Anatomy and Histology of the Lung

  • Joseph F. TomashefskiJr.
  • Carol F. Farver


The lung is uniquely designed to accomplish its major functions of movement of air and the delivery of oxygen to and removal of carbon dioxide from the circulation. Pulmonary anatomic compartments are tightly integrated for this purpose, while redundancy of structures and provisions for collateral ventilation and blood flow enable the lung to rapidly adjust to physiologic demands and meet the challenges imposed by disease. The intricate net-like connective tissue skeleton of the lung, with its intrinsic elasticity, enables the lung to function as a cohesive unit. Protected by the rigid thoracic cage and sealed in a bellows-like chamber, the lung responds to cyclical volume and pressure fluctuations coordinated with contractions of the diaphragm and thoracic muscles of respiration on the order of 16 breaths per minute.


Elastic Fiber Mesothelial Cell Ciliated Cell Bronchial Artery Parietal Pleura 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fraser RG, Pare JAR. Diagnosis of diseases of the chest. 2nd ed. Philadelphia: WB Saunders, 1977:1–183.Google Scholar
  2. 2.
    Webb WR, Muller NL, Naidich DP. High resolution CT of the lung. 3rd ed. Philadelphia: Lippincott Williams & Wilkins, 2001.Google Scholar
  3. 3.
    Bates DV, Macklem PT, Christie RV. Respiratory function in disease. Philadelphia: WB Saunders, 1971.Google Scholar
  4. 4.
    Fishman AP, Elias JA, Fishman JA, et al. Fishman’s pulmonary diseases and disorders. 3rd ed. New York: McGraw-Hill, 1998.Google Scholar
  5. 5.
    Weibel ER, Taylor CR. Functional design of the human lung for gas exchange. In: Fishman AP, Elias JA, Fishman JA, et al., eds. Fishman’s pulmonary diseases and disorders. 3rd ed. New York: McGraw-Hill, 1998:21–62.Google Scholar
  6. 6.
    Sobonya RE. Normal anatomy and development of the lung. In: Baum GL, Wolinsky E, eds. Textbook of pulmonary diseases. 4th ed. Boston: Little, Brown, 1989:3–20.Google Scholar
  7. 7.
    Thurlbeck WM. Post-mortem lung volumes. Thorax 1979;34(6):735–739.PubMedCrossRefGoogle Scholar
  8. 8.
    Moore KL. Clinically oriented anatomy. Baltimore: Williams & Wilkins, 1980:1–120.Google Scholar
  9. 9.
    Yousem SA. Pulmonary apical cap: a distinctive but poorly recognized lesion in pulmonary surgical pathology. Am J Surg Pathol 2001;25(5):679–683.PubMedCrossRefGoogle Scholar
  10. 10.
    Grant JB. An atlas of anatomy. Baltimore: Williams & Wilkins, 1972.Google Scholar
  11. 11.
    Felson B. Chest roentgenology. Philadelphia: WB Saunders, 1973.Google Scholar
  12. 12.
    Wang NS. Anatomy. In: Dail DH, Hammar SP, eds. Pulmonary pathology. 2nd ed. New York: Springer-Verlag, 1993:21–44.Google Scholar
  13. 13.
    Godwin JD, Tarver RD. Accessory fissures of the lung. AJR 1985;144(1):39–47.PubMedCrossRefGoogle Scholar
  14. 14.
    Felson B. The lobes and interlobar pleura: fundamental roentgen considerations. Am J Med Sci 1955;230(5):572–584.PubMedCrossRefGoogle Scholar
  15. 15.
    Mata J, Caceres J, Alegret X, Coscojuela P, De Marcos JA. Imaging of the azygos lobe: normal anatomy and variations. AJR 1991;156(5):931–937.PubMedCrossRefGoogle Scholar
  16. 16.
    Boyden EA. The distribution of bronchi in gross anomalies of the right upper lobe particularly lobes subdivided by the azygos vein and those containing pre-eparterial bronchi. Radiology 1952;58(6):797–807.PubMedGoogle Scholar
  17. 17.
    Jackson CL, Huber JF. Correlated applied anatomy of the bronchial tree and lungs with system of nomenclature. Dis Chest 1943;9:319.CrossRefGoogle Scholar
  18. 18.
    Bannister L. Respiratory system. In: Williams PL, Bannister LH, Berry MM, et al., eds. Gray’s anatomy: the anatomic basis of medicine and surgery. New York: Churchill-Livingstone, 1995.Google Scholar
  19. 19.
    Reid L. Structural and functional reappraisal of the pulmonary artery system. In: Scientific basis of medicine, annual review. London: Atholone Press, 1968:289–307.Google Scholar
  20. 20.
    Reid L. Measurement of the bronchial mucous gland layer: a diagnostic yardstick in chronic bronchitis. Thorax 1960;15:132–141.PubMedCrossRefGoogle Scholar
  21. 21.
    Djukanovic R, Roche WR, Wilson JW, et al. Mucosal inflammation in asthma. Am Rev Respir Dis 1990;142(2):434–457.PubMedCrossRefGoogle Scholar
  22. 22.
    Jeffery PK. Morphology of the airway wall in asthma and in chronic obstructive pulmonary disease. Am Rev Respir Dis 1991;143:1152–1158.PubMedCrossRefGoogle Scholar
  23. 23.
    Laitinen A, Laitinen LA. Airway morphology: epithelium/basement membrane. Am J Respir Crit Care Med 1994;150:S14–S17.PubMedCrossRefGoogle Scholar
  24. 24.
    Ng AW, Bidani A, Heming TA. Innate host defense of the lung: effects of lung-lining fluid pH. Lung 2004;182(5):297–317.PubMedCrossRefGoogle Scholar
  25. 25.
    Rutland J, Griffin WM, Cole PJ. Human ciliary beat frequency in epithelium from intrathoracic and extrathoracic airways. Am Rev Respir Dis 1982;125(1):100–105.PubMedGoogle Scholar
  26. 26.
    Reid L, Meyrick B, Antony VB, et al. The mysterious pulmonary brush cell: a cell in search of a function. Am J Respir Crit Care Med 2005;172(1):136–139.PubMedCrossRefGoogle Scholar
  27. 27.
    Jeffery PK, Gaillard D, Moret S. Human airway secretory cells during development and in mature airway epithelium. Eur Respir J 1992;5(1):93–104.PubMedGoogle Scholar
  28. 28.
    Bishop AE. Pulmonary epithelial stem cells. Cell Prolif 2004;37(1):89–96.PubMedCrossRefGoogle Scholar
  29. 29.
    Pump KK. The morphology of the finer branches of the bronchial tree of the human lung. Dis Chest 1964;46:379–398.PubMedCrossRefGoogle Scholar
  30. 30.
    Miller WS. The lung. 2nd ed. Springfield, IL: Charles C. Thomas, 1947.Google Scholar
  31. 31.
    Bergin C, Roggli V, Coblentz C, et al. The secondary pulmonary lobule: normal and abnormal CT appearances. Am J Roentgenol 1988;151(1):21–25.CrossRefGoogle Scholar
  32. 32.
    Raskin SP. The pulmonary acinus: historical notes. Radiology 1982;144(1):31–34.PubMedGoogle Scholar
  33. 33.
    Crapo RO, Campbell EJ. Aging of the respiratory system. In: Fishman AP, Elias JA, Fishman JA, et al., eds. Fishman’s pulmonary diseases and disorders. 3rd ed. New York: McGraw-Hill, 1998:251–263.Google Scholar
  34. 34.
    Rooney SA, Young SL, Mendelson CR. Molecular and cellular processing of lung surfactant. FASEB J 1994;8(12):957–967.PubMedGoogle Scholar
  35. 35.
    Renkin EM. Cellular and intercellular transport pathways in exchange vessels. Am Rev Respir Dis 1992;146:S28–S31.PubMedCrossRefGoogle Scholar
  36. 36.
    Staub NC. The pathogenesis of pulmonary edema. Prog Cardiovasc Dis 1980;23(1):53–80.PubMedCrossRefGoogle Scholar
  37. 37.
    Lowenstein CJ, Morrell CN, Yamakuchi M. Regulation of Weibel-Palade body exocytosis. Trends Cardiovasc Med 2005;15(8):302–308.PubMedCrossRefGoogle Scholar
  38. 38.
    Ganter BG, Jakob SM, Takala J. Pulmonary capillary pressure. A review. Minerva Anestesiol 2006;72(1–2):21–36.PubMedGoogle Scholar
  39. 39.
    Gordon S, Taylor PR. Monocyte and macrophage heterogeneity. Nat Rev Immunol 2005;5(12):953–964.PubMedCrossRefGoogle Scholar
  40. 40.
    Lotem J, Shabo Y, Sachs L. The network of hemopoietic regulatory proteins in myeloid cell differentiation. Cell Growth Differ 1991;2(9):421–427.PubMedGoogle Scholar
  41. 41.
    Bezdicek P, Crystal RG. Pulmonary macrophages. In: Crystal RG, Barnes PJ, West JB, et al., eds. The lung: scientific foundations. 2nd ed. New York: Lippincott-Raven, 1997:859–877.Google Scholar
  42. 42.
    Warner AE. Pulmonary intravascular macrophages. Role in acute lung injury. Clin Chest Med 1996;17(1):125–135.PubMedCrossRefGoogle Scholar
  43. 43.
    Colby TV, Yousem SA. Lungs. In: Sternberg SS, ed. Histology for pathologists. New York: Raven Press, 1992:479–497.Google Scholar
  44. 44.
    Bienenstock J, McDermott MR. Bronchus-and nasal-associated lymphoid tissues. Immunol Rev 2005;206:22–31.PubMedCrossRefGoogle Scholar
  45. 45.
    Ersch J, Tschering T. Frequency and potential cause of bronchus-associated lymphoid tissue in fetal lungs. Ped Allergy Immunol 2005;16:295–298.CrossRefGoogle Scholar
  46. 46.
    Richmond I, Pritchard GE, Ashcroft T, et al. Bronchus associated lymphoid tissue (BALT) in human lung: its distribution in smokers and non-smokers. Thorax 1993;48(11):1130–1134.PubMedCrossRefGoogle Scholar
  47. 47.
    Jones R, et al. Pulmonary vascular pathology. In: Zapol WM, Falke KJ, eds. Acute respiratory failure. New York: Marcel-Dekker, 1985.Google Scholar
  48. 48.
    Reid L. Structural and functional reappraisal of the pulmonary artery system. In: Scientific basis of medicine. London: Atholone Press, 1968:289–307.Google Scholar
  49. 49.
    Wagenvoort CA, Wagenvoort N. Pathology of pulmonary hypertension. New York: Wiley, 1977.Google Scholar
  50. 50.
    Charan NB. The bronchial circulatory system: structure, function, and importance. Respiratory Care 1984;29:1152–1158.Google Scholar
  51. 51.
    Deffebach ME, Charan NB, Lakshminarayan S, et al. The bronchial circulation. Small, but a vital attribute of the lung. Am Rev Respir Dis 1987;135(2):463–481.PubMedGoogle Scholar
  52. 52.
    Parke WW, Michels NA. The nonbronchial systemic arteries of the lung. J Thorac Cardiovasc Surg 1965;49:694–707.PubMedGoogle Scholar
  53. 53.
    Stocker JT, Malczak HT. A study of pulmonary ligament arteries. Relationship to intralobar pulmonary sequestration. Chest 1984;86(4):611–615.PubMedCrossRefGoogle Scholar
  54. 54.
    Tobin CE. The bronchial arteries and their connections with other vessels in the human lung. Surg Gynecol Obstet 1952;95(6):741–750.PubMedGoogle Scholar
  55. 55.
    Pump KK. The bronchial arteries and their anastomoses in the human lung. Dis Chest 1963;43:245–255.PubMedCrossRefGoogle Scholar
  56. 56.
    Spencer H. Pathology of the lung. 3rd ed. Oxford: Pergamon Press, 1977:15–69.Google Scholar
  57. 57.
    Turner-Warwick M. Precapillary systemic-pulmonary anastomoses. Thorax 1963;18:225–237.PubMedCrossRefGoogle Scholar
  58. 58.
    Lauweryns JM. The juxta-alveolar lymphatics in the human adult lung. Histologic studies in 15 cases of drowning. Am Rev Respir Dis 1970;102(6):877–885.PubMedGoogle Scholar
  59. 59.
    Leak LV, Jamuar MP. Ultrastructure of pulmonary lymphatic vessels. Am Rev Respir Dis 1983;128(suppl):S59–S65.PubMedGoogle Scholar
  60. 60.
    Kradin RL, Spirn PW, Mark EJ. Intrapulmonary lymph nodes. Clinical, radiologic, and pathologic features. Chest 1985;87(5):662–667.PubMedCrossRefGoogle Scholar
  61. 61.
    Janower ML, Blennerhassett JB. Lymphangitic spread of metastatic cancer to the lung. A radiologic-pathologic classification. Radiology 1971;101(2):267–273.PubMedGoogle Scholar
  62. 62.
    Gibbs AR, Wagner JC. Diseases due to silica. In: Churg A, Green FHY, eds. Pathology of occupational lung disease. 2nd ed. Baltimore: Williams & Wilkins, 1998:209–234.Google Scholar
  63. 63.
    Dodson RF, Williams MG, Corn CJ, et al. Asbestos content of lung tissue, lymph nodes and pleural plaques from former shipyard workers. Am Rev Respir Dis 1990;142:843–847.PubMedCrossRefGoogle Scholar
  64. 64.
    Roggli VL, Benning TL. Asbestos bodies in pulmonary hilar lymph nodes. Mod Pathol 1990;3(4):513–517.PubMedGoogle Scholar
  65. 65.
    Laitinen L, Laitinen A. Neural system. In: Crystal RG, West JB, et al., eds. The lung—scientific foundations. 2nd ed. Philadelphia: Lippincott-Raven, 1997:1107–1116.Google Scholar
  66. 66.
    Richardson JB. Nerve supply to the lungs. Am Rev Respir Dis 1979;119(5):785–802.PubMedGoogle Scholar
  67. 67.
    Belvisi MG. Overview of the innervation of the lung. Curr Opin Pharmacol 2002;2(3):211–215.PubMedCrossRefGoogle Scholar
  68. 68.
    Gluck MC, Twigg HL, Ball MF, et al. Shadows bordering the lung on radiographs of normal and obese persons. Thorax 1972;27(2):232–238.PubMedCrossRefGoogle Scholar
  69. 69.
    Mitchev K, Dumortier P, De Vuyst P. “Black Spots” and hyaline pleural plaques on the parietal pleura of 150 urban necropsy cases. Am J Surg Pathol 2002;26(9):1198–1206.PubMedCrossRefGoogle Scholar
  70. 70.
    Herbert A. Pathogenesis of pleurisy, pleural fibrosis, and mesothelial proliferation. Thorax 1986;41(3):176–189.PubMedCrossRefGoogle Scholar
  71. 71.
    Basmajian JV. Grant’s method of anatomy. 8th ed. Baltimore: Williams & Wilkins, 1972.Google Scholar
  72. 72.
    Young DA, Simon G. Certain movements measured on inspiration-expiration chest radiographs correlated with pulmonary function studies. Clin Radiol 1972;23(1):37–41.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Joseph F. TomashefskiJr.
    • 1
    • 2
  • Carol F. Farver
    • 3
  1. 1.Department of PathologyCase Western Reserve University School of MedicineClevelandUSA
  2. 2.Department of PathologyMetroHealth Medical CenterClevelandUSA
  3. 3.Pulmonary Pathology, Department of Anatomic PathologyThe Cleveland Clinic FoundationClevelandUSA

Personalised recommendations