nanosci Nanotechno, vol. 2, pp. 293-312, 2002.

    Article  Google Scholar 

  40. Akerman ME, Chan WC, Laakkonen P, Bhatia SN, Ruoslahti E, “Nanocrystal Targeting In Vivo,” PNAS, vol. 99, pp. 12617-12621, 2002.

    Article  Google Scholar 

  41. Gao J, Gao T, Sailor MJ, “A porous silicon vapor sensor based on laser interferometry,” Appl Phys Lett, vol. 77, pp. 901-903, 2000.

    Article  Google Scholar 

  42. Dancil K-PS, Greiner DP, Sailor MJ., “A Porous Silicon Optical Bio- sensor: Detection of Reversible Binding of IgG to a Protein A-Modified Surface,” J Am Chem Soc, vol. 121, pp. 7925-7930, 1999.

    Article  Google Scholar 

  43. Chan S, Fauchet PM, Li Y, Rothberg LJ, Miller BL, “Porous Silicon Micro- cavities for Biosensing Applications,” Phys Stat Sol A, vol. 182. pp. 541-546, 2000.

    Article  Google Scholar 

  44. Crommelin DJ, Strom G, Jiskoot W, Stenkes R, Mastrobattista E, Hennick WE, “Nanotechnological approaches for the delivery of macromolecules,” Control Release, vol. 87, pp. 81-88, 2003.

    Article  Google Scholar 

  45. Prime KL and Whitesides GM, “Self-Assembled Organic Monolayers: Model Systems for Studying Adsorption of Proteins at Surfaces,” Science, vol. 252, pp. 1164-1167, 1991.

    Article  Google Scholar 

  46. Kim B, Tripp SL, and Wei A, “Self-organization of large gold nanoparticle arrays,” J Am Chem Soc, vol. 123, pp. 7955-7956, 2001.

    Article  Google Scholar 

  47. Bowden N, Terfort A, Carbeck J, and Whitesides GM, “Self-assembly of mesoscale objects into ordered two-dimensional arrays,” Science, vol. 276, pp. 233-235, 1997.

    Article  Google Scholar 

  48. Fink J, Kiely CJ, Bethell D, and Schiffrin DJ, “Self-organization of nano- sized gold particles,” Chem Mater, vol. 10, pp. 922-926, 1998.

    Article  Google Scholar 

  49. Lee S-W, Mao C, Flynn CE, and Belcher AM, “Ordering of quantum dots using genetically engineered viruses,” Science, vol. 296, pp. 892-895, 2002.

    Article  Google Scholar 

  50. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ, “A DNA-based method for rationally assembling nanoparticles into macroscopic materials,” Nature, vol. 382, pp. 607-609, 1996.

    Article  Google Scholar 

  51. Decher, D, Schlenoff, JB, Multilayer Thin Films-Sequential Assembly of Nanocomposite Materials, Wiley-VCH Verlag, Weinheim, 2003.

    Google Scholar 

  52. Goddard, Brenner, Lyashevski, Lafrate, Handbook of Nanoscience, Engineering and Technology, CRC Press, Boca Raton, 2003.

    Google Scholar 

  53. Wanunu M, Popovitz-Biro R, Cohen H, Vaskevich A, Rubinstein I, “Coordination-based gold nanoparticle layers,” J Am Chem Soc, vol. 127, pp. 9207-9215, 2005.

    Article  Google Scholar 

  54. Artyukhin AB, Bakajin O, Stroeve P, Noy A, “Layer-by-layer electrostatic self-assembly of polyelectrolyte nanoshells on individual carbon nanotube templates,” Langmuir, vol. 20, pp. 1442-1448, 2004.

    Article  Google Scholar 

  55. Yuan JJ, Zhou SX, You B, Wu LM, “Organic pigment particles coated with colloidal nano-silica particles via layer-by-layer assembly,” Chem Mater, vol. 17, pp. 3587-3594, 2005.

    Article  Google Scholar 

  56. Ma N, Zhang HY, Song B, Wang ZQ, Zhang X, “Polymer micelles as build- ing blocks for layer-by-layer assembly: An approach for incorporation and controlled release of water-insoluble dyes,” Chem Mater, vol. 17, pp. 5065-5069, 2005.

    Article  Google Scholar 

  57. Zapotoczny S, Golonka M, Nowakowska M, “Novel photoactive polymeric multilayer films formed via electrostatic self-assembly,” Macromolecular Rapid Communications, vol. 26, pp. 1049-1054, 2005.

    Article  Google Scholar 

  58. Hammond PT, “Form and function in multilayer assembly: New applications at the nanoscale,” Advanced Materials, vol. 16, pp. 1271-1293, 2004.

    Article  Google Scholar 

  59. Jacobs HO, Campbell SA, Steward MG, “Approaching nanoxerography: The use of electrostatic forces to position nanoparticles with 100 nm scale resolution,” Advanced Materials, vol. 14, pp. 1553-1557, 2002.

    Article  Google Scholar 

  60. Barry CR, Gu J, Jacobs HO, “Charging process and coulomb-force-directed printing of nanoparticles with sub-100-nm lateral resolution,” Nano Lett, vol. 5, pp. 2078-2084, 2005.

    Article  Google Scholar 

  61. Mardilovich P, Kornilovitch P, “Electrochemical fabrication of nanodimen- sional multilayer films,” Nano Lett, vol. 5, pp. 1899-1904, 2005.

    Article  Google Scholar 

  62. Allred DB, Sarikaya M, Baneyx F, Schwartz DT, “Electrochemical nano- fabrication using crystalline protein masks,” Nano Lett, vol. 5, pp. 609-613, 2005.

    Article  Google Scholar 

  63. Tsai DH, Kim SH, Corrigan TD, Phaneuf RJ, Zachariah MR, “Electrostatic- directed deposition of nanoparticles on a field generating substrate,” Nanotechnology, vol. 16, pp. 1856-1862, 2005.

    Article  Google Scholar 

  64. Lumsdon SO, Kaler EW, Velev OD, “Two-dimensional crystallization of mi- crospheres by a coplanar AC electric field,” Langmuir, vol. 20, pp. 2108-2116, 2004.

    Article  Google Scholar 

  65. Hua F, Shi J, Lvov Y, Cui T, “Patterning of layer-by-layer self-assembled multiple types of nanoparticle thin films by lithographic technique,” Nano Lett, vol. 2, pp. 1219-1222, 2002.

    Article  Google Scholar 

  66. Ko HH, Jiang CY, Tsukruk VV, “Encapsulating nanoparticle arrays into layer-by-layer multilayers by capillary transfer lithography,” Chemistry of Materials, vol. 17, pp. 5489-5497, 2005.

    Article  Google Scholar 

  67. Small Wonders, Endless Frontiers: Review of the National Nanotechnology Initiative, National Research Council, 2002.

    Google Scholar 

  68. The National Nanotechnology Initiative - Strategic Plan, National Science and Technology Council, December 2004.

    Google Scholar 

  69. Heller MJ, Tu E, Martinsons R, Anderson RR, Gurtner C, Forster A, Sosnowski R, “Active microelectronic array systems for DNA hybridization, genotyping, pharmacogenomics and Nanofabrication Applications,” in Integrated Microfabricated Devices, Chapter 10, 2002.

    Google Scholar 

  70. Huang Y, Sunghae J, Duhon M, Heller MJ, Wallace B, Xu X, “Dielectro- phoretic separation and gene expression profiling on microelectronic chip arrays,” Anal Chem, vol. 74, pp. 3362-3371, 2002.

    Article  Google Scholar 

  71. Esener SC, Hartmann D, Heller MJ, and Cable JM, “DNA Assisted Micro- Assembly: A Heterogeneous Integration Technology For Optoelectronics,” Proc. SPIE Critical Reviews of Optical Science and Technology, Hetero-geneous Integration, Ed. A. Hussain, CR70, Chapter 7, 1998.

    Google Scholar 

  72. Gurtner C, Edman CF, Formosa RE, Heller MJ, “Photoelectrophoretic Transport and Hybridization of DNA on Unpatterned Silicon Substrates,” J Am Chem Soc, vol. 122, pp. 8589-8594, 2000.

    Article  Google Scholar 

  73. Huang Y, Ewalt KL, Tirado M, Haigis R, Forster A, Ackley D, Heller MJ, O’Connell JP, Krihak M, “Electric manipulation of bioparticles and mac romolecules on microfabricated electrodes,” Anal Chem, vol. 73, pp. 1549-1559, 2001.

    Article  Google Scholar 

  74. Edman CF, Gurtner C, Formosa RE, Coleman JJ, Heller MJ, “Electric-Field- Directed Pick-and-Place Assembly,” HDI, vol. 10, pp. 30-35, 2000.

    Google Scholar 

  75. Edman CF, Swint RB, Gurthner C, Formosa RE, Roh SD, Lee KE, Swanson PD, Ackley DE, Colman JJ, Heller MJ, “Electric Field Directed Assembly of an InGaAs LED onto Silicon Circuitry,” IEEE Photonics Tech. Letters, vol. 12, pp. 1198-1200, 2000.

    Article  Google Scholar 

  76. Daniel M. Hartmann, David Schwartz, Gene Tu, Mike Heller, Sadik C. Esener, “Selective DNA attachment of particles to substrates,” Journal of Materials Research, vol. 17, pp. 473-478, 2002.

    Article  Google Scholar 

  77. US # 6,569,382 “Methods and Apparatus for the Electronic Homogeneous Assembly and Fabrication of Devices”, Issued May 27, 2003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hodko, D., Swanson, P., Dehlinger, D., Sullivan, B., Heller, M.J. (2007). CMOS Electronic Microarrays in Diagnostics and Nanotechnology. In: Lee, H., Westervelt, R.M., Ham, D. (eds) CMOS Biotechnology. Series on Integrated Circuits and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68913-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68913-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-36836-8

  • Online ISBN: 978-0-387-68913-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics