Skip to main content

Computation of Rapidly Varied Flow

  • Chapter
  • 10k Accesses

Typical examples of natural and man-made open channels having rapidly varied flows are mountainous streams, rivers during periods of high floods, spillway chutes, conveyance channels, sewer systems, and outlet works. Unlike the case of gradually varied flows, a number of difficulties, such as the formation of roll waves, air entrainment, and cavitation, are encountered in the analysis of these flows. In addition, instabilities may develop if the Froude number exceeds a critical value, giving rise to roll waves or slug flow. Standing wave and large surface disturbances, commonly referred to as shocks or standing waves, are important aspects of rapidly varied flows and need to be considered in the analysis and design.

In this chapter, we present finite-difference methods for the computation of rapidly varied flows. These are shock-capturing methods and do not require any special treatment if a shock develops in the solution. Three different formulations are discussed. The St. Venant equation, also referred to as the shallow-water equations, are assumed to describe these flows in the first two formulations and Boussinesq terms are included in the third to account for nonhydrostatic pressure distribution. The validity of these computational procedures is verified by comparing the computed results with the analytical solutions and with the experimental measurements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbett, M., 1971, “Boundary Conditions in Computational Procedures for Invis-cid, Supersonic Steady Flow Field Calculations,” Aerotherm Report 71-41.

    Google Scholar 

  • Abbott, M. B., 1979, Computational Hydraulics; Elements of the Theory of Free Surface Flow, Pitman Publishing Limited, London.

    Google Scholar 

  • Abbott, M. B., Marshall, G., and Rodenhuis, G. S., 1969, “Amplitude-Dissipative and Phase-Dissipative Scheme for Hydraulic Jump Simulation,” Proc. 13th Congress, Inter. Assoc. Hyd. Research, Tokyo, vol. 1, Aug., pp. 313-329.

    Google Scholar 

  • Anderson, D. A., Tannehill, J. D., and Pletcher, R. H., 1984, Computational Fluid Mechanics and Heat Transfer, McGraw-Hill, New York, NY.

    MATH  Google Scholar 

  • Bagge, G. and Herbich, J. B., 1967, “Transitions in Supercritical Open-Channel Flow,” Jour. Hydr. Div., Amer. Soc. Civ. Engrs., vol. 93, no. 5, pp. 23-41.

    Google Scholar 

  • Basco, D. R., 1983, “Introduction to Rapidly-Varied Unsteady, Free-Surface Flow Computation,” Water Resources Investion Report, U.S. Geological Survey, Report No. 83-4284.

    Google Scholar 

  • Bhallamudi, S. M., and Chaudhry, M. H., 1992, “Computation of Flows in Open-Channel Transitions,” Jour. Hydraulic Research, Inter. Assoc. Hyd. Research, vol. 30, no. 1, pp. 77-93.

    Google Scholar 

  • Chaudhry, M. H., 1987, Applied Hydraulic Transients, 2nd ed., Van Nostrand Reinhold, New York, NY.

    Google Scholar 

  • Chow, V. T., 1959, Open Channel Hydraulics, McGraw-Hill Book Co., New York, NY.

    Google Scholar 

  • Cunge, J., 1975, “Rapidly Varying Flow in Power and Pumping Canals,” in Unsteady Flow in Open Channels, (Eds. Mahmood, K. and Yevjevich, V.), Water Resources Publications, pp. 539-586.

    Google Scholar 

  • Dakshinamoorthy, S., 1977, “High Velocity Flow through Expansions,” Proc. 17th Congress, Inter. Assoc. Hyd. Research, Baden-Baden, vol.2, pp. 373-381.

    Google Scholar 

  • Demuren, A. O., 1979, “Prediction of Steady Surface-Layer Flows,” Ph.D. dis-sertation, University of London.

    Google Scholar 

  • Ellis, J. and Pender G., 1982, “Chute Spillway Design Calculations,” Proc. Inst. Civ. Engrs., Part 2, vol. 73, June, pp. 299-312.

    Google Scholar 

  • Engelund, F. and Munch-Petersen, J., 1953, “Steady Flow in Contracted and Expanded Rectangular Channels,” La Houille Blanche, vol. 8, no. 4, Aug-Sept, pp. 464-474.

    Google Scholar 

  • Fennema, R. J. and Chaudhry, M. H., 1986, “Explicit Numerical Schemes for Unsteady Free-Surface Flows with Shocks,” Water Resources Research, vol. 22, no. 13, pp. 1923-1930.

    Article  Google Scholar 

  • Fennema, R. J. and Chaudhry, M. H., 1990, “Numerical Solution of Two-Dimensional Transient Free-Surface Flows,” Jour. of Hydr. Eng., Amer. Soc. Civ. Engr., Vol. 116, Aug., pp. 1013-1034.

    Article  Google Scholar 

  • Garcia, R. and Kahawita, R. A., 986, “Numerical Solution of the St. Venant Equations with the MacCormacK Finite-Difference Scheme,” Int. Jour. Numer. Meth. in Fluids, vol. 6, pp. 259-274.

    Google Scholar 

  • Gharangik, A. and Chaudhry, M. H., 1991, “Numerical Simulation of Hydraulic Jump,” Jour. Hydraulic Engineering, Amer. Soc. Civ. Engrs., vol 117, no. 9, pp. 1195-1211.

    Article  Google Scholar 

  • Gottlieb, D. and Turkel, E., 1976, “Dissipative Two-Four Methods for Time-Dependent Problems,” Mathematics of Computation, Vol. 30, No. 136, Oct., pp. 703-723.

    Article  MATH  MathSciNet  Google Scholar 

  • Henderson, F. M., 1966, Open Channel Flow, MacMillan, New York, NY.

    Google Scholar 

  • Herbich, J. B. and Walsh, P., 1972, “Supercritical Flow in Rectangular Expan-sions,” Jour. Hydr. Div., Amer. Soc. Civ. Engrs., vol. 98, no. 9, Sept., pp. 1691-1700.

    Google Scholar 

  • Ippen, A. T., 1951, et al., Proceedings of a Symposium on High-Velocity Flow in Open Channels, Trans. Amer. Soc. Civ. Engrs., vol. 116, pp. 265-400.

    Google Scholar 

  • Jameson, A., Schmidt, W., and Turkel, E., 1981, “Numerical Solutions of the Eu-ler equations by Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes,” AIAA 14th Fluid And Plasma Dynamics Conference, Palo Alto, California, AIAA-81-1259.

    Google Scholar 

  • Jimenez, O. F. and Chaudhry, M. H., 1988, L“Computation of Supercritical Free-Surface Flows,” Jour. of Hydr. Eng., Amer. Soc. Civ. Engr., vol. 114, no. 4, Apr., pp. 377-395.

    Article  Google Scholar 

  • Katopodes, N. D., 1984, “A Dissipative Galerkin Scheme for Open-Channel Flow,” Jour. Hyd. Engineering, Amer. Soc. Civ. Engrs., vol. 110, no. 4, April, pp. 450-466.

    Article  Google Scholar 

  • Knapp, R. T., 1951, “Design of Channel Curves for Supercritical Flow,” Sym-posium on High-Velocity Flow in Open Channels, Trans. Amer. Soc. Civ. Engrs., vol. 116, pp. 296-325.

    Google Scholar 

  • Kutler, P.,1975,“Computation of Three-Dimensional, Inviscid Supersonic Flows,” in Progress in Numerical Fluid Dynamics, Lecture Notes in Physics No. 41, Springer-Verlag, pp. 287-374.

    Google Scholar 

  • Liggett, J. A. and Vasudev, S. U., 1965, L“Slope and Friction Effects in Two Dimensional, High Speed Flow,” Proc. 11th Int. Congress, Inter. Assoc. Hyd. Research, Leningrad, vol. 1, paper 1.25.

    Google Scholar 

  • MacCormac, R. W., 1969, “The Effect of Viscosity in Hypervelocity Impact Cratering,” Amer. Inst. Aero. Astro., Paper 69-354, Cincinnati, Ohio.

    Google Scholar 

  • McCorquodale, J. A. and Khalifa, A., 1983, L“Internal Flow in Hydraulic Jumps,” Jour. Hyd. Engineering, Amer. Soc. Civ. Engrs., vol. 109, no. 5, May, pp. 684-701.

    Article  Google Scholar 

  • McCowan, A. D., 1987, “The Range of Application of Boussinesq Type Numer-ical Short Wave Models,” Proc. 22nd Congress, Inter. Assoc. Hyd. Research, pp. 378-384.

    Google Scholar 

  • Pandolfi, M., 1975, “Numerical Experiments on Free Surface Water Motion with Bores,” Proc. 4th Int. Conf. on Numerical Methods in Fluid Dynamics, Lec-ture Notes in Physics No. 35, Springer-Verlag, pp. 304-312.

    Google Scholar 

  • Roache, P. J., 1972, Computational Fluid Dynamics, Hermosa Publishers, Albuquerque, NM.

    MATH  Google Scholar 

  • Stoker, J. J., 1957, Water Waves, Interscience Publishers, New York, NY.

    MATH  Google Scholar 

  • Tseng, M. H., Hsu, C. A, and Chu, C. R., 2001, L“Channel Routing in Open-Channel Flows with Surges, Jour. Hyd. Engineering, Amer. Soc. Civ. Engrs., vol. 127, no. 2, pp. 115-122.

    Article  Google Scholar 

  • Villegas, F., 1976, “Design of the Punchiná Spillway,” Water Power & Dam Construction, Nov. 1976, pp. 32-34.

    Google Scholar 

  • Verboom, G. K., Stelling, G. S. and Officier, M. J., 1982, “Boundary Conditions for the shallow water Equations,” Engineering Applications of Computational Hydraulics, Vol. 1, (Abbott, M. B. and Cunge, J. A., eds.), Pitman, Boston.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2008). Computation of Rapidly Varied Flow. In: Open-Channel Flow. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68648-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68648-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-30174-7

  • Online ISBN: 978-0-387-68648-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics