Skip to main content

Physical Vapor Deposition

  • Chapter

Physical vapor deposition refers to vacuum deposition methods that produce the source gas by evaporation, sputtering, or a related nonchemical method. Broadly, these methods transfer kinetic energy to atoms in a solid or liquid sufficient to overcome their binding energy. Evaporation refers to heating a material until the source atoms vaporize. Sputtering is a process of physical impacts transferring kinetic energy to atoms in a target. There are many related methods such as laser-ablation, which is similar to conventional evaporation but supplies energy to the surface locally by a laser beam rather than heating the entire material in an oven. Likewise, cathodic arc deposition is a sputtering-based process that uses a more localized, higher intensity glow discharge to bombard the target in a small region, rather than “sputtering” which refers to a more general bombardment of the target. This chapter describes the most common conventional evaporation and sputtering methods. Descriptions of the related techniques may be found in the recommended readings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References:

  1. Luscher, P.E. and Collins, D.M.; “Design considerations for molecular beam epitaxy systems”, Prog. Crystal Growth and Characterization, 1979; 2: 15-32.

    Article  CAS  Google Scholar 

  2. Dayton, B.B., “Gas flow patterns at entrance and exit of cylindrical tubes.” In 1956 National Symposium on Vacuum Technology Trans., ed. by E.S. Perry and J.H. Durant, Oxford: Pergamon; 1957: 5.

    Google Scholar 

  3. Herman, Marian A. and Sitter, Helmut, Molecular Beam Epitaxy: Fundamentals and Current Status. Berlin: Springer, 1996.

    Google Scholar 

  4. Yamashita, T.; Tomita, T.; and Sakurai, T.; Calculations of molecular beam flux from liquid source.” Jpn. J. Appl. Phys, 1987; 26: 1192-1193.

    Article  ADS  CAS  Google Scholar 

  5. Hoing, R.E., “Vapor pressure data for the more common elements.” RCA Review, 1957; 18: 195-204.

    Google Scholar 

  6. Hoing, R.E. and Hook, H.O., “Vapor pressure data for some common gases.” RCA Review, 1960; 21: 360-368.

    Google Scholar 

  7. Hoing, R.E., “Vapor pressure data for the solid and liquid elements.” RCA Review, 1962; 23: 567-586.

    Google Scholar 

  8. Hoing, R.E. and Kramer, D.A., “Vapor pressure data for the solid and liquid elements.” RCA Review, 1969; 30: 285-305.

    Google Scholar 

  9. Gurdal, O.; Desjardins, P.; Carlsson, J.R.A.; Taylor, N.; Radamson, H.H.; Sundgren, J.-E.; and Greene, J.E.; “Low-temperature growth and critical epitaxial thicknesses of fully strained metastable Ge1-xSnx (x≤0.26) alloys on Ge(001) 2x1.” J. Appl. Phys, 1998; 83: 162-170.

    Google Scholar 

  10. Sigmund, Peter, “Theory of sputtering. I. Sputtering yield of amorphous and polycrystalline targets.” Phys. Rev., 1969; 184: 383-416.

    Article  ADS  CAS  Google Scholar 

  11. Lindhard, J. “Energy dissipation by ions in the keV region.” Phys. Rev., 1961; 124: 128-130 and references therein, especially Lindhard, J.; Nielsen, V.; Scharff, M. Kungl. Dan. Vid. Selsk. Mat. Phys. Medd., 1958; 36: 10.

    Google Scholar 

  12. Matsunami, N.; Yamamura, Y.; Itakawa, N.; Itoh, Y.; Kazumata, S.; Mayagawa, K.; Morita, K.; and Shimizu, R. Rad Eff. Lett., 1980; 57: 15.

    Article  CAS  Google Scholar 

  13. Bohdansky, J., “A universal relation for the sputtering yield of monatomic solids at normal ion incidence.” Nucl. Inst. and Meth. in Phys. Res. B, 1984; 2: 587-591.

    Article  ADS  Google Scholar 

  14. Yamamura, Y. and Mizuo, Y., J. Nucl. Mater., 1984; 128-9: 559.

    Article  ADS  Google Scholar 

  15. The methods used in the TRIM computer code are described in Ziegler, J.F.; Biersack, J.P.; and Littmark, U., The stopping and range of ions in solids. New York, Pergamon: 1985, latest edition: 2003.

    Google Scholar 

  16. Oechsner, H., “Sputtering - a review of some recent experimental and theoretical aspects.” Applied Physics A: Materials Science and Processing, 1975; 3: 185-196.

    Google Scholar 

  17. Yamamura, Y. and Itoh, N. in Ion Beam Assisted Film Growth, ed. by T. Itoh. Amsterdam, Elsevier: 1989, Chapter 4.

    Google Scholar 

  18. Grapperhaus, M.J.; Krivokapic, Z.; and Kushner, M.J., “Design issues in ionized metal physical vapor deposition of copper.” J. Appl. Phys., 1998; 83: 35-43.

    Article  ADS  CAS  Google Scholar 

  19. Heberlein, T.; Krautheim, G.; and Wuttke, W., Vacuum, 1991; 42: 47.

    Article  CAS  Google Scholar 

  20. Ray, M.A. and Greene, J.E., unpublished.

    Google Scholar 

  21. Kornelsen, E.V., “The ionic entrapment and thermal desorption of inert gases in tungsten for kinetic energies of 40 eV to 5keV.” Can. J. Phys., 1964; 42: 364-381.

    CAS  Google Scholar 

  22. Thornton, J.A. and Hoffman, D.W., “Internal stresses in amorphous silicon films deposited by cylindrical magnetron sputtering using Ne, Ar, Kr, Xe, and Ar+H.” J. Vac. Sci. Technol., 1981; 18: 203-207.

    Article  ADS  CAS  Google Scholar 

  23. Hoffman, D.W. and Thornton, J.A., “Compressive stress and inert gas in Mo films sputtered from a cylindrical-post magnetron with Ne, Ar, Kr, and Xe.” J. Vac. Sci. Technol., 1980; 17: 380-383.

    Article  ADS  CAS  Google Scholar 

  24. Thornton, John A. and Penfold, Alan S., “Cylindrical Magentron Sputtering” in Vossen, John L. and Kern, Werner, Thin Film Processes volumes I and II. New York, Academic: 1978; pp. 75-113.

    Google Scholar 

  25. Münger, E.P.; Chirita, V.; Greene, J.E.; Sundgren J.-E. “Adatom-induced diffusion of two-dimensional close-packed Pt7 clusters on Pt(111).” Surf. Sci., 1996; 355: L325-330.

    Article  Google Scholar 

  26. Chirita, V.; Münger, E.P.; Sundgren J.-E.; Greene, J.E., “Enhanced cluster mobilities on Pt(111) during film growth from the vapor phase.” Appl. Phys. Lett., 1998; 72: 127-129.

    CAS  Google Scholar 

  27. Cadien, K.C., Elthouky, A.H., and Greene, J.E., “Growth of single-crystal metastable semiconducting (GaSb)1-xGex films.” Appl. Phys. Lett., 1981; 38: 773-775.

    Article  ADS  CAS  Google Scholar 

  28. Shah, Syed Ismat Ullah, “Crystal growth, atomic ordering, phase transitions in pseudobinary constituents of the metastable quaternary (GaSb)1-x(Ge2(1-y)Sn2y)x.” Thesis, Ph.D. - University of Illinois at Urbana-Champaign, 1986.

    Google Scholar 

  29. L. Chung Yang and A. Rockett, “Cu-Mo Contacts to CuInSe2 For Improved Adhesion in Photovoltaic Devices,” J. Appl. Phys 75(2), 1185 (1994).

    Article  ADS  Google Scholar 

  30. G. Ramanath, H. Z. Xiao, L. C. Yang, A. Rockett, and L. H. Allen, “Evolution of Microstructure in Nanocrystalline Mo-Cu Thin Films During Thermal Annealing”, J. Appl. Phys. 78(4), 2435 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2008). Physical Vapor Deposition. In: The Materials Science of Semiconductors. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68650-9_11

Download citation

Publish with us

Policies and ethics