Skip to main content

Game Theoretic Learning and Pricing for Dynamic Spectrum Access in Cognitive Radio

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Aumann, “Correlated equilibrium as an expression of Bayesian rationality,” Econometrica, vol. 55, no. 1, pp. 1–18, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  2. R. Aumann, “Subjectivity and correlation in randomized strategies,” J. Math. Econ., vol. 1, pp. 67–96, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  3. Q. Zhao, L. Tong, and A. Swami, “Decentralized cognitive MAC for dynamic spectrum access,” in Proc. IEEE DySPAN 2005, pp. 224–232, 2005.

    Google Scholar 

  4. H. Zheng and L. Cao, “Device-centric spectrum management,” in Proc. IEEE DySPAN 2005, pp. 56–65, 2005.

    Google Scholar 

  5. N. Nie and C. Comaniciu, “Adaptive channel allocation spectrum etiquette for cognitive radio networks,” in Proc. IEEE DySPAN 2005, pp. 269–278, 2005.

    Google Scholar 

  6. J. Robinson, “An iterative method of solving a game,” Ann. Math., vol. 54, pp. 298–301, 1951.

    Article  Google Scholar 

  7. J. Huang, R. Berry, and M. Honig, “Auction-based spectrum sharing,” Springer, Mobile Netw. Appl., vol. 11, no. 3, pp. 405–418, 2006.

    Article  Google Scholar 

  8. M. McHenry, “Spectrum white space measurements,” June 2003. Presented to New America Foundation Broadband Forum; Measurements by Shared Spectrum Company, Available at http://www.newamerica.net/Download Docs/pdfs/Doc File 185 1.pdf.

    Google Scholar 

  9. D. Hatfield and P. Weiser, “Property rights in spectrum: Taking the next step,” in Proc. First IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks, Nov. 2005.

    Google Scholar 

  10. L. Xu, R. Tonjes, T. Paila,W. Hansmann, M. Frank, and M. Albrecht, “DRiVE-ing to the Internet: Dynamic radio for IP services in vehicular environments,” in Proc. 25th Annual IEEE Conference on Local Computer Networks, pp. 281–289, Nov. 2000.

    Google Scholar 

  11. Y. Benkler, “Overcoming agoraphobia: Building the commons of the digitally networked environment,” Harvard J. Law Technol., Winter 1997–1998.

    Google Scholar 

  12. J. Mitola, “Cognitive radio for flexible mobile multimedia communications,” in Proc. IEEE International Workshop on Mobile Multimedia Communications, pp. 3–10, 1999.

    Google Scholar 

  13. “DARPA: the next generation (XG) program.” http://www.darpa.mil/ato/programs/xg/index.htm.

    Google Scholar 

  14. Q. Zhao and B. M. Sadler, “A survey of dynamic spectrum access: signal processing, networking, and regulatory policy,” IEEE Signal Processing Magazine, vol. 55, no. 5, pp. 2294–2309, May, 2007.

    Google Scholar 

  15. Q. Zhao, “Spectrum opportunity and interference constraint in opportunistic spectrum access,” in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Apr. 2007.

    Google Scholar 

  16. D. Cabric, S. M. Mishra, and R. W. Brodersen, “Implementation issues in spectrum sensing for cognitive radios,” in Proc. 38th. Asilomar Conference on Signals, Systems, and Computers, pp. 772–776, 2004.

    Google Scholar 

  17. W. Gardner, “Signal interception: A unifying theoretical framework for feature detection,” IEEE Trans. Commun., vol. 36, pp. 897–906, Aug. 1988.

    Article  Google Scholar 

  18. A. Sahai, N. Hoven, and R. Tandra, “Some fundamental limits on cognitive radio,” in Proc. Allerton Conference on Communication, Control, and Computing, Oct. 2004.

    Google Scholar 

  19. Q. Zhao, L. Tong, A. Swami, and Y. Chen, “Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework,” IEEE J. Select. Areas Commun.,Special Issue on Adaptive, Spectrum Agile and Cognitive Wireless Networks, Apr. 2007.

    Google Scholar 

  20. Y. Chen, Q. Zhao, and A. Swami, “Joint PHY/MAC design of opportunistic spectrum access in the presence of sensing errors,” submitted to IEEE Trans. Signal Process. in Jan. 2007.

    Google Scholar 

  21. T. Weiss and F. Jondral, “Spectrum pooling: An innovative strategy for enhancement of spectrum efficiency,” IEEE Commun. Mag., vol. 42, pp. 8–14, Mar. 2004.

    Article  Google Scholar 

  22. U. Berthold and F. K. Jondral, “Guidelines for designing OFDM overlay systems,” in Proc. First IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks, Nov. 2005.

    Google Scholar 

  23. H. Tang, “Some physical layer issues of wide-band cognitive radio systems,” in Proc. First IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks, Nov. 2005.

    Google Scholar 

  24. J. Nash, “Non-cooperative games,” Ann. Math., vol. 54, no. 2, pp. 286–295, 1951.

    Article  MathSciNet  Google Scholar 

  25. R. Nau, S. Canovas, and P. Hansen, “On the geometry of Nash equilibria and correlated equilibria,” Int. J. Game Theory, vol. 32, no. 4, pp. 443–453, 2004.

    Article  MATH  Google Scholar 

  26. S. Hart and A. Mas-Colell, “Uncoupled dynamics do not lead to Nash equilibrium,” Am. Econ. Rev., vol. 93, no. 5, pp. 1830–1836, Dec. 2003.

    Article  Google Scholar 

  27. D. Fudenberg and D. Levine, The theory of learning in games. MIT Press, 1999.

    Google Scholar 

  28. S. Hart and A. Mas-Colell, “A simple adaptive procedure leading to correlated equilibrium,” Econometrica, vol. 68, no. 5, pp. 1127–1150, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  29. S. Hart and A. Mas-Colell, “A reinforcement procedure leading to correlated equilibrium,” Economic Essays, Springer, 2001, pp. 181–200.

    Google Scholar 

  30. A. Cahn, “General procedures leading to correlated equilibria,” Int. J. Game Theory, vol. 33, no. 1, pp. 21–40, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  31. M. Benaim, J. Hofbauer, and S. Sorin, “Stochastic approximations and differential inclusions ii: Applications,” UCLA Department of Economics, Levine’s Bibliography, May 2005.

    Google Scholar 

  32. H. Kushner and G. Yin, Stochastic approximation and recursive algorithms and applications, 2nd ed. New York, NY: Springer-Verlag, 2003.

    MATH  Google Scholar 

  33. M. Benaim, J. Hofbauer, and S. Sorin, “Stochastic approximations and differential inclusions,” SIAM J. Control Optim., vol. 44, no. 1, pp. 328–348, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  34. D. Blackwell, “An analog of the minimax theorem for vector payoffs,” Pacific J. Math., vol. 6, pp. 1–8, 1956.

    MATH  MathSciNet  Google Scholar 

  35. J. Spall, Introduction to stochastic search and optimization: estimation, simulation, and control. Wiley Press, 2003.

    Google Scholar 

  36. G. Yin and V. Krishnamurthy “Least mean square algorithms with Markov regime switching limit,” IEEE Trans. Autom. Control, vol. 50, no. 5, pp. 577–593, 2005.

    Article  MathSciNet  Google Scholar 

  37. G. Yin, V. Krishnamurthy, and C. Ion, “Regime switching stochastic approximation algorithms with application to adaptive discrete stochastic optimization,” SIAM J. Optim., vol. 14, no. 4, pp. 1187–1215, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  38. A. Benveniste, M. Metivier, and P. Priouret “Adaptive Algorithms and Stochastic Approximations,” in Applications of Mathematics, vol. 22, Springer-Verlag, 1990.

    Google Scholar 

  39. S. Ethier and T. Kurtz, Markov processes–characterization and convergence. Wiley, 1986.

    Google Scholar 

  40. H. Kushner, Approximation and weak convergence methods for random processes, with applications to stochastic systems theory. Cambridge, MA: MIT Press, 1984.

    MATH  Google Scholar 

  41. M. Maskery and V. Krishnamurthy, “Decentralized algorithms for netcentric force protection against anti-ship missiles,” (preprint) IEEE Trans. Aerospace Electr. Syst., 2007.

    Google Scholar 

  42. M. Maskery and V. Krishnamurthy, “Network enabled missile deflection: Games and correlated equilibrium,” (preprint), IEEE Trans. Aerospace Electr. Syst., 2007.

    Google Scholar 

Additional Reading

  1. S. Sankaranarayanan, P. Papadimitratos, A. Mishra, and S. Hershey, “A bandwidth sharing approach to improve licensed spectrum utilization,” in Proc. First IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), 2005.

    Google Scholar 

  2. Y. Chen, Q. Zhao, and A. Swami, “Joint design and separation principle for opportunistic spectrum access,” in IEEE Asilomar Conference on Signals, Systems, and Computers, 2006.

    Google Scholar 

  3. H. Zheng and C. Peng, “Collaboration and fairness in opportunistic spectrum access,” in Proc. IEEE International Conference on Communications (ICC), 2005.

    Google Scholar 

  4. W. Wang and X. Liu, “List-coloring based channel allocation for open-spectrum wireless networks,” in Proc. IEEE VTC, 2005.

    Google Scholar 

  5. M. Steenstrup, “Opportunistic use of radio-frequency spectrum: A network perspective,” in Proc. First IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005.

    Google Scholar 

  6. M. Maskery and V. Krishnamurthy, “Decentralized activation in a ZigBee-enabled unattended ground sensor network: A correlated equilibrium game theoretic analysis,” submitted to IEEE/ACM Trans. Netw., 2006.

    Google Scholar 

  7. V. Krishnamurthy, G. Yin, and M. Maskery “Stochastic approximation based tracking of correlated equilibria for game-theoretic reconfigurable sensor network deployment,” in Proc. IEEE Conference on Decision and Control, 2006.

    Google Scholar 

  8. V. Krishnamurthy, M. Maskery, and M. Hanh Ngo, “Scalable sensor activation and transmission scheduling in sensor networks over Markovian fading channels,” in Wireless sensor networks. Signal processing and communications perspectives, Wiley Press, 2007.

    Google Scholar 

  9. M. Maskery and V. Krishnamurthy, “Decentralized activation in a ZigBee-enabled unattended ground sensor network: A correlated equilibrium game theoretic analysis,” in Proc. IEEE International Conference on Communications, 2007.

    Google Scholar 

  10. M. Maskery and V. Krishnamurthy, “Decentralized management of sensors in a multiattribute environment under weak network congestion,” in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Maskery, M., Krishnamurthy, V., Zhao, Q. (2007). Game Theoretic Learning and Pricing for Dynamic Spectrum Access in Cognitive Radio. In: Hossain, E., Bhargava, V. (eds) Cognitive Wireless Communication Networks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68832-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68832-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-68830-5

  • Online ISBN: 978-0-387-68832-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics