Skip to main content

A Model for Users' Action Prediction Based on Locality Profiles

  • Chapter
  • First Online:
Information Systems Development
  • 1338 Accesses

Abstract

In this chapter we propose a model for predicting users' next page requests. The model is based on the recognition and mining of navigational paths and patterns users typically follow. A special access log system is employed and techniques of web mining are used. Experimental results with developed prediction model are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bernard, M. L. (2001) User expectations for the location of web objects. In:Proc. of CHI '01 Conference: Human Factors in Computing Systems, pp. 171–172.

    Google Scholar 

  • Bernard, M. L. and Chaparro, B. S. (2000) Searching within websites: A comparison of three types of sitemap menu structures. In:Proc. of The Human Factors and Ergonomics Society 44th Annual Meeting in San Diego, pp. 441–444. (PDF format)http://psychology.wichita.edu/hci/projects/sitemap.pdf.

  • Davison, B. (1999) Web traffic logs: An imperfect resource for evaluation. In:Proc. of 9th Annual Conference of the Internet Society (INET '99). San Jose, CA.

    Google Scholar 

  • Geissler, G., Zinkhan, G. and Watson, R. (2001) Web home page complexity and communi-cation effectiveness. Journal of the Association for Information Systems, 2(2), 1–48.

    Google Scholar 

  • Kimball, R. and Margy, R. (2002) The data warehouse toolkit: the complete guide to dimensional modelling. Wiley, New York.

    Google Scholar 

  • Kosala, R. and Blockeel, H. (2000) Web mining research: A survey. ACM SIGKDD Explorations, 2(1), 1–15.

    Article  Google Scholar 

  • Lee, A. T. (1999) Web usability A review of the research. ACM SIGCHI Bulletin, 31(1), 38–40.

    Article  Google Scholar 

  • Li, Y. and Zhong, N. (2006) Mining ontology for automatically acquiring web user information needs. IEEE Transactions on Knowledge and Data Engineering, 18(4), 554–568.

    Article  MathSciNet  Google Scholar 

  • Middleton, S., De Roure, D. and Shadbolt,N. (2001) Capturing knowledge of user preferences: Ontologies in recommender systems. In:Proc. of the 1st Int. Conference on Knowledge Capture, ACM Press, New York, pp. 100–107.

    Chapter  Google Scholar 

  • Mobasher, B., Cooley, R. and Srivastava, J. (2000) Automatic personalization based on web usage mining. Communications of the ACM, 43(8), 142–151.

    Article  Google Scholar 

  • Perkowitz, M. and Etzioni, O. (2001) Adaptive web sites: Concept and case study. Artificial Intelligence, 118(1–2), 245–275.

    Google Scholar 

  • Robal, T., Kalja, A. and Põld, J. (2006) Analysing the web log to determine the efficiency of web systems. In: Proc. of the 7th International Baltic Conference on Databases and Information Systems DB&IS'2006. Technika, Vilnius, pp. 264–275.

    Google Scholar 

  • Srivastava, J., Cooley, R., Deshpande, M. and Tan, P.,N. (2000) Web usage mining: Discovery and applications of usage patterns from web data. ACM SIGKDD Explorations, 1(2), 12–23.

    Article  Google Scholar 

  • Srivastava, J., Desikan, P. and Kumar, V. (2002) Web mining: Accomplishments and future directions. In:Proc. US Nat'l Science Foundation Workshop on Next-Generation Data Mining (NGDM). Nat'l Science Foundation.

    Google Scholar 

  • Tan, P-N. and Kumar, V. (2002) Discovery of web robot sessions based on their navigational patterns. Data Mining and Knowledge Discovery, 6(1), 9–35.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We appreciate the support of Estonian Information Technology Foundation, Doctoral School in ICT (Measure 1.1 Estonian NDP), and the ETF grant no. 5766.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tarmo Robal or Ahto Kalja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Robal, T., Kalja, A. (2009). A Model for Users' Action Prediction Based on Locality Profiles. In: Wojtkowski, W., Wojtkowski, G., Lang, M., Conboy, K., Barry, C. (eds) Information Systems Development. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68772-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68772-8_14

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-30403-8

  • Online ISBN: 978-0-387-68772-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics