Skip to main content

Bragg and Long Period Gratings in mPOF

  • Chapter
Microstructured Polymer Optical Fibres
  • 1626 Accesses

This chapter describes both Fibre Bragg Gratings (FBG) and Long Period Gratings (LPG) in mPOF, and the required theoretical basis to understand their operation. Gratings are a highly developed research area, and no attempt has been made to review the whole field. Excellent reviews are available, including [Othonos and Kalli 1999, Kashyap 1999]. The two most relevant related areas however are described here: gratings in MOFs and POFs. This work is significant in identifying applications where the material or waveguide properties of mPOF may offer new functionality. The chapter also describes the experimental techniques used to make mPOF gratings, and their performance characteristics. Finally, conclusions are drawn about how mPOF gratings may be improved and application areas where they may prove useful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allsop, T, Zhang, L, Webb, D J, and Bennion, I (2002). Discrimination be- tween temperature and strain effects using first and second-order diffraction from a long-period grating. Optics Communications, 211(1-6):103-8.

    Article  CAS  ADS  Google Scholar 

  • Argyros, A (2006). Bragg Reflection and Bandgaps in Microstructured Optical Fibres. PhD dissertation, School of Physics, The University of Sydney, Sydney, Australia.

    Google Scholar 

  • Argyros, A, van Eijkelenborg, M A, Jackson, S D, and Mildren, R P (2004). A microstructured polymer fiber laser. Optics Letters, 29(16):1882-4. see also [Argyros et al. 2005].

    Article  CAS  PubMed  ADS  Google Scholar 

  • Argyros, A, van Eijkelenborg, M A, Jackson, S D, and Mildren, R P (2005). Reply to comment on “Microstructured polymer fiber laser”. Optics Letters, 30 (14):1829-30.

    Article  CAS  ADS  Google Scholar 

  • Beugin, V, Bigot, L, Niay, P, Lancry, M, Quiquempois, Y, Douay, M, Mélin, G, Fleureau, A, Lempereur, S, and Gasca, L (2006). Efficient Bragg gratings in phosphosilicate and germanosilicate photonic crystal fiber. Applied Optics, 45 (32):8186-93.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Caning, J, Groothoff, N, Buckley, E, Ryan, T, Lyytikainen, K, and Digweed, J (2003). All-fibre photonic crystal distributed Bragg reflector (pc-dbr) fibre laser. Optics Express, 11(17):1995-2000.

    Article  ADS  Google Scholar 

  • Choi, S, Eom, T J, Yu, J W, Lee, B H, and Oh, K (2002). Novel all-fiber bandpass filter based on hollow optical fiber. IEEE Photonics Technology Letters, 14(12):1701-3.

    Article  ADS  Google Scholar 

  • Daxhelet, X and Kulishov, M (2003). Theory and practice of long-period gratings:when a loss becomes a gain. Optics Letters, 28(9):686-8.

    Article  PubMed  ADS  Google Scholar 

  • Digonnet S, Savin M J F, Kino, G S, and Shaw, H J (2000). Tunable mechanically induced long-period fiber gratings. Optics Letters, 25(10):710-2.

    PubMed  ADS  Google Scholar 

  • Dioz, A, Birks, T A, Reeves, W H, Mangan, B J, and Russell, P St J (2000). Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves. Optics Letters, 25(20):1499-1501.

    Article  ADS  Google Scholar 

  • Dobb, H, Carroll, K, Webb, D J, Kalli, K, Komodromos, M, Themistos, C, Peng, G D, Argyros, A, Large, M C J, van Eijkelenborg, M A, Fang, Q, and Boyd, I W (2006a). Grating based devices in polymer optical fibre. In Proceedings of the SPIE Photonics Europe Conference, Strasbourg, France.

    Google Scholar 

  • Dobb, H, Kalli, K, and Webb, D J (2006b). Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fibre. Optics Communications, 260(1):184-91.

    Article  CAS  ADS  Google Scholar 

  • Dobb, H, Webb, D J, Kalli, K, Argyros, A, Large, M C J, and van Eijkelenborg, M A (2005). Continuous wave ultraviolet light-induced fibre Bragg gratings in few- and single-moded microstructured polymer optical fibres. Optics Letters, 30(24):3296-8.

    Article  PubMed  ADS  Google Scholar 

  • Eggleton, B J, Kerbage, C, Westbrook, P S, Windeler, R S, and Hale, A (2001). Microstructured optical fiber devices. Optics Express, 9(13):698-713.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Eggleton, B J, Westbrook, P S, White, C A, Kerbage, C, Windeler, R S, and Burdge, G L (2000). Cladding mode resonances in air-silica microstructure optical fibers. Journal of Lightwave Technology, 18(8):1084-100.

    Article  ADS  Google Scholar 

  • Eggleton, B J, Westbrook, P S, Windeler, R S, Spalter, S, and Strasser, T A (1999). Grating resonances in air-silica microstructured optical fibers. Optics Letters, 24(21):1460-2.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Frazão, O, Carvalho, J P, Ferreira, L A, Araújo, F M, and Santos, J L (2005). Discrimination of strain and temperature using Bragg gratings in microstructured and standard optical fibres. Measurement Science and Technology, 16:2109-13.

    Article  ADS  CAS  Google Scholar 

  • Fu, L B, Marshall, G D, Bolger, J A, Steinvurzel, P, Magi, E C, Withford, M J, and Eggleton, B J (2005). Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres. Electronics Letters, 41(11):638-40.

    Article  CAS  Google Scholar 

  • Groothoff, N, Canning, J, Buckley, E, Lyttikainen, K, and Zagari, J (2003). Bragg gratings in air-silica structured fibers. Optics Letters, 28(4):233-5.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Han, Y-G, Lee, S B, Jin, C-S K J, Kang, U, Paek, U-C, and Chung, Y (2003). Simultaneous measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivities. Optics Express, 11(5):476-81.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Hill, K O, Fujii, Y, Johnson, D C, and Kawasaki, B S (1978). Photosensitivity in optical fibre waveguides: Application to rejection filter application. Applied Physics Letters, 32(10):647-9.

    Article  ADS  Google Scholar 

  • Hiscocks, M P, van Eijkelenborg, M A, Argyros, A, and Large, M C J (2006). Stable imprinting of long-period gratings in microstructured polymer optical fibre. Optics Express, 14(11):4644-9.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Humbert, G, Malki, A, Fevrier, S, Roy, P, and Pagnoux, D (2004). Characterizations at high temperatures of long period gratings written in germanium-free air-silica microstructure fiber. Optics Letters, 29(1):38-40.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Issa, N A and Poladian, L (2003). Vector wave expansion method for leaky modes of microstructured optical fibres. Journal of Lightwave Technology, 21 (4):1005-12.

    Article  ADS  Google Scholar 

  • Kakarantzas, G, Birks, T A, and Russell, P St J (2002). Structural long-period gratings in photonic crystal fibers. Optics Letters, 27(12):1013-15.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Kashyap, R (1999). Fiber Bragg Gratings. Academic Press, San Diego, USA.

    Google Scholar 

  • Kerbage, C and Eggleton, B J (2003). Tunable microfluidic optical fiber gratings. Applied Physics Letters, 82(9):1338-40.

    Article  CAS  ADS  Google Scholar 

  • Kuriki, K, Kobayashi, T, Imai, N, Tamura, T, Koike, Y, and Okamoto, Y (2000). Organic dye-doped polymer optical fiber lasers. Polymers for Advanced Technologies, 11:612-6.

    Article  CAS  Google Scholar 

  • Lee, K S and Erdogan, T (2001). Fiber mode conversion with tilted gratings in an optical fiber. Journal of the Optical Society of America A, 18(5):1176-85.

    Article  CAS  ADS  Google Scholar 

  • Li, Y F, Salisbury, F C, Zhu, Z M, Brown, T G, Westbrook, P S, Feder, K S, and Windeler, R S (2005a). Interaction of supercontinuum and Raman solitons with microstructure fiber gratings. Optics Express, 13(3):998-1007.

    Article  ADS  Google Scholar 

  • Li, Z, Tam, H Y, Xu, L, and Zhang, Q (2005b). Fabrication of long-period gratings in poly(methyl methacrylateco-methyl vinyl ketone-co-benzyl methacrylate)-core polymer optical fiber by use of a mercury lamp. Optics Letters, 30(10):1117-9.

    Article  CAS  ADS  Google Scholar 

  • Lim, J H, Lee, K S, Kim, J C, and Lee, B H (2004). Tunable fiber gratings fabricated in photonic crystal fiber by use of mechanical pressure. Optics Letters, 29(4):331-3.

    Article  PubMed  ADS  Google Scholar 

  • Liu, H B, Liu, H Y, Peng, G D, and Chu, P L (2004). Novel growth behaviors of fiber Bragg gratings in polymer optical fiber under UV irradiation with low power. IEEE Photonics Technology Letters, 16(1):159-61.

    Article  ADS  Google Scholar 

  • Liu, H Y, Liu, H B, and Peng, G D (2006). Polymer optical fibre Bragg gratings based fibre laser. Optics Communications, 266(1):132-5.

    Article  CAS  ADS  Google Scholar 

  • Liu, H Y, Liu, H B, Peng, G D, and Chu, P L (2003). Observation of type I and type II gratings behavior in polymer optical fiber. Optics Communications, 220 (4-6):337-43.

    Article  CAS  ADS  Google Scholar 

  • Liu, H Y, Peng, G D, and Chu, P L (2001). Thermal tunability of polymer optical fibre Bragg gratings. IEEE Photonics Technology Letters, 13(8):824-6.

    Article  ADS  Google Scholar 

  • Liu, Y, Zhang, L, and Bennion, I (1999). Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in b/ge co-doped fibre. Electronics Letters, 35(8):661-3.

    Article  Google Scholar 

  • Morishita, K and Miyake, Y (2004). Fabrication and resonance wavelengths of long-period gratings written in a pure-silica photonic crystal fiber by the glass structure change. Journal of Lightwave Technology, 22(2):625-30.

    Article  ADS  Google Scholar 

  • Othonos, A and Kalli, K (1999). Fiber Bragg gratings: Fundamentals and applications in telecommunications and sensing. Artech House Publishers.

    Google Scholar 

  • Rindorf, L, Jensen, J B, Dufva, M, Pedersen, L H, Høiby, P E, and Bang, O (2006). Photonic crystal fiber long-period gratings for biochemical sensing. Optics Express, 14(18):8224-31.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Rocha, M L, Borin, F, Monteiro, H C L, Horiuchi, M R, de Barros, M R X, Santos, M A D, Oliveira, F L, and Oes, F D S (2005). Mechanical tuning of fiber Bragg grating for optical network applications. Journal of Microwave and Optoelectronics, 4(1):1-11.

    Google Scholar 

  • Søndergaard, T (2000). Photonic crystal distributed feedback fiber lasers with Bragg gratings. Journal of Lightwave Technology, 18(4):589-97.

    Article  ADS  Google Scholar 

  • Stegall, D B and Erdogan, T (2000). Dispersion control with use of long-period gratings. Journal of the Optical Society of America A, 17(2):304-12.

    Article  CAS  ADS  Google Scholar 

  • Steinvurzel, P, Moore, E D, Mägi, E C, Kuhlmey, B T, and Eggleton, B J (2006). Long period grating resonances in photonic bandgap fiber. Optics Express, 14:3007-14.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Tomlinson, W J, Kaminow, I P, Fork E A, Chandross R L, and Silfvast, W T (1970). Photoinduced refractive index increase in poly(methylmethacrylate) and its applications. Applied Physics Letters, 16(12):486-9.

    Article  CAS  ADS  Google Scholar 

  • van Eijkelenborg, M A, Padden, W, and Besley, J A (2004). Mechanically induced long-period gratings in microstructured polymer fibre. Optics Communications, 236:75-8.

    Article  CAS  ADS  Google Scholar 

  • Vengsarkar, A M, Lemaire, P J, Judkins, J B, Bhatia, V, Erdogan, T, and Sipe, J E (1996). Long-period fiber gratings as band-rejection filters. Journal of Lightwave Technology, 14(1):58-64.

    Article  ADS  Google Scholar 

  • Webb, D J, Aressy, M, Argyros, A, Barton, J S, Dobb, H, van Eijkelenborg, M A, Fender, A, Jones, D C, Kalli, K, Kukureka, S, Large, M C J, MacPher-son, W, Peng, G D, and Silva-Lopez, M (2005). Grating and interferometric devices in POF. In Proceedings of the International Conference on Polymer Optical Fibre, volume 14, pages 325-8, Hong Kong, China. Session XIV ’Polymer Optical Devices’.

    Google Scholar 

  • Westbrook, P S, Eggleton, B J, Windeler, R S, Hale, A, Strasser, T A, and Burdge, G L (2000). Cladding-mode resonances in hybrid polymer-silica microstructured optical fiber gratings. IEEE Photonics Technology Letters, 12 (5):495-7.

    Article  ADS  Google Scholar 

  • Xiong, Z, Peng, G D, Wu, B, and Chu, P L (1999). 73 nm waveguide tuning in polymer optical fiber Bragg gratings. In Proceedings of the Australian Conference on Optical Fibre Technology, pages 2-5, Sydney, Australia.

    Google Scholar 

  • Yu, J M, Tao, X M, and Tam, H Y (2004). Trans -4-stilbenemethanol-doped photosensitive polymer fibers and gratings. Optics Letters, 29(2):156-8.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Zhu, Y, Shum, P, Chong, H-J, Rao, M, and Lu, C (2003). Strong resonance and highly compact long-period grating in a large-mode-area photonic crystal fiber. Optics Express, 11(16):1900-5.

    Article  PubMed  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2008). Bragg and Long Period Gratings in mPOF. In: Microstructured Polymer Optical Fibres. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68617-2_10

Download citation

Publish with us

Policies and ethics