Network Coding for Distributed Storage in Wireless Networks

  • Alexandros G. Dimakis
  • Kannan Ramchandran

We will address some of the problems related to storing information in multiple storage devices that are individually unreliable, and connected in a network. As an application consider a sensor network deployment in a remote and inaccessible environment where sensor nodes are taking measurements (possibly after processing) and storing data in the network, over long time periods. A data collector may appear at any location in the network and try to retrieve as much useful data as possible. Another scenario is a sensor network deployed in a time-critical or emergency situation (e.g. fire, flood, earthquake).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Acedanski, S. Deb, M. Médard, and R. Koetter. How good is random linear coding based distributed networked storage. In NetCod, 2005.Google Scholar
  2. [2]
    R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network information flow. IEEE Trans. on Information Theory, 46:1204-1216, 2000.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    D. Aldous and J. Fill. Reversible Markov Chains and Random Walks on Graphs. in preparation, 2005. (chapters available online), 2005.Google Scholar
  4. [4]
    N. Alon and J. Spencer. The Probabilistic Method. Wiley Interscience, New York, 2000.MATHCrossRefGoogle Scholar
  5. [5]
    B.A. Bash, J.W. Byers, and J. Considine. Approximately uniform random sampling in sensor networks. In Proc. of the 1st Workshop on Data Management in Sensor Networks (DMSN ’04), August 2004.Google Scholar
  6. [6]
    S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Gossip algorithms: Design, analysis and applications. In Proceedings of the 24th Conference of the IEEE Communications Society (INFOCOM 2005), 2005.Google Scholar
  7. [7]
    S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Mixing times for random walks on geometric random graphs. In Proceedings of SIAM ANALCO, 2005.Google Scholar
  8. [8]
    C. Daskalakis, A.G. Dimakis, R. M. Karp, and M. J. Wainwright. Prob-abilistic analysis of linear programming decoding. In ACM-SIAM Sym-posium on Discrete Algorithms (SODA), January 2007.Google Scholar
  9. [9]
    A.G. Dimakis, P.B. Godfrey, M.J. Wainwright, and K. Ramchandran. Network coding for distributed storage systems. In Proceedings of IEEE Infocom, 2007.Google Scholar
  10. [10]
    A.G. Dimakis, V. Prabhakaran, and K. Ramchandran. Ubiquitous Acess to Distributed Data in Large-Scale Sensor Networks through Decentralized Erasure Codes. In IEEE/ACM Int. Symposium on Information Processing in Sensor Networks (IPSN), April 2005.Google Scholar
  11. [11]
    A.G. Dimakis, V. Prabhakaran, and K. Ramchandran. Decentralized erasure codes for distributed networked storage. In IEEE Transactions on Information Theory, June 2006.Google Scholar
  12. [12]
    A.G. Dimakis, V. Prabhakaran, and K. Ramchandran. Distributed foun- tain codes for networked storage. In Proceedings of IEEE ICASSP, 2006.Google Scholar
  13. [13]
    A.G. Dimakis, A.D. Sarwate, and M.J. Wainwright. Geographic gossip: Efficient aggregation for sensor networks. In IEEE/ACM Int. Symposium on Information Processing in Sensor Networks (IPSN), 2006.Google Scholar
  14. [14]
    D. Donoho. Compressed sensing. IEEE Trans. Info Theory, 52(4):1289-1306, April 2006.CrossRefMathSciNetGoogle Scholar
  15. [15]
    C. Fragouli, J.Y. Le Boudec, and J. Widmer. Network coding: an instant primer. ACM SIGCOMM Computer Comm. Review, 2006.Google Scholar
  16. [16]
    D. Ganesan, D. Estrin, and J. Heidemann. Dimensions: Why do we need a new data handling architecture for sensor networks? In Proceedings of ACM Computer Communication Rev., Volume 33, Number 1, 2003.Google Scholar
  17. [17]
    P. Gupta and P.R. Kumar. The capacity of wireless networks. IEEE Transactions on Information Theory, 46(2):388-404, March 2000.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    T. Ho, M. Médard, R. Koetter, D. Karger, M. Effros, J. Shi, and B. Leong. A random linear network coding approach to multicast. IEEE Transac-tions on Information Theory, October 2006.Google Scholar
  19. [19]
    C. Huang, M. Chen, and J. Li. Pyramid codes: Flexible schemes to trade space for access efficiency in reliable data storage systems. In IEEE International Symposium on Network Computing and Applications (NCA 2007), July 2007.Google Scholar
  20. [20]
    J.Gao, L.J. Guibas, J. Hershberger, and L. Zhang. Fractionally cascaded information in a sensor network. In IEEE/ACM Int. Symposium on Information Processing in Sensor Networks (IPSN), 2004.Google Scholar
  21. [21]
