Skip to main content

Dynamical Aspects of Nanocrystalline Ion Conductors Studied by NMR

  • Chapter
Nanocomposites

In recent years, nanocrystalline materials have considerably attracted the interest of the materials research community [1–4]. Single-phase materials with an average particle diameter of less than 50 nm exhibit new or at least enhanced chemical and physical properties when compared to their coarse-grained counterparts. For example, they show new mechanical [5–8], electrical [9–13], magnetic [14–19], optical [20–24], catalytic [25, 26], and/or thermodynamic [27–29] features. In ion conducting nanocrystalline materials, an enhancement of the diffusivity of small cations and anions like Li+ and F, or even larger anions like O2−, is often observed [2–4, 30–41]. The diffusivity is additionally influenced by admixing an ionic insulator to the conducting phase [4, 42–47].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Gleiter: Acta Mater. 48, 1 (2000).

    Article  CAS  Google Scholar 

  2. P. Knauth, H. L. Tuller: Solid State Ionics 136–137, 1215 (2000).

    Article  Google Scholar 

  3. A. V. Chadwick: Diffusion Fundamentals 2, 44 (2005).

    Google Scholar 

  4. P. Heitjans, S. Indris: J. Phys. Condens. Matter 15, R1257 (2003).

    Article  CAS  ADS  Google Scholar 

  5. J. Karch, R. Birringer, H. Gleiter: Nature 330 556 (1987).

    Article  CAS  ADS  Google Scholar 

  6. S. Yip: Nature 391 532 (1998).

    Article  CAS  ADS  Google Scholar 

  7. J. Baller, J. K. Krüger, R. Birringer, C. Proust C: J. Phys. Condens. Matter 12 5403 (2000).

    Google Scholar 

  8. U. Betz, H. Hahn: Nanostruct. Mater. 12 911 (1999).

    Article  Google Scholar 

  9. H. L. Tuller: J. Electroceram. 1, 211 (1997).

    Article  CAS  Google Scholar 

  10. A. M. George, J. Íñiguez, L. Bellaiche: Nature. 413, 54 (2001).

    Article  CAS  PubMed  ADS  Google Scholar 

  11. C. Demetry, X. Shi: Solid State Ionics 118, 271 (1998).

    Article  Google Scholar 

  12. C.-W. Nan, S. Holten, R. Birringer, H. Gao, H. Kliem, H. Gleiter: Phys. Status Solidi a 164, R1 (1997).

    Article  Google Scholar 

  13. H. Wittmer, S. Holten, H. Kliem, H. D. Breuer: Phys. Status Solidi a 181, 461 (2000).

    Article  CAS  ADS  Google Scholar 

  14. H. Mamiya, I. Nakatani, T. Furubayashi: Phys. Rev. Lett. 80, 177 (1998).

    Article  CAS  ADS  Google Scholar 

  15. T. Jonsson, J. Mattsson, C. Djurberg, F. A. Khan, P. Nordblad, P. Svedlindh: Phys. Rev. Lett. 75, 4138 (1995).

    Article  CAS  PubMed  ADS  Google Scholar 

  16. S. J. Stewart, R. A. Borzi, G. Punte, R. C. Mercader, F. Garcia: J. Phys. Condens. Matter 13, 1743 (2001).

    Article  CAS  ADS  Google Scholar 

  17. J. Garcia-Otero, M. Porto, J. Rivas, A. Bunde: Phys. Rev. Lett. 84, 167 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  18. J. P. Chen, C. M. Sorensen, K. J. Klabunde, G. C. Hadjipanayis: Phys. Rev. B 51, 11527 (1995).

    Article  CAS  ADS  Google Scholar 

  19. D. Zhang, K. J. Klabunde, K. J. Sorensen, G. C. Hadjipanayis: Phys. Rev. B 58, 14167 (1998).

    Article  CAS  ADS  Google Scholar 

  20. H. Weller, H. M. Schmidt, U. Koch, A. Fojtik, S. Baral, A. Henglein, A. Kunath, K. Weiss, E. Dieman: Chem. Phys. Lett. 124, 557 (1986).

    Article  CAS  ADS  Google Scholar 

  21. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A. P. Alivisatos: Nature 404, 59 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  22. M. Shim, P. Guyot-Sionnest: Nature 407, 981 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  23. C.-W. Nan, R. Birringer, W. Krauss, H. Gao, H. Gleiter: Phys. Status Solidi A 162, R3 (1997).

