Skip to main content

The Modelling and Design of Microstructured Polymer Optical Fibres

  • Chapter
Microstructured Polymer Optical Fibres
  • 1628 Accesses

The first part of this chapter is about algorithms for modelling microstructured fibres. We also begin by briefly summarising the two major conventions for naming modes. The ideas behind the algorithms for calculating modes are then discussed but detailed results available in the literature are not reproduced here. It is impossible to be comprehensive or even perfectly balanced when covering such a wide field. Some references to both commercial and free software are given. We also sometimes give examples of how these algorithms have been used to analyse interesting features of microstructured fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz, Milton and Stegun, Irene A. 1964. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, 9th Dover printing, 10th GPO printing edition.

    MATH  Google Scholar 

  • Argyros, A, Bassett, I M, van Eijkelenborg, M A, Large, M C J, Zagari, J, Nicorovici, N A P, McPhedran, R C, and de Sterke, C M 2001. Ring struc-tures in microstructured polymer optical fibres. Optics Express, 9(13):813-20.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Argyros, A, Issa, N A, Bassett, I M, and van Eijkelenborg, M A 2004. Microstructured optical fibres for single-polarisation air-guidance. Optics Letters, 29(1):20-3.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Baggett, J C, Monro, T M, Furusawa, K, Finazzi, V, and Richardson, D J 2003. Understanding bending losses in holey optical fibers. Optics Communications, 227(4-6):317-335.

    Article  CAS  ADS  Google Scholar 

  • Bjarklev, A, Broeng, J, and Bjarklev, A S 2003. Photonic crystal fibres. Kluwer academic publishers, Boston, USA.

    Google Scholar 

  • Broeng, J, Mogilevstev, D, Barkou, S E, and Bjarklev, A 1999. Photonic crystal fibers: A new class of optical waveguides. Optical Fiber Technology, 5 (3):305-330.

    Article  ADS  Google Scholar 

  • Carlone, G, amd M De Sario, A D’Orazio, amd V Petruzzelli, L Mescia, and Prudenzano, F 2005. Design of double-clad erbium-doped holey fiber amplifier. Journal of Non-crystalline Solids, 351(21-23):1840-1845.

    Article  CAS  ADS  Google Scholar 

  • Chiang, K S 1994. Review of numerical and approximate methods for the modal-analysis of general optical dielectric wave-guides. Optical And Quantum Electronics, 26(3):S113-S134.

    Article  MathSciNet  Google Scholar 

  • Coello, C A Coello and Lamont, G B 2004. Applications of Multi-Objective Evolutionary Algorithms. World Scientific, Singapore.

    MATH  Google Scholar 

  • Deb, Kalyanmoy 2001. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley and Sons, Chichester.

    MATH  Google Scholar 

  • Domachuk, P, Chapman, A, Magi, E, Steel, M J, and Nguyen, H C 2005. Transverse characterization of high air-fill fraction tapered photonic crystal fiber. Applied Optics, 44(19):3885-3892.

    Article  PubMed  ADS  Google Scholar 

  • D’Orazio, A, de Sario, M, Mescia, L, Petruzzelli, V, and Prudenzano, F 2005. Design of double-clad ytterbium-doped microstructured fibre laser. Applied Surface Science, 248(1-4):499-502.

    Article  ADS  CAS  Google Scholar 

  • Dudley, J M, Provino, L, Grossard, N, Maillotte, H, Windeler, R S, Eggleton, B J, and Coen, S 2002. Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping. Journal of the Optical Society of America B - Optical Physics, 19(4):765-771.

    ADS  Google Scholar 

  • Eggleton, B J, Westbrook, P S, White, C A, Kerbage, C, Windeler, R S, and Burdge, G L 2000. Cladding-mode-resonances in air-silica microstructure optical fibers. Journal of Lightwave Technology, 18(8):1084-1100.

    Article  ADS  Google Scholar 

  • Eggleton, B J, Westbrook, P S, Windeler, R S, and Spalter, S 1999. Grating resonances in air-silica microstructured optical fibers. Optics Letters, 24 (21):1460-1462.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Finazzi, V, Monro, T M, and Richardson, D J 2003a. The role of confinement loss in highly nonlinear silica holey fibers. IEEE Photonics Technology Letters, 15(9):1246-1248.

    Article  ADS  Google Scholar 

  • Finazzi, V, Monro, T M, and Richardson, D J 2003b. Small-core silica holey fibers: nonlinearity and confinement loss trade-offs. Journal of the Optical Society of America, 20(7):1427-1436.

    Article  CAS  ADS  Google Scholar 

  • Fini, J M 2003. Analysis of microstructure optical fibers by radial scattering decomposition. Optics Letters, 28(12):992-994.

    Article  PubMed  ADS  Google Scholar 

  • Fini, J M 2004. Microstructured fibres for optical sensing in gases and liquids. Measurement Science and Technology, 15(6):1120-8.

    Article  CAS  ADS  Google Scholar 

  • Fini, J M 2005. Design of solid and microstructure fibers for suppression of higher-order modes. Optics Express, 13(9):3477-3490.

    Article  PubMed  ADS  Google Scholar 

  • Fuerbach, A, Steinvurzel, P, Bolger, J A, and Eggleton, B J 2005. Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers. Optics Express, 13(8):2977-2987.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Genty, G, Lehtonen, M, Ludvigsen, H, and Kaivola, M 2004. Enhanced bandwidth of supercontinuum generated in microstructured fibers. Optics Express, 12(15):3471-3480.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Gloge, D 1971. Weakly guiding fibers. Applied Optics, 10(10):2252.

    Article  ADS  CAS  Google Scholar 

  • Goldberg, D E 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, Masschusetts.

    MATH  Google Scholar 

  • Holland, John H 1995. Hidden Order, How Adaptation Builds Complexity. Helix Books, Cambridge, Massachusetts.

    Google Scholar 

  • Issa, N A 2004. High numerical aperture in multimode microstructured optical fibers. Applied Optics, 43(33):6191-6197.

    Article  PubMed  ADS  Google Scholar 

  • Issa, N A 2005. Modes and propagation in microstructured optical fibres. PhD dissertation, The University of Sydney, Sydney, Australia.

    Google Scholar 

  • Issa, N A and Padden, W E 2004. Light acceptance properties of multimode microstructured optical fibers: Impact of multiple layers. Optics Express, 12 (14):3224-3235.

    Article  PubMed  ADS  Google Scholar 

  • Issa, N A and Poladian, L 2003. Vector wave expansion method for leaky modes of microstructured optical fibers. Journal of Lightwave Technology, 21 (4):1005-1012.

    Article  ADS  Google Scholar 

  • Issa, N A, van Eijkelenborg, M A, Fellew, M, Cox, F, Henry, G, and Large, M C J 2004. Fabrication and study of microstructured optical fibers with elliptical holes. Optics Letters, 29(12):1336-1338.

    Article  PubMed  ADS  Google Scholar 

  • Kerbage, C and Eggleton, B J 2002. Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber. Optics Express, 10(5):246-255.

    CAS  PubMed  ADS  Google Scholar 

  • Kerbage, C, Hale, A, Yablon, A, Windeler, R S, and Eggleton, B J 2001. Integrated all-fiber variable attenuator based on hybrid microstructure fiber. Applied Physics Letters, 79(19):3191-3193.

    Article  CAS  ADS  Google Scholar 

  • Kerbage, C, Steinvurzel, P, Reyes, P, Westbrook, P S, Windeler, R S, Hale, A, and Eggleton, B J 2002. Highly tunable birefringent microstructured optical fiber. Optics Letters, 27(10):842-844.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Kerbage, C E, Eggleton, B J, Westbrook, P S, and Windeler, R S 2000. Experimental and scalar beam propagation analysis of an air-silica microstructure fiber. Optics Express, 7(3):113-122.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Kerrinckx, Emmanuel, Bigot, Laurent, Douay, Marc, and Quiquempois, Yves 2004. Photonic crystal fiber design by means of a genetic algorithm. Optics Express, 12(9):1990-1995.

    Article  PubMed  ADS  Google Scholar 

  • Koshiba, M 2002. Full-vector analysis of photonic crystal fibers using the finite element method. IEICE Transactions on Electronics, E85C(4):881-888.

    Google Scholar 

  • Koshiba, M and Saitoh, K 2001. Numerical verification of degeneracy in hexagonal photonic crystal fibers. IEEE Photonics Technology Letters, 13 (12):1313-1315.

    Article  ADS  Google Scholar 

  • Koshiba, M and Saitoh, K 2005. Simple evaluation of confinement losses in holey fibers. Optics Communications, 253(1-3):95-98.

    Article  CAS  ADS  Google Scholar 

  • Krug, P A, Poladian, L, and Large, M I (2000). Advanced fibre design by evolutionary computation. In Proceedings of the 25th Australian Conference on Optical Fibre Technology, pages 74-76.

    Google Scholar 

  • Kuhlmey, B T (2005). Modelling microstructured optical fibres with the multipole method. In 14th International Workshop on Optical Waveguide Theory and Numerical Modelling, page 18.

    Google Scholar 

  • Lako, S, Seres, J, Apai, P, Balazs, J, Windeler, R S, and Szipocs, R 2003. Pulse compression of nanojoule pulses in the visible using microstructure optical fiber and dispersion compensation. Applied Physics B - Lasers and Optics, 76(3):267-275.

    CAS  ADS  Google Scholar 

  • Larsen, T T, Bjarklev, A, Hermann, D S, and Broeng, J 2003. Optical devices based on liquid crystal photonic bandgap fibres. Optics Express, 11 (20):2589-2596.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Liu, H R, Yan, M, Shum, P, Ghafouri-Shiraz, H, and Liu, D M 2004. Design and analysis of anti-resonant reflecting photonic crystal VCSEL lasers. Optics Express, 12(18):4269-4274.

    Article  PubMed  ADS  Google Scholar 

  • Manos, S, Poladian, L, Bentley, P, and Large, M (2005). Photonic device design using multiobjective evolutionary algorithms. In Lecture Notes In Computer Science : International Conference on Evolutionary Multi-criterion Optimization, volume 3410, pages 636-650.

    Google Scholar 

  • Manos, Steven, Mitchell, Arnan, Lech, Margaret, and Poladian, Leon 2002. Automated synthesis of microstructured holey optical fibres using numerical optimisation. In Proceedings of the 27th Australian Conference on Optical Fibre Technology, 8th-11th July, Darling Harbour, Sydney, Australia, pages 47-49.

    Google Scholar 

  • Marcuse, D 1974. Theory of dielectric optical waveguides. Academic Press, New York.

    Google Scholar 

  • Michalewicz, Zbigniew and Fogel, David B (2004). How to Solve It: Modern Heuristics. Springer.

    Google Scholar 

  • Mogilevtsev, D, Broeng, J, Barkou, S E, and Bjarklev, A 2001. Design of polarization-preserving photonic crystal fibres with elliptical pores. Journal of Optics A - Pure and Applied Optics, 3(6):S141-S143.

    Article  ADS  Google Scholar 

  • Monro, T M, Belardi, W, Furusawa, K, Baggett, J C, Broderick, N G R, and Richardson, D J 2001. Sensing with microstructured optical fibres. Measurement Science and Technology, 12(7):854-858.

    Article  CAS  ADS  Google Scholar 

  • Nguyen, H C, Domachuk, P, Steel, M J, and Eggleton, B J 2004. Experimental and finite difference time domain technique characterization of transverse in-line photonic crystal fiber. IEEE Photonics Technology Letters, 16(8):1852-1854.

    Article  ADS  Google Scholar 

  • Noh, H R and Jhe, W 2002. Atom optics with hollow optical systems. Physics Reports-Review Section of Physics Letters, 372(3):269-317.

    Google Scholar 

  • Peyrilloux, A, Fevrier, S, Marcou, J, Berthelot, L, Pagnoux, D, and Sansonetti, P 2002. Comparison between the finite element method, the localized function method and a novel equivalent averaged index method for modelling photonic crystal fibres. Journal Of Optics A, 4(3):257-262.

    Google Scholar 

  • Poladian, L (2004). Modelling surface imperfection induced mode mixing in multimode microstructured fibres. In Proceedings of the Conference on Lasers and Electro Optics, San Francisco, USA.

    Google Scholar 

  • Poladian, L (2005). Beyond computing leaky modes. In 14th International Workshop on Optical Waveguide Theory and Numerical Modelling, page 18.

    Google Scholar 

  • Poladian, L, Issa, N, and Monro, T 2002. Fourier decomposition algorithm for leaky modes of fibres with arbitrary genometry. Optics Express, 10 (10):449-454.

    PubMed  ADS  Google Scholar 

  • Poletti, F, Finazzi, V, Monro, T M, Broderick, Tse, V, and Richardson, D J 2005. Inverse design and fabrication tolerences of ultra-flattened dispersion holey fibers. Optics Ex[ress, 13(10):3728-3736.

    CAS  Google Scholar 

  • Prudenzano, F 2005. Erbium-doped hole-assisted optical fiber amplifier: Design and optimization. Journal of Lightwave Technology, 23(1):330-340.

    Article  ADS  Google Scholar 

  • Rayleigh, J W S 1892. On the influence of obstacles arranged in rectangular order upon the properties of a medium. Philosophical Magazine, 34:481-502.

    Google Scholar 

  • Riishede, J, Laegsgaard, J, Broeng, J, and Bjarklev, A 2004. All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm. Journal of Optics A - Pure and Applied Optics, 6(7):667-670.

    Article  CAS  ADS  Google Scholar 

  • Saitoh, K and Koshiba, M 2004. Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window. Optics Express, 12(10):2027-2032.

    Article  PubMed  ADS  Google Scholar 

  • Scarmozzino, R, Gopinath, A, Pregla, R, and Helfert, S 2000. Numerical techniques for modeling guided-wave photonic devices. IEEE Journal Of Selected Topics In Quantum Electronics, 6(1):150-162.

    Article  CAS  Google Scholar 

  • Schwefel, H-P 1995. Evolution and Optimum Seeking. Wiley, New York.

    Google Scholar 

  • Snitzer, E 1961. Cylindrical dielectric waveguide modes. Journal Of The Optical Society Of America, 51(5):491.

    Article  MathSciNet  ADS  Google Scholar 

  • Snyder, A W and Love, J D 1983. Optical waveguide theory. Chapman and Hall, New York.

    Google Scholar 

  • Steinvurzel, P, Eggleton, B J, de Sterke, C M, and Steel, M J 2005. Continuously tunable bandpass filtering using high-index inclusion microstructured optical fibre. Electronics Letters, 41(8):463-464.

    Article  Google Scholar 

  • van Eijkelenborg, M A, Zagari, J, and Poladian, L (2001). Optimising holey fibre designs. In Proceedings of the OECC/IOCC Conference Incorporating ACOFT, 2-5th July, pages 526-527.

    Google Scholar 

  • Vassallo, C 1997. 1993-1995 Optical mode solvers. Optical And Quantum Electronics, 29(2):95-114.

    Article  Google Scholar 

  • Westbrook, P S, Eggleton, B J, Windeler, R S, Hale, A, Strasser, T A, and Burdge, G L 2000. Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings. IEEE Photonics Technology Letters, 12 (5):495-497.

    Article  ADS  Google Scholar 

  • White, T P, Kuhlmey, B T, McPhedran, R C, Maystre, D, Renversez, G, Martijn de Sterke, C, and Botton, L C 2002. Multipole method for microstructured optical fibers i: Formulation. Journal of the Optical Society of America B, 19:2322-30.

    Article  CAS  ADS  Google Scholar 

  • Wilcox, S, Botten, L C, McPhedran, R C, Poulton, C G, and M de Sterke, C (2005). Modeling of defect modes in photonic crystals using the fictitious source superposition method. Physical Review E, 71(5).

    Google Scholar 

  • Zhu, Z M and Brown, T G 2002. Full-vectorial finite-difference analysis of microstructured optical fibers. Optics Express, 10(17):853-864.

    PubMed  ADS  Google Scholar 

  • Zsigri, B, Laegsgaard, J, and Bjarklev, A 2004. A novel photonic crystal fibre design for dispersion compensation. Journal of Optics A - Pure and Applied Optics, 6(7):717-720.

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2008). The Modelling and Design of Microstructured Polymer Optical Fibres. In: Microstructured Polymer Optical Fibres. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68617-2_4

Download citation

Publish with us

Policies and ethics