    A. Jiang. Network coding for joint storage and transmission with mini-mum cost. In International Symposium on Information Theory (ISIT), July 2006.Google Scholar
  22. [22]
    A. Kamra, J. Feldman, V. Misra, and D. Rubenstein. Growth codes: Maximizing sensor network data persistence. Proc. of ACM SIGCOMM, 2006.Google Scholar
  23. [23]
    S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and Jon Crowcroft. XORs in the air: Practical wireless network coding. Proc. of ACM SIGCOMM, 2006.Google Scholar
  24. [24]
    R. Koetter and M. Médard. An algebraic approach to network coding. Transactions on Networking, October 2003.Google Scholar
  25. [25]
    S.-Y. R. Li, R. W. Yeung, and N. Cai. Linear network coding. IEEE Trans. on Information Theory, 49:371-381, February 2003.MATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    Y. Lin, B. Liang, and B. Li. Data persistence in large-scale sensor net- works with decentralized fountain codes. In Proceedings of IEEE Infocom, 2007.Google Scholar
  27. [27]
    M. Luby. LT codes. Proc. IEEE Foundations of Computer Science (FOCS), 2002.Google Scholar
  28. [28]
    M. Luby, M. Mitzenmacher, M.A. Shokrollahi, and D. Spielman. Im- proved low-density parity check codes using irregular graphs. IEEE Trans. Info. Theory, 47:585-598, February 2001.MATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    D.S. Lun, N. Ratnakar, M. Médard, R. Koetter, D.R. Karger, T. Ho, E. Ahmed, and F. Zhao. Minimum-cost multicast over coded packet networks. IEEE Transactions on Information Theory, June 2006.Google Scholar
  30. [30]
    S. Madden and J. Gehrke. Query processing in sensor networks. In Pervasive Computing, 3(1), 2004.Google Scholar
  31. [31]
    R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, Cambridge UK, 1995.MATHGoogle Scholar
  32. [32]
    D. Petrović, K. Ramchandran, and J. Rabaey. Overcoming untuned ra- dios in wireless networks with network coding. IEEE Transactions on Information Theory, June 2006.Google Scholar
  33. [33]
    S. S. Pradhan and K. Ramchandran. Distributed source coding using syn- dromes (DISCUS): Design and construction. IEEE Trans. Info. Theory, 49(3):626-643, 2003.MATHCrossRefMathSciNetGoogle Scholar
  34. [34]
    M. Rabbat, J. Haupt, A. Singh, and R. Nowak. Decentralized compres- sion and predistribution via randomized gossiping. In IEEE/ACM Int. Symposium on Information Processing in Sensor Networks (IPSN), 2006.Google Scholar
  35. [35]
    A. Ramamoorthy, K. Jain, P.A. Chou, and M. Effros. Separating dis-tributed source coding from network coding. In 42nd Allerton Conference on Communication, Control and Computing, 2004.Google Scholar
  36. [36]
    S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker. GHT: A Geographic Hash Table for Data Centric Storage. In Proceedings of the 1st ACM int. workshop on Wireless sensor networks and applications, 2002.Google Scholar
  37. [37]
    I.S. Reed and G. Solomon. Polynomial codes over certain finite fields. In Journal of the SIAM, 1960.Google Scholar
  38. [38]
    Sujay Sanghavi. Intermediate performance of rateless codes. Information Theory and Applications (ITA), 2007.Google Scholar
  39. [39]
    O. Savas, M. Alanyali, and V. Saligrama. Randomized sequential algo- rithms for data aggregation in wireless sensor networks. In Conference on Information Sciences and Systems (CISS), 2006.Google Scholar
  40. [40]
    A. Shokrollahi. Raptor codes. IEEE Trans. on Information Theory, June 2006.Google Scholar
  41. [41]
    W. Wang, M. Garofalakis, and K. Ramchandran. Distributed sparse ran- dom projections for refinable approximation. In IEEE/ACM Int. Sym-posium on Information Processing in Sensor Networks (IPSN), 2007.Google Scholar
  42. [42]
    Hakim Weatherspoon and John D. Kubiatowicz. Erasure coding vs. repli-cation: a quantitiative comparison. In Proc. IPTPS, 2002.Google Scholar
  43. [43]
    D. H. Wiedemann. Solving sparse linear equations over finite fields. In IEEE Transactions on Information Theory, 1986.Google Scholar
  44. [44]
    C. Wu and B. Li. Echelon: Peer-to-peer network diagnosis with network coding. Fourteenth IEEE International Workshop on Quality of Service (IWQoS), 2006.Google Scholar
  45. [45]
    Y. Wu. On constructive multi-source network coding. In International Symposium on Information Theory (ISIT), July 2006.Google Scholar
  46. [46]
    Y. Wu, V. Stankovic, Z. Xiong, and S.-Y. Kung. on practical design for joint distributed source and network coding. In Proc. 1st Workshop on Network Coding, Theory, and Applications (NetCod), April 2005.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Alexandros G. Dimakis
    • 1
  • Kannan Ramchandran
    • 1
  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of CaliforniaBerkeleyUSA

Personalised recommendations