    Article  CAS  Google Scholar 

  24. R. Schmechel, M. Kennedy, H. von Seggern, H. Winkler, M. Kolbe, R. A. Fischer, L. Xaomao, A. Benker, M. Winterer, H. Hahn: J. Appl. Phys. 89, 1679 (2001).

    Article  CAS  ADS  Google Scholar 

  25. A. L. Linsebigler, G. Lu, J. T. Yates Jr: Chem. Rev. 95, 735 (1995).

    Article  CAS  Google Scholar 

  26. J. Y. Ying, T. Sun: J. Electroceram. 1, 219 (1997).

    Article  CAS  Google Scholar 

  27. H. Gleiter: Prog. Mater. Sci. 33, 223 (1989).

    Article  CAS  Google Scholar 

  28. J. Weissmüller, H. Ehrhardt: Phys. Rev. Lett. 81, 1114 (1998).

    Article  ADS  Google Scholar 

  29. K. T. Jacob, K. P. Jayadevan, R. M. Mallya, Y. Waseda: Adv. Mater. 12, 440 (2000).

    Article  CAS  Google Scholar 

  30. D. Bork, P. Heitjans: J. Phys. Chem. B 102, 7303 (1998).

    Article  CAS  Google Scholar 

  31. D. Bork, P. Heitjans: J. Phys. Chem. B 105, 9162 (2001).

    Article  CAS  Google Scholar 

  32. S. Indris, P. Heitjans, H. E. Roman, A. Bunde, Phys. Rev. Lett. 84, 2889 (2000).

    Article  CAS  PubMed  ADS  Google Scholar 

  33. W. Puin, P. Heitjans: Nanostruct. Mater. 6, 885 (1995).

    Article  Google Scholar 

  34. W. Puin, S. Rodewald, R. Ramlau, P. Heitjans, J. Maier: Solid State Ionics 131, 159 (2000).

    Article  CAS  Google Scholar 

  35. U. Brossmann, R. Würschum, U. Södervall, H.-E. Schaefer: Nanostruct. Mater. 12, 871 (1999).

    Article  Google Scholar 

  36. P. Knauth: J. Solid State Electrochem. 147, 115 (2002).

    CAS  Google Scholar 

  37. Y.-M. Chiang, E. B. Lavik, I. Kosacki, H. L. Tuller, J. Y. Ying: J. Electroceram. 1, 7 (1997).

    Article  CAS  Google Scholar 

  38. A. Tschöpe, E. Sommer, R. Birringer: Solid State Ionics 139, 255 (2001).

    Article  Google Scholar 

  39. J. Lee, J. H. Hwang, J. J. Mashek, F. O. Mason, A. E. Miller, R. W. Siegel: J. Mater Res. 10, 2295 (1995).

    Article  CAS  ADS  Google Scholar 

  40. C.-W. Nan, A. Tschöpe, S. Holten, H. Kliem, R. Birringer: J. Appl. Phys. 85, 7735 (1995).

    Article  ADS  Google Scholar 

  41. G. Li, L. Li, S. Feng, M. Wang, L. Zhang, X. Yao: Adv. Mater. 11, 146 (1999).

    Article  CAS  Google Scholar 

  42. J. Maier: Prog. Solid State Chem. 23, 171 (1995).

    Article  CAS  Google Scholar 

  43. J. Maier: Nat. Mater. 4, 805 (2005).

    Article  PubMed  ADS  CAS  Google Scholar 

  44. S. Indris, P. Heitjans: J. Non-Cryst. Solids 307, 555 (2002).

    Article  ADS  Google Scholar 

  45. M. Wilkening, S. Indris, P. Heitjans: Phys. Chem. Chem. Phys. 5, 2225 (2003).

    Article  CAS  Google Scholar 

  46. H. Maekawa, Y. Fujimaki, H. Shen, J. Kawamura, T. Yamamura: Solid State Ion. 177, 2711 (2006).

    Article  CAS  Google Scholar 

  47. C. C. Liang: J. Electrochem. Soc. 120, 1289 (1973).

    Article  CAS  Google Scholar 

  48. P. Heitjans, A. Schirmer, S. Indris: NMR and 4-NMR Studies of Diffusion in Interface-dominated and Disordered Solids. In: Diffusion in Condensed Matter–Methods, Materials, Models, ed. by P. Heitjans, J. Kärger (Springer, Berlin Heidelberg, 2005) pp. 367–415.

    Google Scholar 

  49. P. Heitjans, S. Indris, M. Wilkening: Diffusion Fundamentals 2, 45 (2005).

    Google Scholar 

  50. F. Qi, T. Jörg, R. Böhmer: Solid State Nucl. Magn. Reson. 22, 484 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. F. Qi, C. Rier, R. Böhmer, W. Franke, P. Heitjans: Phys. Rev. B 72, 104301 (2005).

    Article  ADS  CAS  Google Scholar 

  52. M. Wilkening, W. Küchler, P. Heitjans: Phys. Rev. Lett. 97, 065901 (2006).

    Article  CAS  PubMed  ADS  Google Scholar 

  53. Z. Xu, J. F. Stebbins: Science 270, 1332 (1995).

    Article  CAS  ADS  Google Scholar 

  54. M. Wagemaker, A. P. M. Kentgens, F. M. Mulder: Nature 418, 397 (2002).

    Article  CAS  PubMed  ADS  Google Scholar 

  55. M. Wilkening, R. Amade, W. Iwaniak, P. Heitjans: Phys. Chem. Chem. Phys. 9, 1239 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. M. Wilkening, C. Mühle, M. Jansen, P. Heitjans: J. Phys. Chem. B 111, 8691 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. M. Wilkening, D. Bork, S. Indris, P. Heitjans: Phys. Chem. Chem. Phys. 4, 3246 (2002).

    Article  CAS  Google Scholar 

  58. P. Heitjans, M. Masoud, A. Feldhoff, M. Wilkening: Faraday Discuss. 134, 67 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. R. W. Siegel: Nanophase Materials. In: Encyclopedia of Applied Physics, vol. 11, ed. by G. L. Trigg, E. H. Immergut, E. S. Vera, W. Greulich (VCH, New York, 1994) pp. 173–200.

    Google Scholar 

  60. W. Puin, P. Heitjans, W. Dickenscheid, H. Gleiter: NMR Study of Dynamic Processes in Nanocrystalline CaF2. In: Defects in Insulating Materials, ed. by O. Kanert, J. Spaeth (World Scientific, Singapore, 1993) pp. 137–139.

    Google Scholar 

  61. P. Heitjans, S. Indris: J. Mater. Sci. 39, 5091 (2004).

    Article  CAS  ADS  Google Scholar 

  62. R. Winter, P. Heitjans: J. Phys. Chem. B 105, 6108 (2001).

    Article  CAS  Google Scholar 

  63. S. Indris, P. Heitjans, H. E. Roman, A. Bunde: Defect Diffus. Forum 194–199, 935 (2001).

    Article  Google Scholar 

  64. J.-M. Debierre, P. Knauth, G. Albinet: Appl. Phys. Lett. 71, 1335 (1997).

    Article  CAS  ADS  Google Scholar 

  65. P. Knauth, G. Albinet, J.-M. Debierre: Ber. Bunsenges. Phys. Chem. 102, 945 (1998).

    CAS  Google Scholar 

  66. P. Knauth: J. Electroceram. 5, 111 (2000).

    Article  CAS  Google Scholar 

  67. N. Bloembergen, E. M. Purcell, R. V. Pound: Phys. Rev. 73, 679 (1948).

    Article  CAS  ADS  Google Scholar 

  68. A. Bunde, W. Dieterich, P. Maass, M. Meyer: Ionic Transport in Disordered Materials. In: Diffusion in Condensed Matter–Methods, Materials, Models, ed. by P. Heitjans, J. Kärger (Springer, Berlin Heidelberg, 2005) pp. 367–415.

    Google Scholar 

  69. Z. H. Xie, M. E. Smith, J. H. Strange, C. Jaeger: J. Phys. Condens. Matter 7, 2479 (1995).

    Article  CAS  ADS  Google Scholar 

  70. M. Masoud, P. Heitjans: Defect Diffus. Forum 237–240, 1016 (2005).

    Article  Google Scholar 

  71. A. V. Chadwick, M. J. Pooley, S. L. P. Savin: Physica status solidi C 2, 302 (2005).

    Article  CAS  ADS  Google Scholar 

  72. J. Maier: Solid State Ionics 23, 59 (1987).

    Article  CAS  Google Scholar 

  73. S. Indris, D. Bork, P. Heitjans: J. Mater. Synth. Process. 8, 245 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Heitjans, P., Indris, S., Wilkening, M. (2008). Dynamical Aspects of Nanocrystalline Ion Conductors Studied by NMR. In: Knauth, P., Schoonman, J. (eds) Nanocomposites. Electronic Materials: Science and Technology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68907-4_7

Download citation

Publish with us

Policies and ethics