Skip to main content

Abstract

Over the past one decade, several cell component materials and their combinations have been attempted to match with the appropriate requirements of solid oxide fuel cells (SOFCs). A large number of cell component materials with superior properties have been developed. The general observation is that most of the technological challenges associated with the development of SOFCs are related to materials science. For example, development of superior oxide-ion conductor electrolyte as well as cost-effective fabrication processes involves tremendous materials challenges. The improvements of the materials properties mostly include electrical conductivity, catalytic activity, stability and thermal expansion coefficient. Of late, significant improvements have also been made in the area of fast oxide-ion conductors. These oxide-ion conductors show extraordinarily high electrical conductivity compared to traditional zirconia-electrolyte. This helps SOFC not only to operate at lower temperature but also minimizes the polarization losses which is the key factor for a high performance cell (high power density or power per unit area). The differences between the operating cell voltage and the expected reversible voltage is termed as polarization or overpotential. More clear understanding of the fundamentals of these materials has been published by several groups through numerous articles (Steele 1993, 2000, Mogensen et al. 2000, Goodenough 2003, Singhal et al. 2003, Stöver et al. 2003, Kilner 2005). Reduction of electrolyte thickness also has tremendous advantages particularly from the technological point of view. Lower the electrolyte thickness lower is the internal resistance of the electrolyte, which in turn helps the cell to operate at a considerably lower temperature. The current research trend undoubtedly is more focused towards the development of high performance SOFC at low temperature (650°C and below). For making such high performance cell, inter facial contacts between two adjacent cell components is very critical. Therefore, an excellent compatibility (connectivity) between electrolyte and electrodes, and also with the interconnect (while stacking) is absolutely necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, H.U. (1992), Review of p-type doped perovskite materials for SOFC and other applications, Solid State Ionic, 52, 33–41.

    Article  CAS  Google Scholar 

  • Anderson, H.U., Tai, L.W., Chen, C.C., Nasrallah, M.M. and Huebner, W. (1995), Review of the structural and electrical properties of the (LaSr)(CoFe)O3 system, in: Proceedings of the Forth International Symposium on Solid Oxide Fuel Cells (SOFC-IV), Eds. M. Dokiya, O. Yamamoto, H. Tagawa and S.C. Singhal. The Electrochemical Society Proceedings Series, Pennington, NJ, p. 375–384.

    Google Scholar 

  • Anderson, H.U. and Tietz, F. (2003), Interconnects, in: High Temperature Solid Oxide Fuel Cells: Fundamentals, design and Applications, Eds. S.C. Singhal and K. Kendall, Elsevier, UK, pp. 173–195.

    Google Scholar 

  • Arachi, A., Sakai, H., Yamamoto, O., Takeda, Y. and Imanishi, N. (1999), Electrical conductivity of the ZrO2-Ln2O3 (Ln=lanthanides) system, Solid State Ionics, 121, 133–139.

    Article  CAS  Google Scholar 

  • Armstrong, T.R., Hardy, J.S., Simmer, S.P. and Stevenson, J.W. (1999), Optimizing lanthanum chromite interconnects for solid oxide fuel cells, Proceedings of the Sixth International Symposium on Solid Oxide Fuel Cells (SOFC-VI), Eds. S.C. Singhal and M. Dokiya. The Electrochemical Society Proceedings Series, Pennington, NJ, pp. 706–715.

    Google Scholar 

  • Armstrong, T.J., Homel, M.A. and Virkar, A.V. (2003), Evaluation of metallic interconnects for use in intermediate temperature SOFC, Eigth International Symposium on Solid Oxide Fuel Cells, Eds. S.C. Singhal and M. Dokiya, pp. 841–850. The Electrochemical Society, Pennington, NJ, USA.

    Google Scholar 

  • Badwal, S.P.S. and Foger, K. (1997), Materials for Solid Oxide Fuel Cells, Materials Forum, 21, 187–224.

    CAS  Google Scholar 

  • Badwal, S.P.S. (1992), Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity, Solid State Ionics, 52, 23–32.

    Article  CAS  Google Scholar 

  • Badwal, S.P.S., Ciaachi, F.T. and Milosevic, D. (2000), Scandia-zirconia electrolytes for intermediate temperature solid oxide fuel cells, Solid State Ionics, 136–137, 91–99.

    Article  Google Scholar 

  • Bahadur, D., Lahl, N., Singheiser, L. and Hilpert, K. (2004), Influence of Nucleating agents on chemical interaction of MgO-Al2O3-SiO2-B2O3 glass sealant with components of SOFCs, J. Electrochem. Soc., 151, A558–A562.

    Article  CAS  Google Scholar 

  • Bance, P., Brandon, N.P., Grivan, B., Holbeche, P., O’Dea, S. and Steele, B.C.H. (2004), Spinning-out a fuel cell company from a UK University—2 years of progress at Ceres Power, J. Power Sources, 131, 86–90.

    Article  CAS  Google Scholar 

  • Bansal, N.P. and Gamble, E.A. (2005), Crystallization kinetics of a SOFC seal glass by DTA, J. Power Sources, Available online.

    Google Scholar 

  • Barford, R., Koch, S., Liu, Y.-L, Larsen, P.H. and Hendriksen, P.V. (2003), Long-term tests of DK-SOFC cells, Eighth International Symposium on Solid Oxide Fuel Cells, Eds. S.C. Singhal and M. Dokiya, pp. 1158–1166. The Electrochemical Society, Pennington, NJ, USA.

    Google Scholar 

  • Barnett, S.A. (2003), Direct hydrocarbon SOFCs, Handbook of Fuel Cells — Fundamentals, Technology and Applications, Edited by W. Vielstich, H. A. Gasteiger and A. Lamm, Volume 4: Fuel Cell Technology and Applications, pp. 1098–1108, John Wiley & Sons, Ltd.

    Google Scholar 

  • Basu, R.N., Randall, C.A. and Mayo, M.J. (2001), Fabrication of dense zirconia electrolyte films for tubular solid oxide fuel cells by electrophoretic deposition, J. Am. Ceram. Soc. 84, 33–40.

    CAS  Google Scholar 

  • Basu, R.N., Altin, O., Mayo, M.J., Randall, C.A. and Eser, S. (2001), Pyrolytic carbon deposition on porous cathode tubes and its use as an interlayer for solid oxide fuel cell zirconia electrolyte fabrication, J. Electrochem. Soc., 148, A506–A512.

    Article  CAS  Google Scholar 

  • Basu, R.N., Tietz, F., Teller, O., Wessel, E., Buchkremer, H.P. and Stöver, D. (2003), LaNi0.6Fe0.4O3 as a cathode contact material for solid oxide fuel cells, J. Solid State Electrochem., 7, 416–420.

    Article  CAS  Google Scholar 

  • Basu, R.N., Tietz, F., Wessel, E. and Stöver, D. (2004), Interface reactions during co-firing of solid oxide fuel cell components, J. Mater. Process. Technol., 147, 85–89.

    Article  CAS  Google Scholar 

  • Basu, R.N., Blass, G., Buchkremer, H.P., Stöver, D., Tietz, F., Wessel, E. and Vinke, I.C. (2005), Simplified processing of anode-supported thin film planar solid oxide fuel cells, J. Euro. Ceram. Soc., 25, 463–471.

    Article  CAS  Google Scholar 

  • Battle, P.D., Catlow, C.R.A., Drennan, J. and Murray, A.D. (1983), J. Phys. C: Solid State Phys. 16, L561, The structural properties of the oxygen conducting δ-phase of Bi2O3.

    Article  CAS  Google Scholar 

  • Baur, E. and Preis, H. (1937), Über Brennstoffketten mit Festkörpern (On fuel chains with solids), Z Elektrochem., 43, 727–732.

    CAS  Google Scholar 

  • Beaudet-Savignat, S., Lima, A., Brathet, C. and Henry, A. (2003), Elaboration and ionic conduction of apatite-type rare-earth oxides, Proc. of the Eighth International Symposium on Solid Oxide Fuel Cells (SOFC-VIII), Eds. S.C. Singhal and M. Dokiya, pp. 372–378.

    Google Scholar 

  • Boivin, J.C. and Mairesse, G. (1998), Recent material developments in fast oxide ion conductors, Chem. Mater. 10, 2870–2888.

    Article  CAS  Google Scholar 

  • Bonanos, N., Knight, K.S. and Ellis, B. (1995), Perovskite solid electrolytes: Structure, transport properties and fuel cell applications, Solid State Ionics, 79, 161–170.

    Article  CAS  Google Scholar 

  • Bram, M., Brünings, S.E., Meschke, F., Meulenberg, W.A., Buchkremer, H.P., Steinbrech, R.W. and Stöver, D. (2001), Application of metallic gaskets in SOFC stacks, Proc. Seventh International Symposium on Solid Oxide Fuel Cells (SOFC-VII), Eds. H. Yokokawa and S.C. Singhal, pp. 875–884, The Electrochemical Soc., Pennington, NJ, USA.

    Google Scholar 

  • Bram, M., Reckers, S., Drinovac, P., Monch, J., Steinbrech, R.W., Buchkremer, H.P. and Stöver, D. (2004), Deformation behavior and leakage tests of alternating sealing materials for SOFCs stacks, J. Power Sources, 138, 111–119.

    Article  CAS  Google Scholar 

  • Brisse, A., Barthet, C., Sauvet, A.L., Beaudet-Savignat, S. and Fouletier, J., Study of a new solid oxide fuel cell operated at intermediate temperature 650°–700°C, Ninth International Symposium on Solid Oxide Fuel Cells (SOFC-IX), Eds. S.C. Singhal and J. Mizusaki, pp. 363–370. The Electrochemical Soc., Inc., Pennington, NJ, USA.

    Google Scholar 

  • Brown, M., Primdahl, S. Mogensen, M. (2000), Structure/performance relations for Ni/yttria-stabilized zirconia anodes for solid oxide fuel cells, J. Electrochem. Soc. 147, 475–485.

    Article  CAS  Google Scholar 

  • Buchkremer, H.P., Diekmann, U. and Stöver, D. (1996), Components manufacturing and stack integration of an anode supported planar SOFC systems, Proceedings of the Second European Solid Oxide Fuel Cell Forum, Vol. 1, Ed. B. Thorstensen. Göttingen, Germany, pp. 221–228.

    Google Scholar 

  • Buchkremer, H.P., Diekmann, U., de Haart, L.G., Kabs, H., Stimming, U. and Stöver, D. (1997), Advances in the anode-supported planar SOFC technology, Proc. of the Fifth International Symposium on Solid Oxide Fuel Cells (SOFC-V), Eds. U. Stimming, Singhal, S.C., Tagawa, H. and Lehnert, W. pp. 160–170, The Electrochemical Soc. Inc., Pennington, NJ, USA.

    Google Scholar 

  • Chakraborty, A. (1995), Preparation and characterization in pure and substituted LaMnO3 for use as cathode material for solid oxide fuel cells, PhD Thesis, Jadavpur University, Calcutta, India.

    Google Scholar 

  • Chakraborty, A., Basu, R.N. and Maiti, H.S. (2000), Low temperature sintering of La(Ca)CrO3 prepared by an autoignition process, Mater. Letts., 45, 162–166.

    Article  CAS  Google Scholar 

  • Chou, Y.S. and Stevenson, J.W. (2002), Thermal cycling and degradation mechanisms of compressive mica-based seals for SOFCs, J. of Power Sources, 112, 376–83.

    Article  CAS  Google Scholar 

  • Chou, Y.S., Stevenson, J.W. and Chick, L.A. (2002), Ultra-low leak rate of hybrid compressive mica-seals for SOFCs, J. Power Sources, 112, 130–136.

    Article  CAS  Google Scholar 

  • Chou, Y.S. and Stevenson, J.W. (2003), Phlogopite mica-based compressive seals for SOFCs: effect of mica thickness, J. Power Sources, 124, 473–78

    Article  CAS  Google Scholar 

  • Costamagna, P., Costa, P. and Antonucci, V. (1998), Micro-modeling of solid oxide fuel cell electrodes, Electrochem. Acta, 43, 375–394.

    Article  CAS  Google Scholar 

  • Choudhary, C.B., Maiti, H.S. and Subbarao, E.C. (1980), Solid Electrolytes and their Applications, Ed. E.C. Subbarao, Plenum Press, pp. 34–49.

    Google Scholar 

  • Dees, D.W., Claar, T.D., Easier, T.E., Fee, D.C. and Mrazek, F.C. (1987), Conductivity of porous Ni/ZrO2-Y2O3 cermets, J. Electrochem. Soc., 134, 2141–2146.

    Article  CAS  Google Scholar 

  • de Jonghe, L.C., Jacobson, C.P. and Visco, S.J. (2003), Supported electrolyte thin film synthesis of solid oxide fuel cells, Annu. Rev. Mater. Res., 33, 169–182.

    Article  CAS  Google Scholar 

  • de Souza, S., Visco, S.J. and De Jonghe, L.C. (1997), Thin-film solid oxide fuel cell with high performance at low temperature, Solid State Ionics, 98, 57–61.

    Article  Google Scholar 

  • Deng, X. and Petric, A. (1999), A solution to anode-electrolyte reaction in lanthanum gallate fuel cells, Processing and characterization of electrochemical materials and devices, pp. 87–94, Eds. P.N. Kumta, R. Manthiram, S.K. Sundaram and Y.M. Chiang, American Ceramic Society, Westerville, OH, USA.

    Google Scholar 

  • Divisek, J., Wilkenhöner, R. and Volfkovich, Y. (1999), Structure investigations of SOFC anode cermets — Part I: Porosity investigations. J. Appl. Electrochem. 29, 153–163.

    Article  CAS  Google Scholar 

  • Dokiya (2002), SOFC system and technology, Solid State Ionics, 152–153, 383–392.

    Article  Google Scholar 

  • Drennan, J., Zelizko, V, Hay, D., Ciacchi, F., Rajendran, T., Rajendran, S. and Badwal, S.P.S. (1997), Characterization, conductivity and mechanical properties of the oxygenion conductor, La0.9Sr0.1Ga0.8Mg0.2O3−x, J. Mater. Chem. 7, 79–83.

    Article  CAS  Google Scholar 

  • Duquette, J. and Petric, A. (2004), Silver wire seal design for planar solid oxide fuel cell stack, J. Power Sources, 137, 71–75.

    CAS  Google Scholar 

  • Duquette, J., Basu, R.N., Deng, X., Zhitomirsky, I. and Petric, A. (2005), Fabrication of cathode supported SOFC by colloidal processing, Ninth International Symposium on Solid Oxide Fuel Cells (SOFC-IX), Eds. S.C. Singhal and J. Mizusaki, pp. 482–488. The Electrochemical Soc., Inc., Pennington, NJ, USA.

    Google Scholar 

  • Dyer, C.K. (1990), A novel thin film electrochemical device for energy conversion, Nature, 343, 547–548.

    Article  CAS  Google Scholar 

  • Eichler, K., Solow, G., Otschik, P. and Schaffrath, W. (1999), BAS (BaO-Al2O3-SiO2) glasses for high temperature applications, J. Euro. Ceram. Society., 19, 1101–1104.

    Article  CAS  Google Scholar 

  • Feng, M. and Goodenough, J.B. (1994), A superior oxide-ion electrolyte. Euro. J. Solid State Inorg. Chem., 31, 663–672.

    CAS  Google Scholar 

  • Fergus, J.W. (2004), Lanthanum chromite-based materials for solid oxide fuel cell interconnects, Solid State Ionics, 171, 1–15.

    Article  CAS  Google Scholar 

  • Fergus, J.W. (2005), Metallic interconnects for solid oxide fuel cells, Mater. Sci. & Engr., A397, 271–283.

    Article  CAS  Google Scholar 

  • Fergus, J.W. (2005), Sealants for solid oxide fuel cells, J. Power Sources, 147, 46–57.

    Article  CAS  Google Scholar 

  • Fleig, J., Kreuer, K.D. and Maier, J. (2003), Ceramic Fuel Cells, Handbook of Advanced Ceramics, Editor-in-Chief, S. Sømiya, Vol. II, pp. 59–105.

    Google Scholar 

  • Fleig, J. (2002), On the width of the electrochemically active region in mixed conducting solid oxide fuel cell cathodes, J. Power Sources, 105, 228–238.

    Article  CAS  Google Scholar 

  • Fu, Q., Tietz, F. and Stöver, D. (2005), Electrical conductivity and redox behaviour of yttrium-substituted SrTiO3: Dependence on preparation and processing procedures, Ninth International Symposium on Solid Oxide Fuel Cells (SOFC-IX). Eds. S.C. Singhal and J. Mizusaki, pp. 1417–1428. The Electrochemical Soc. Inc., Pennington, NJ, USA.

    Google Scholar 

  • Galasso, F.S. (1969), Structure, properties and preparation of perovskite-type compounds, Pergaman Press, Oxford.

    Google Scholar 

  • Gao, W. and Sammes, N.M. (1999), An Introduction to Electronic and ionic Materials, World Scientific, Singapore.

    Google Scholar 

  • Ghosh, D., Wang, G., Brule, R., Tang, E. and Huang, P. (1999), Performance of anode supported planar SOFC cells, Proc. of the Sixth International Symposium on Solid Oxide Fuel Cells (SOFC-VI), Eds., S.C. Singhal and M. Dokiya, pp. 822–829. The Electrochemical Society Inc., Pennington, NJ, USA.

    Google Scholar 

  • Gödickemeier, M. and Gauckler, L.J. (1998), Engineering of solid oxide fuel cells with ceria-based electrolytes. J. Electrochem. Soc., 145, 414–421.

    Article  Google Scholar 

  • Goodenough, J.B. (2003), Oxide-ion electrolytes, Annu. Rev. Mater. Res., 33, 91–228.

    Article  CAS  Google Scholar 

  • Gorte, R.J., Park, S., Vohs, J.M. and Wang, C. (2000), Anodes for direct oxidation of dry hydrocarbons in a solid oxide fuel cell, Adv. Mater., 12, 1465–1469.

    Article  CAS  Google Scholar 

  • Gorte, R.J. and Vohs, J.M. (2003), Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons, Journal of Catalysis, 216, 477–486.

    Article  CAS  Google Scholar 

  • Haile, S.M., Fuel cell materials and components, Acta Materialia, 51, 5981–6000 (2003).

    Article  CAS  Google Scholar 

  • Hannappel, V.A.C., Shemet, V., Vinke, I.C. and Quadakkers, W.J. (2005), A novel method to evaluate the suitability of glass sealant-alloy combinations under SOFC stack conditions, J. Power Sources., 141, 102–107.

    Article  CAS  Google Scholar 

  • Hannappel, V.A.C., Shemet, V., Gross, S.M., Koppitz, TH., Zahid, M. and Quadakkers, W.J. (2005), Behaviour of various glass-ceramic sealants with ferritic steels under simulated SOFC stack conditions, J. Power Sources., Available online on 5th April.

    Google Scholar 

  • Hibino, T., Ushiki, K. and Kuwahara, Y. (1996), New concept of simplifying SOFC system, Solid State Ionics, 91, 69–74.

    Article  CAS  Google Scholar 

  • Hibino, T., Hashimoto, A., Inoue, T., Tokuno, J., Yoshida, S. and Sano, M. (2000), A low-operating temperature solid oxide fuel cell in hydrogen-air mixtures, Science, 288, 2031–2033.

    Article  CAS  Google Scholar 

  • Hibino, T., Hasahimoto, A., Yano, M., Sizuki, M., Yoshida, S. and Sano, S. (2002), High performance anodes for SOFCs operating in methane-air mixture at reduced tempertures, J. Electrochem. Soc. 149, A133–A136.

    Article  CAS  Google Scholar 

  • Higgins, S., Sammes, N. and Smirnova, A. (2005), Proton-conductive electrolyte materials for protonic ceramic fuel cells (PCFCs), Proc. of the ninth international symposium on solid oxide fuel cells (SOFC-IX), Eds., S.C. Singhal and J. Mizusaki, Vol. 2, pp. 1149–1155. The Electrochemical Society Inc., Pennington, NJ, USA.

    Google Scholar 

  • Hilpert, K., Quadakkers, W.J. and Singheiser, L. (2003), Interconnects, Handbook of Fuel Cells: Fundamentals, Technology and Applications, Eds. W. Vielstich, H.A. Gasteiger and A. Lamm. Vol. 4: Fuel Cell Technology and Applications, pp. 1037–54.

    Google Scholar 

  • Herbstritt, D., Warga, C., Weber, A. and Ivers-Tiffee (2001), Long-term stability of SOFC with Sc-doped zirconia electrolyte, Proc. Seventh International Symposium on Solid Oxide Fuel Cells (SOFC-VII), Eds. H. Yokokawa and S.C. Singhal, pp. 349–357, The Electrochemical Soc., Pennington, NJ, USA.

    Google Scholar 

  • Horita, T., Xiong, Y., Yamaji, K., Sakai, N. and Yokokawa, H. (2002), Chracterization of Fe-Cr alloys for reduced operation temperature SOFCs, Fuel Cells, 2, 189–194.

    Article  CAS  Google Scholar 

  • Horvat, M., Samardzija, Z., Hole, J. and Bernik, S. (1999), Subsolids phase equilibria in the La2O3-Ga2O3-CeO2 system, J. Mater. Res., 14, 4460–4462.

    Google Scholar 

  • Huang, H., Nakamura, M., Su, P., Fasching, R., Saito, Y. and Prinz, F. (2005), MEMS fabrication and performances of nano-thin solid oxide fuel cell, Extended abstract, Electrochemical Society 208th Meeting, October 16–21, Los Angeles, California.

    Google Scholar 

  • Huang, K., Feng, M. and Goodenough, J.B. and Milliken, C. (1997), Electrode performance test on single ceramic fuel cells using electrolyte Sr-and Mg-doped LaGaO3, J. Eletrochem. Soc., 144, 3620–3624.

    Article  CAS  Google Scholar 

  • Huang, K., Feng, M. and Goodenough, J.B. (1998), Synthesis and electrical properties of dense Ce0.9Cd0.1O1.95 ceramics. J. Am. Ceram. Soc., 81, 357–362.

    CAS  Google Scholar 

  • Huang, K., Wan, J-W and Goodenough, J.B. (2001), Increasing power density of LSGM-based solid oxide fuel cells using new anode materials, J. Electrochem. Soc., 148, A788–A794.

    Article  CAS  Google Scholar 

  • Huang, P. and Petric, A. (1996), Superior oxygen ion conductivity of lanthanum gallate doped with strontium and magnesium, J. Electrochem. Soc., 143, 1644–1648.

    Article  CAS  Google Scholar 

  • Hui, S. and Petric, A. (2002), Electrical conductivity of yttria doped SrTiO3: Influence of transition metal additives, Mater. Res. Bull., 37, 1215–1231.

    Article  CAS  Google Scholar 

  • Hui, S. and Petric, A. (2002), Electrical properties of yttrium-doped strontium titanate under reducing condition, J. Electrochem. Soc., 149, J1–J10.

    Article  CAS  Google Scholar 

  • Isenberg, A.O. (1981), Energy conversion via solid oxide electrolyte electrochemical cells at high temperatures, Solid State Ionics, 3/4, 431–437.

    Article  Google Scholar 

  • Ishihara, T., Matsuda, H. and Takita, Y. (1994), Doped LaGaO3 perovskite-type oxide as a new oxide ion conductor, J. Am. Chem. Soc. 116, 3801–3803.

    Article  CAS  Google Scholar 

  • Ishihara, T., Furutani, H., Honda, M., Yamada, T., Shibayama, T., Akbay, T., Sakai, N., Yokokawa, H. and Takita, Y. (1999), Improved oxide ion conductivity in La0.8Sr0.2Ga0.8Mg0.2O3 by doping Co, Chem. Mater., 11, 2081–2088.

    Article  CAS  Google Scholar 

  • Ishihara, T., Sato, K. and Takita, Y. (1996), Electrophoretic deposition of Y2O3-stabilized ZrO2 electrolyte films in solid oxide fuel cells, J. Am. Ceram. Soc., 79, 913–919.

    Article  CAS  Google Scholar 

  • Ishihara, T., Novel electrolytes operating at 400-600°C (2003), Handbook of Fuel Cells — Fundamentals, Technology and Applications, Edited by W. Vielstich, H.A. Gasteiger and A. Lamm, Volume 4: Fuel Cell Technology and Applications, pp. 1109–1122, John Wiley & Sons Ltd.

    Google Scholar 

  • Ishiahara, T., Sammes, N.M. and Yamamoto, O. (2003), Electrolytes, in: High Temperature Solid Oxide Fuel Cells: Fundamentals, design and Applications, Eds. S.C. Singhal and K. Kendall, Elsevier, UK, pp. 83–117.

    Google Scholar 

  • Iwahara, H., Uchida, H. and Tanaka, S. (1983), High temperature type proton conductor based on SrCeO3 and its application to solid electrolyte fuel cells, Solid State Ionics, 9–10, 1021–1025.

    Article  Google Scholar 

  • Iwahara, H., Uchida, H., Ono, K. and Ogaki, K. (1988), Proton conduction in sintered oxides based on BaCeO3, J. Electrochem. Soc., 135, 529–533.

    Article  CAS  Google Scholar 

  • Jiang, S.P., Christiansen, L., Hugan, B. and Foger, K. (2001), Effect of glass sealant materials on microstructure and performance of Sr-doped LaMnO3, J. Mater. Sci., 20, 695–97.

    CAS  Google Scholar 

  • Jiang, Y. and Virkar, A.V. (2001), A high performance, anode-supported solid oxide fuel cell operating on direct alcohol, J. Electrochem. Soc., 148, A706–A709.

    Article  CAS  Google Scholar 

  • Jiang, Y. and Virkar, A.V. (2003), Fuel composition and diluent Effect on gas transport and performance of anode-supported SOFCs, J. Electrochem. Soc., 150, A942–A951.

    Article  CAS  Google Scholar 

  • Jørgensen, M.J., Holtappels, P. and Appel, C.C. (2000), Durability test of SOFC cathodes, J. Appl. Electrochem., 30, 411–418.

    Article  Google Scholar 

  • Joshi, A.V., Steppan, J.J., Taylor, D.M. and Elangovan, S. (2004), Solid electrolyte materials, devices, and applications, J. Electroceramics, 13, 619–625.

    Article  CAS  Google Scholar 

  • Kendall, K., Minh, N.Q. and Singhal, S.C. (2003), Cell and stack design, High Temperature Solid Oxide fuel Cells: Fundamentals, Design and Applications, Eds.: S.C. Singhal and K. Kendall, Elsevier, UK, p. 197–228.

    Google Scholar 

  • Kilner, J.A. (2005), Brian Steele’s contributions to solid state ionics, Ninth International Symposium on Solid Oxide Fuel Cells (SOFC-IX), Eds. S.C. Singhal and J. Mizusaki, pp. 13–19. The Electrochemical Soc. Inc., Pennington, NJ, USA.

    Google Scholar 

  • Kim, J.-W, Virkar, A.V., Fung, K.-Z., Mehta, K. and Singhal, S.C. (1999), Polarization effects in intermediate temperature, anode-supported solid oxide fuel cells, J. Electrochem. Soc. 146, 69–78.

    Article  CAS  Google Scholar 

  • Kramer, S. Spears, M. and Tuller, H.L. (1994), Conduction in titanate pyrochlores — role of dopants, Solid State Ionics, 72: 59–66.

    Article  CAS  Google Scholar 

  • Kreuer, K.D. (2003), Proton conducting oxides, Ann. Rev. Mater. Res., 33, 333–360.

    Article  CAS  Google Scholar 

  • Kuo, J.H., Anderson, H.U. and Sparlin, D.M. (1989), Oxidation reduction behavior of undoped and Sr-doped LaMnO3 nonstoichiometry and defect structure, J. Solid State Chem., 83, 52–60.

    Article  CAS  Google Scholar 

  • Kuo, J.H., Anderson, H.U. and Sparlin, D.M. (1990), Oxidation reduction behavior of undoped and Sr-doped LaMnO3 defect structure, electrical conductivity, and thermoelectric power, J. Solid State Chem., 87, 55–63.

    Article  CAS  Google Scholar 

  • Larsen, F.H. and James, P.F. (1998), Chemical stability of MgO/CaO/Cr2O3-Al2O3-B2O3-phosphate glasses in SOFC environment, J. Mater. Sci., 33, 2499–2507.

    Article  CAS  Google Scholar 

  • Larsen, P.H. (1999), Sealing Materials for Solid Oxide Fuel Cells, Ph.D. Thesis (Sheffield University, UK), Risø National Laboratory, Roskilde, Denmark.

    Google Scholar 

  • Ley, K.L., Krumplet, M., Kumar, R., Meiser, J.H. and Bloom, I. (1996), Glass-ceramic sealant for SOFC: part-I, physical properties, J. Mater. Res., 11, 1489–1493.

    Article  CAS  Google Scholar 

  • Lu, C., Worrell, W.L., Gorte, R.J. and Vohs, J.M. (2003), SOFCs for direct hydrocarbon fuels with samaria-doped ceria electrolyte, J. Electrochem. Soc., 150, A354–A358.

    Article  CAS  Google Scholar 

  • Liu, Y., Zhu, S. and Liu, M. (2004), Novel nanostructured electrodes for solid oxide fuel cells fabricated by combustion chemical vapor deposition, Adv. Mater., 16, 256–260.

    Article  CAS  Google Scholar 

  • Ma, G., Shimura, T. and Iwahara, H. (1999), Simultaneous doping with La3+ and Y3+ for Ba2+-and Ce4+-sites in BaCeO3 and the ionic conduction, Solid State Ionics, 120, 51–60.

    Article  CAS  Google Scholar 

  • Majewski, P., Rozumek, M. and Aldinger, F. (2001), Phase diagram studies in the systems La2O3-SrO-MgO-Ga2O3 at 1350–1400°C in air with emphasis on Sr and Mg substituted LaGaO3, J. Alloys Compounds, 329, 253.

    Article  CAS  Google Scholar 

  • Magnone, E., Traversa, E. and Miyayama, M. (2005), Synthesis and characterization of strontium and iron-doped lanthanum cobaltite nanocrystaline powders for single chamber solid oxide fuel cells, Ninth International Symposium on Solid Oxide Fuel Cells (SOFC-IX), Eds. S.C. Singhal and J. Mizusaki, pp. 1617–1626. The Electrochemical Soc. Inc., Pennington, NJ, USA.

    Google Scholar 

  • Marina, O.A., Canfield, N.L. and Stevenson, J.W. (2002), Thermal, electrical, and electrochemical properties of lanthanum-doped strontium titanate, Solid State Ionics, 149, 21–28.

    Article  CAS  Google Scholar 

  • McEvoy, A. (2003), Anodes, in: High Temperature Solid Oxide Fuel Cells: Fundamentals, design and Applications, Eds. S.C. Singhal and K. Kendall, Elsevier, UK, pp. 149–171.

    Google Scholar 

  • Menzler, N.H., Bram, M., Buchkremer, H.P. and Stöver, D. (2003), Development of a gastight sealing material for ceramic components, J. Euro. Ceram. Soc., 23, 445–454.

    Article  CAS  Google Scholar 

  • Menzler, N.H., Sebold, D., Zahid, M., Gross, S.M. and Koppitz, T. (2005), Interaction of metallic SOFC interconnect materials with glass-ceramic sealant in various atmospheres, J. of Power Sources., Available online.

    Google Scholar 

  • Meyer, M., Nicoloso, N. and Jaenisch, V. (1997), Percolation model for the anomalous conductivity of fluorite-related oxides, Phys. Rev. B, 56, 5961–66, 1997.

    Article  CAS  Google Scholar 

  • Minh, N.Q. and Takahashi, T. (1995), Science and Technology of Ceramic Fuel Cells, Elsevier, Amsterdam.

    Google Scholar 

  • Minh, N.Q. (2004), Solid Oxide fuel cell technology — features and applications, Solid State Ionics, 174, 271–277.

    Article  CAS  Google Scholar 

  • Mogensen, M. and Skaarup, S. (1996), Kinetic and geometric aspects of solid oxide fuel cell electrodes, Solid State Ionics, 86–88, 1151–1160.

    Article  Google Scholar 

  • Mogensen, M., Sammes, N.M. and Tompsett, G.A. (2000), Physical, chemical and electrochemical properties of pure and doped ceria, Solid State Ionics, 129: 63–94.

    Article  CAS  Google Scholar 

  • Mogensen, M., Primdahl, S., Jørgensen, M.J. and Bagger, C. (2000), Composite Electrodes in Solid Oxide Fuel Cells and Similar Solid State Devices, J. Electroceramics, 5:2, 141–152.

    Article  CAS  Google Scholar 

  • Moos, R. and Härdtl, K.H. (1997), Defect chemistry of donor-doped and undoped strontium titanate ceramics between 1000° to 1400°C, J. Am. Ceram. Soc., 80, 2549–2562.

    Article  CAS  Google Scholar 

  • Mori, M., Yamamoto, T., Itoh, H., Abe, T., Yamamoto, S., Takeda, Y. and Yamamoto, O. (1994), Electrical conductivity of alkaline earth metal (Mg, Ca, Sr) doped lanthanum chromites, First European Solid Oxide fuel Cells Forum, Ed. U. Bossel, pp. 465–473, Lucerne, Switzerland.

    Google Scholar 

  • Mori, M., Yamamoto, T., Itoh, H. and Watanabe, T. (1997), Compatibility of alkaline earth metal (Mg, Ca, Sr)-doped lanthanum chromites as separators in planar-type high-temperature solid oxide fuel cells, J. Mater. Sci., 32, 2423–2431.

    Article  CAS  Google Scholar 

  • Mori, M., Hiei, Y. and Yamamoto, T. (2001), Control of the thermal expansion of strontium-doped lanthanum chromite perovskites by B-site doping for high temperature solid oxide fuel cell separators, J. Am. Ceram. Soc., 84, 781–86.

    Article  CAS  Google Scholar 

  • Murray, E.P, Tsai, T. and Barnett, S.A. (1999), A direct-methane fuel cell with a ceria-based anode, Nature, 400, 649–651.

    Article  CAS  Google Scholar 

  • Nakayama, S. and Sakamoto, M. (2001), Ionic conductivities of apatite-type Lax(GeO4)6O1.5x−12 (x = 8−9.33) polycrystals, J. Mater. Sci. Letts., 20, 1627–1629.

    Article  CAS  Google Scholar 

  • Nakayama, S. and Sakamoto, M. (1998), Electrical properties of new type high oxide ionic conductor RE10Si6O27 (RE = La, Pr, Nd, Sm, Gd, Nd), J. Euro. Ceram. Soc., 18, 1413–1418.

    Article  CAS  Google Scholar 

  • Napporn, T.W., Savoie, S., Roberge, R., Jacques-Bedard, X. and Meunier, M. (2005), Single-chamber SOFC: comparing dry and humidified conditions, Proc. of the ninth international symposium on solid oxide fuel cells (SOFC-IX), Eds., S.C. Singhal and J. Mizusaki, Vol. 1, pp 371–377. The Electrochemical Society Inc., Pennington, NJ, USA.

    Google Scholar 

  • Negishi, H., Sakai, N., Yamaji, K., Horita, T. and Yokokawa, H. (1999), Fabrication of small tubular SOFCs by electrophoretic deposition technique, Proc. of the Sixth International Symposium on Solid Oxide Fuel Cells (SOFC-VI), Eds. S.C. Singhal and M. Dokiya, pp. 885–892, The Electrochemical Soc. Inc., Pennington, NJ, USA.

    Google Scholar 

  • Nguyen, T.L. and Dokiya (2000), Electrical conductivity, thermal expansion and reaction of (La, Sr)(Ca, Mg)O3 and (La, Sr)AlO3 system, Solid State Ionics, 132, 217–226.

    Article  Google Scholar 

  • Ogumi, Z., Ioroi, T., Uchimo, Y. and Tekehara, Z. (1995), Novel method for preparing nickel/cermet by a vapor-phase process, J. Am. Ceram. Soc., 78, 593–598.

    Article  CAS  Google Scholar 

  • Pal, U. and Singhal, S.C. (1990), Electrochemical vapor deposition of YSZ, J. Electrochem Soc., 137, 2937–41, 1990.

    Article  CAS  Google Scholar 

  • Perednis, D. and Gauckler L.J. (2004), Solid oxide fuel cells with electrolytes prepared via spray pyrolysis, Solid State Ionics, 166, 229–239.

    Article  CAS  Google Scholar 

  • Petric, A., Huang, P. and Tietz, F. (2000), Evaluation of La-Sr-Co-O perovskites for solid oxide fuel cells and gas separation membranes, Solid State Ionics, 135, 719–725.

    Article  CAS  Google Scholar 

  • Pratihar, S.K., Das Sharma, A., Basu, R.N. and Maiti, H.S. (2004), Preparation of nickel coated YSZ powder for application as an anode for solid oxide fuel cells, J. Power Sources, 129, 138–142.

    Article  CAS  Google Scholar 

  • Pratihar, S.K., Basu, R.N., Mazumder, S. and Maiti, H.S. (1999), Electrical conductivity and microstructure of Ni-YSZ anode prepared by liquid dispersion method, Eds. S.C. Singhal and M. Dokiya, Sixth International Symposium on Solid Oxide Fuel Cells (SOFC-VI). The Electrochemical Soc., Pennington, NJ, USA.

    Google Scholar 

  • Quadakkers, W.J., Piron-Abellan, J., Shemet, V. and Singheiser, L. (2003), Metallic interconnectors for SOFCs—a review, Materials at High Temperatures, 20, 115–127.

    CAS  Google Scholar 

  • Ralph, J.M. and Kilner, J.A. (1997), Grainboundary conductivity enhancement in ceria-gadolina solid solution, Proc. of the Fifth International Symposium on Solid Oxide Fuel Cells (SOFC-V), Eds. U. Stimming, S.C. Singhal, H. Tawa and W. Lehnert, pp. 1021–1030, The Electrochemical Society, Pennington, NJ, USA.

    Google Scholar 

  • Ralph, J.M., Kilner, J.A. and Steele, B.C.H. (2000), Improving Gd-doped ceria electrolytes for low temperature SOFC, in New Materials for Batteries and Fuel Cells, Eds. D.H. Doughty, L.F. Nazar, M. Arakawa, H.P. Brack and K. Naoi, MRS Symposium Proc., Vol. 575, pp. 309–314.

    Google Scholar 

  • Ralph, J.M., Schoeler, A.C. and Krumpelt, M. (2001), Materials for lower temperature solid oxide fuel cells, J. Mater. Sci., 36, 1161–1172.

    Article  CAS  Google Scholar 

  • Randall, C.A., Van Tassel, J.V., Hitomi, A., Daga, A., Basu, R.N. and Lanagan, M. (2000), Electroceramic device opportunities with electrophoretic deposition, J. Mater. Education, 22, 131–145.

    CAS  Google Scholar 

  • Sakai, N., Yokokawa, H., Horita, T. and Yamaji, K. (2004), Lanthanum chromite-based interconnects as key materials for SOFC stack development, Int. J. Appl. Ceram. Technol., 1, 23–30.

    Article  CAS  Google Scholar 

  • Sammes, N.M., Tompsett, G.A., Näfe, H. and Aldinger, F. (1999), Bismuth based oxide electrolyte—structure and ionic conductivity, J. Euro. Ceram. Soc., 19, 1801–1826.

    Article  CAS  Google Scholar 

  • Sansom, J.E.H., Sermon, PA. and Slater, PR. (2005), Synthesis and conductivities of the apatite-type phases, La9.33Si6−x GexO26, La9BaSi6−xGexO26.5, and related titanium doped systems, Proc. of the ninth international symposium on solid oxide fuel cells (SOFC-IX), Eds., S.C. Singhal and J. Mizusaki, Vol. 2, pp. 1156–1164, The Electrochemical Society Inc., Pennington, NJ, USA.

    Google Scholar 

  • Sarkar, P. Rho, H., Liu, M., Yamarte, L and Johanson, L. (2005), High power density tubular SOFC for portable applications, Proc. of the ninth international symposium on solid oxide fuel cells (SOFC-IX), Eds., S.C. Singhal and J. Mizusaki, Vol. 2, pp. 411–418. The Electrochemical Society Inc., Pennington, NJ, USA.

    Google Scholar 

  • Sasaki, K., Wurth, J-P., Gschwend, R., Gödickemeier, M. and Gauckler, L.J. (1996), Microstructure-property relations of solid oxide fuel cell cathodes and current collectors—cathode polarization and ohmic resistance, J. Electrochem. Soc. 143, 530–543.

    Article  CAS  Google Scholar 

  • Shao, Z. and Haile, S.M. (2004), A high-performance cathode for the next generation of solid-oxide fuel cells, Nature, 431, 170–173.

    Article  CAS  Google Scholar 

  • Shima, D. and Haile, S.M. (1997), The influence of cation non-stoichiometry on the properties of undoped and gadolinia-doped barium cerate, Solid State Ionics, 97, 443–455.

    Article  CAS  Google Scholar 

  • Sohn, S.B. and Choi, S.Y. (2004), Suitable glass-ceramic sealant for planar solid oxide fuel cells, J. Am. Ceram. Soc., 87, 254–60.

    Article  CAS  Google Scholar 

  • Sohn, S.B., Choi, S.Y., Kim, G.H., Song, H.S. and Kim, G.D. (2002), Stable sealing glasses for planar SOFC, J. Noncryst. Solid., 297, 103–12.

    Article  CAS  Google Scholar 

  • Simmer, S.P. and Stevenson, J.W. (2001), Compressive mica seals for SOFC applications, J. Power Sources., 102, 310–316.

    Article  Google Scholar 

  • Singhal, S.C. and Kendall, K. (2003) (Editors), High Temperature Solid Oxide Fuel Cells: Fundamentals, design and Applications, Elsevier, UK.

    Google Scholar 

  • Skowron, A., Huang, P. and Petric, A., Structural study of La0.8Sr0.2Ga0.85Mn0.15O2.825 (1999), J. Solid State Chem., 143, 202–209.

    Google Scholar 

  • Slater, P.R., Irvine, J.T.S. Irvine, Ishihara, T. and Takita, Y. (1998), The structure of the solid oxide ion conductor La0.9Sr0.1Ga0.8Mg0.2O2.85 by powder neutron diffraction, Solid State Ionics, 107, 319–323.

    Article  CAS  Google Scholar 

  • Steele, B.C.H. (1993), Materials for electrochemical energy conversion and storage systems, Ceramic International, 19, 269–277.

    Article  CAS  Google Scholar 

  • Steele, B.C.H. (1994), State-of-the-Art SOFC Ceramic Materials, in Proceedings of the 1st European SOFC Forum, Ed. U. Bossel, Switzerland, 1994, pp. 375–397.

    Google Scholar 

  • Steele, B.C.H. (2000), Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C, Solid State Ionics, 129: 95–110.

    Article  CAS  Google Scholar 

  • Stöver, D., Diekmann, U., Flesch, U., Kabs, H., Quadakkers, W.J., Tietz, F. and Vinke, I.C. (1999), Proc. of the sixth international symposium on solid oxide fuel cells (SOFC-VI), Eds., S.C. Singhal and M. Dokiya, pp. 812–821. The Electrochemical Society Inc., Pennington, NJ, USA.

    Google Scholar 

  • Stöver, D., Buchkremer, H.P. and Huijsmans, J.P.P. (2003), MEA/cell preparation methods: Europe/USA, Handbook of Fuel Cells—Fundamentals, Technology and Applications, Ed. W. Vielstich, H. A. Gasteiger and A. Lamm, Volume 4: Fuel Cell Technology and Applications, pp. 1015–1031. John Wiley & Sons.

    Google Scholar 

  • Strickler, D.W. and Carlson, W.G. (1964), Ionic conductivity of cubic solid solutions in the system CaO-Y2O3-ZrO2, J. Am. Ceram. Soc., 47, 122–127.

    Article  CAS  Google Scholar 

  • Subbarao, E.C. and Maiti, H.S (1984), Solid electrolytes with oxygen ion conduction, Solid State Ionics, 11, 317.

    Article  CAS  Google Scholar 

  • Sunde, S. (2000), Simulations of composite electrodes in fuel cells, J. Electroceram., 5, 153–182.

    Article  CAS  Google Scholar 

  • Takahashi, T., Esaka, T. and Iwahara, H. (1977), Conduction in bismuth (III) oxide-based oxide ion conductors under low oxygen pressure. I. Current blackening of the bismuth (III) oxide-yttrium oxide electrolyte, J. Appl. Electrochem., 7, 299–302.

    Article  CAS  Google Scholar 

  • Taniguchi, S., Kadowaki, M., Yasuo, T., Akiyama, Y., Miyake, Y. and Nishio, K. (2000), Improvement of thermal cycling characteristics of a planar-type solid oxide fuel cell by using ceramic fibre as sealing material, J. Power Sources, 90, 163–69.

    Article  CAS  Google Scholar 

  • Tanner, C.W., Fung, K.Z. and Virkar, A.V. (1997), The effect of porous composite electrode structure on solid oxide fuel cell performance, J. Electrochem. Soc., 144, 21–30.

    Article  CAS  Google Scholar 

  • Tao, S.W., Poulsen, F.W., Meng, G.Y and Sorensen, O.T. (2000), High temperature stability study of the oxygen-ion conductor La0.9Sr0.1Ga0.8Mg0.2O3−x, J. Mater. Chem., 10, 1829–1833.

    Article  CAS  Google Scholar 

  • Teller, O., Meulenberg, W.A., Tietz, F., Wessel, E. and Quadakkers, W.J. (2001), Improved material combinations for stacking of solid oxide fuel cells, Proc. of the Seventh International Symposium on Solid Oxide Fuel Cells (SOFC-VII), Eds. H. Yokokawa and S.C. Singhal, pp. 895–903, The Electrochemical Soc., Pennington, NJ, USA.

    Google Scholar 

  • Tietz, F., Buchkremer, H.P. and Stöver, D. (2002), Components manufacturing for solid oxide fuel cell, Solid State Ionics, 152–153, 373–381.

    Article  Google Scholar 

  • Tsai, T. and Barnett, S.A. (1997), Increased solid-oxide fuel cell power density using interfacial ceria layers, Solid State Ionics, 98, 191–196.

    Article  CAS  Google Scholar 

  • Tuller, H.L. (1997), Semiconduction and mixed ionic-electronic conduction in nonstoichiometric oxides: impact and control, Solid State Ionics, 94, 63–74.

    Article  CAS  Google Scholar 

  • van Doom, R.H.E., Bouwmeester, H.J.M., Burggraaf, A.J. (1998), Kinetic decomposition of La0.3Sr0.7CoO3-δ perovskite membranes during oxygen permeation, Solid State Ionics, 111, 263–272.

    Article  Google Scholar 

  • van Gool, W. (1965), The possible use of surface migration in fuel cells and heterogeneous catalysis, Philips Research Report, 20, 81–93.

    Google Scholar 

  • Veith, M., Mathur, S., Lecerf, N., Huch, V. and Decker, T. (2000), Sol-gel synthesis of nano-scaled BaTiO3, BaZrO3 and BaTi0.5Zr0.5O3 oxides via single-source alkoxide precursors and semi-alkoxide routes, J. Sol-Gel Sci. Technol., 15, 145–158.

    Article  Google Scholar 

  • Verkerk, M.J. and Burggraff, A.J. (1981), High oxygen ion conduction in sintered oxides of the Bi2O3-DY2O3 system, J. Electrochem. Soc., 128: 75–82.

    Article  CAS  Google Scholar 

  • Wan J.-H., Yan, J.-Q. and Goodenough, J.B. (2005), LSGM-based solid oxide fuel cell with 1.4 W/cm2 power density and 30 day long-term stability, J. Electrochem. Soc., 152, A1511–A1515.

    Article  CAS  Google Scholar 

  • Waschsman, E.D., Ball, G.R., Jiang, N. and Stevenson, D.A. (1992), Structural and defect studies in solid oxide electrolytes, Solid State Ionics, 52, 213–218.

    Article  Google Scholar 

  • Weber, A. and Ivers-Tiffée, E. (2004), Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications, J. Power Sources, 127, 273–283.

    Article  CAS  Google Scholar 

  • Williams, M.C., Strakey, J.P. and Surdoval, W.A. (2005), U.S. DOE Solid Oxide Fuel Cells: Technical Advances, Proc. of the Ninth International Symposium on Solid Oxide Fuel Cells (SOFC-IX), Eds., S.C. Singhal and J. Mizusaki, Vol. 1, pp 20–31, The Electrochemical Society Inc., Pennington, NJ, USA.

    Google Scholar 

  • Wolfenstine, J., Huang, P. and Petric, A. (1999), Creep behavior of doped lanthanum gallate versus cubic zirconia, Solid State Ionics, 118, 257.

    Article  CAS  Google Scholar 

  • Yahiro, H., Ohuchi, T., Eguchi, K. and Arai, H. (1988), Electrical properties and microstructure in the system ceria-alkaline earth oxide, J. Mater. Sci., 23, 1036–1041.

    Article  CAS  Google Scholar 

  • Yan, J., Matsumoto, H., Enoki, M. and Ishihara, T. (2005), High-power SOFC using La0.9Sr0.1Ga0.8Mg0.2O3−δ/Ce0.8Sm0.2 O2−δ composite film, Electrochem. and Solid State Letts., 8, A389–A391.

    Article  CAS  Google Scholar 

  • Yamaji, K., Negishi, H., Horita, T., Sakai, N. and Yokokawa, H. (2000), Vaporization process of Ga from doped LaGaO3 electrolytes in reducing atmospheres. Solid State Ionics, 135, 389–396.

    Article  CAS  Google Scholar 

  • Yamamoto, O. (2000), Solid oxide fuel cells: fundamental aspects and prospects, Electrochemica Acta, 45, 2423–2435.

    Article  CAS  Google Scholar 

  • Yamamuru, Y., Kawasaki, S. and H. Sakai (1999), Molecular dynamics analysis of ionic conduction mechanism in yttria-stabilized zirconia, Solid State Ionics, 126, 181–89.

    Article  Google Scholar 

  • Yasuda, I., Matsuzaki, Y., Yamakawa, T. and Koyama, T. (2000), Electrical conductivity and mechanical properties of alumina-dispersed doped lanthanum gallates, Solid State Ionics, 135, 381.

    Article  CAS  Google Scholar 

  • Yasuda, I. and Hikita, T. (1993), Oxygen potential profile and ionic leak current in LaCrO3-based interconnect materials, Proc. of the third international symposium of solid oxide fuel cells (SOFC-III). Eds. S.C. Singhal and H. Iwahara, pp. 354–363.

    Google Scholar 

  • Yokokawa, H. and Horita, T. (2003), in High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Ed. S.C. Singhal and K. Kendall, Elsevier, UK, pp. 119–147.

    Google Scholar 

  • Zacate, M.O., Minervini, L., Bradfield, D.J., Grimes, R.W. and Sickafus, K.E. (2000), Defect cluster formation in M2O3-doped cubic zirconia, Solid State Ionics, 128, 243–54.

    Article  CAS  Google Scholar 

  • Zheng, R., Wang, S.R., Nie, H.W and Wen, T.L. (2004), SiO2-CaO-B2O3-Al2O3 ceramic glaze as sealant for planar IT-SOFC, J. Power Sources, 128, 165–172

    Article  CAS  Google Scholar 

  • Zhu, W.Z. and Deevi, S.C. (2002), Development of interconnect materials for solid oxide fuel cells, Mater. Sci. & Eng., A348, 227–243.

    Google Scholar 

  • Zhu, W.Z. and Deevi, S.C. (2003), A review on the status of anode materials for solid oxide fuel cells, Mater. Sci. & Eng., A362, 228–239.

    Article  CAS  Google Scholar 

  • Zhu, W.Z. and Deevi S.C. (2003), Opportunity of metallic interconnects for solid oxide fuel cells: a status on contact resistance, Materials Research Bulletin, 38, 957–972.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Anamaya Publishers, New Delhi, India

About this chapter

Cite this chapter

Basu, R.N. (2007). Materials for Solid Oxide Fuel Cells. In: Basu, S. (eds) Recent Trends in Fuel Cell Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68815-2_12

Download citation

Publish with us

Policies and ethics