Skip to main content

Chemical Sensors: New Ideas for the Mature Field

  • Chapter
  • First Online:
Functional Thin Films and Nanostructures for Sensors

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 1064 Accesses

Abstract

Chemical sensors for diverse applications for gas- and liquid-phase sensing have their own design requirements. Thus, sensors typically have long timelines from the concept through the evolution and cost reduction to commercial products. For some applications, it is attractive to take advantage of previously developed, optimized, and mass-produced physical transducers, optoelectronic, radiofrequency identification, and other types of components and to rationally combine them with sensing materials to produce new types of chemical sensors, more rapidly than it is typically achieved. Widely deployed and accepted commodity consumer products present a striking set of attractive capabilities applicable for advanced sensors. This chapter presents several recent examples from our laboratory to demonstrate developments in chemical sensors based on electrical, mechanical, and radiant signal-transduction methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari B, Majumdar S (2004) Polymers in sensor applications. Prog. Polym. Sci. 29:699–766.

    CAS  Google Scholar 

  • Ahuja A, James DL, Narayan R (1999) Dynamic behavior of ultra-thin polymer films deposited on surface acoustical wave devices. Sens. Actuators B 72:234–241.

    Google Scholar 

  • Akmal N, Usmani AM, editors. (1998) Polymers in Sensors. Theory and Practice. Washington, DC: American Chemical Society.

    Google Scholar 

  • Archibald B, Brümmer O, Devenney M, Giaquinta DM, Jandeleit B, Weinberg WH, Weskamp T (2002a) Combinatorial aspects of materials science. In: Nicolaou KC, Hanko R, Hartwig W, editors. Handbook of Combinatorial Chemistry. Drugs, Catalysts, Materials. Weinheim: Wiley, chapter 34, pp. 1017–1062.

    Google Scholar 

  • Archibald B, Brümmer O, Devenney M, Gorer S, Jandeleit B, Uno T, Weinberg WH, Weskamp T (2002b) Combinatorial methods in catalysis. In: Nicolaou KC, Hanko R, Hartwig W, editors. Handbook of Combinatorial Chemistry. Drugs, Catalysts, Materials. Weinheim: Wiley, chapter 32, pp. 885–990.

    Google Scholar 

  • Artmann R (1999) Electronic identification systems: State of the art and their further development. Comput. Electron. Agri. 24:5–26.

    Google Scholar 

  • Bachner F (2005) Presented at Organic RFID Conference, San-Diego, CA, Oct. 19–21: Intertech Corp.

    Google Scholar 

  • Bakker E, Bühlmann P, Pretsch E (1997) Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem. Rev. 97:3083–3132.

    CAS  Google Scholar 

  • Ballantine DS, Jr., White RM, Martin SJ, Ricco AJ, Frye GC, Zellers ET, Wohltjen H (1997) Acoustic Wave Sensors: Theory, Design, and Physico-chemical Applications. San Diego, CA: Academic Press. 436 p.

    Google Scholar 

  • Beebe KR, Pell RJ, Seasholtz MB (1998) Chemometrics: A Practical Guide. New York: Wiley.

    Google Scholar 

  • Bender F, Barié N, Romoudis G, Voigt A, Rapp M (2003) Development of a preconcentration unit for a SAW sensor micro array and its use for indoor air quality monitoring. Sens. Actuators B 76:1–7.

    Google Scholar 

  • Bennett MD, Leo DJ (2004) Ionic liquids as stable solvents for ionic polymer transducers. Sens. Actuators A 115:79–90.

    Google Scholar 

  • Benschop J, Rosmalen GV (1991) Confocal compact scanning optical microscope based on compact disc technology. Appl. Opt. 30:1179–1184.

    CAS  Google Scholar 

  • Booksh KS, Kowalski BR (1994) Theory of analytical chemistry. Anal. Chem. 66:782A–791A.

    CAS  Google Scholar 

  • Boussaad S, Tao NJ (2003) Polymer wire chemical sensor using a microfabricated tuning fork. Nano Lett. 3:1173–1176.

    CAS  Google Scholar 

  • Bouten PCP, Nisato G, Slikkerveer PJ, Van Tongeren HFJJ, Haskal EI, Van DSP (2002) A method for measuring a permeation rate, a test, and an apparatus for measuring and testing: World Patent Appl. WO 2002079757 A2 20021010.

    Google Scholar 

  • Capitán-Vallvey LF, de Cienfuegos-Gálvez PA, Fernández Ramos MD, Avidad-Castañeda R (2000) Determination of calcium by a single-use optical sensor. Sens. Actuators B 71:140–146.

    Google Scholar 

  • Carrano JC, Jeys T, Cousins D, Eversole J, Gillespie J, Healy D, Licata N, Loerop W, O'Keefe M, Samuels A, Schultz J, Walter M, Wong N, Billotte B, Munley M, Reich E, Roos J (2004) Chemical and Biological Sensor Standards Study (CBS3). In: Carrano JC, Zukauskas A, editors. Optically Based Biological and Chemical Sensing for Defence. Bellingham, WA: SPIE – The International Society for Optical Engineering. pp. xi–xiii.

    Google Scholar 

  • Chang TC, Wang GP, Hong YS, Chen HB (2001) Characterization and degradation of hydrogen-bonded acidic polyamideimides linked by disiloxanes. Polym. Degrad. Stab. 73:301–308.

    CAS  Google Scholar 

  • Chau LK, Porter MD (1990) Optical sensor for calcium: Performance, structure, and reactivity of calcichrome immobilized at an anionic polymer film. Anal. Chem. 62:1964–1971.

    CAS  Google Scholar 

  • Cho EJ, Bright FV (2001) Optical sensor array and integrated light source. Anal. Chem. 73:3289–3293.

    CAS  Google Scholar 

  • Cho EJ, Tao Z, Tehan EC, Bright FV (2002) Multianalyte pin-printed biosensor arrays based on protein-doped xerogels. Anal. Chem. 74:6177–6184.

    CAS  Google Scholar 

  • Christensen CM (1997) The Innovator's Dilemma: When New Technologies Cause Great Firms to Fail. Boston, MA: Harvard Business School Press.

    Google Scholar 

  • Christensen CM, Raynor ME (2003) The Innovator's Solution: Creating and Sustaining Successful Growth. Boston, MA: Harvard Business School Press.

    Google Scholar 

  • Chu C-L, Lin C-H (2005) Development of an optical accelerometer with a DVD pick-up head. Meas. Sci. Technol. 16:2498–2502.

    CAS  Google Scholar 

  • Convertino A, Capobianchi A, Valentini A, Cirillo ENM (2003) A new approach to organic solvent detection: High-reflectivity Bragg reflectors based on a gold nanoparticle/Teflon-like composite material. Adv. Mater. 15:1103–1105.

    CAS  Google Scholar 

  • DeLongchamp DM, Hammond PT (2003) Fast ion conduction in layer-by-layer polymer films. Chem. Mater. 15:1165–1173.

    CAS  Google Scholar 

  • Dutta P, Tipple CA, Lavrik NV, Datskos PG, Hofstetter H, Hofstetter O, Sepaniak MJ (2003) Enantioselective sensors based on antibody-mediated nanomechanics. Anal. Chem. 75:2342–2348.

    CAS  Google Scholar 

  • Dybko A, Wróblewski W, Rozniecka E, Pozniakb K, Maciejewski J, Romaniuk R, Brzózka Z (1998) Assessment of water quality based on multiparameter fiber optic probe. Sens. Actuators B 51:208–213.

    Google Scholar 

  • Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081.

    CAS  Google Scholar 

  • Erickson D, Li D (2004) Integrated microfluidic devices. Anal. Chim. Acta 507:11–26.

    CAS  Google Scholar 

  • Fatibello-Filho O, de Andrade JF, Suleiman AA, Guilbault GG (1989) Piezoelectric crystal monitor for carbon dioxide in fermentation processes. Anal. Chem. 61:746–748.

    CAS  Google Scholar 

  • Feng C-D, Sun S-L, Wang H, Segre CU, Stetter JR (1997) Humidity sensing properties of nation and sol-gel derived SiO2/Nafion composite thin films. Sens. Actuators B 40:217–222.

    Google Scholar 

  • Filippini D, Alimelli A, Di Natale C, Paolesse R, D'Amico A, Lundström I (2006) Chemical sensing with familiar devices. Angew. Chem. Int. Ed. 45:3800–3803.

    CAS  Google Scholar 

  • Finkenzeller K (2003) RFID Handbook. Fundamentals and Applications in Contactless Smart Cards and Identification. Hoboken, NJ: Wiley.

    Google Scholar 

  • Finklea HO, Phillippi MA, Lompert E, Grate JW (1998) Highly sorbent films derived from Ni(SCN)2(4-picoline)4 for the detection of chlorinated and aromatic hydrocarbons with quartz crystal microbalance sensors. Anal. Chem. 70:1268–1276.

    CAS  Google Scholar 

  • Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter? Small 2:36–50.

    CAS  Google Scholar 

  • Frantzen A, Scheidtmann J, Frenzer G, Maier WF, Jockel J, Brinz T, Sanders D, Simon U (2004) High-throughput method for the impedance spectroscopic characterization of resistive gas sensors. Angew. Chem. Int. Ed. 43:752–754.

    CAS  Google Scholar 

  • Furuki M, Pu LS (1992) Hybrid gas detector of squarylium dye Langmuir-Blodgett film deposited on a quartz oscillator. Thin Solid Films 210/211:471–473.

    Google Scholar 

  • Gomes MTSR, Rocha TA, Duarte AC, Oliveira JABP (1996) The performance of a tetramethylammonium fluoride tetrahydrate coated piezoelectric crystal for carbon dioxide detection. Anal. Chim. Acta 335:235–238.

    CAS  Google Scholar 

  • Göpel W (1996) Ultimate limits in the miniaturization of chemical sensors. Sens. Actuators A 56:83–102.

    Google Scholar 

  • Gordon JF (1999) Apparatus and method for carrying out analysis of samples: US Patent 5,892,577.

    Google Scholar 

  • Grate JW (2000) Acoustic wave microsensor arrays for vapor sensing. Chem. Rev. 100:2627–2648.

    CAS  Google Scholar 

  • Grate JW, Rose-Pehrsson SL, Venezky DL, Klusty M, Wohltjen H (1993) Smart sensor system for trace organophosphorus and organosulfur vapor detection employing a temperature-controlled array of surface acoustic wave sensors, automated sample preconcentration, and pattern recognition. Anal. Chem. 65:1868–1881.

    CAS  Google Scholar 

  • Groves WAGrate JW, Abraham H, McGill RA (1997a) Sorbent polymer materials for chemical sensors and arrays. In: Kress-Rogers E, editor. Handbook of Biosensors and Electronic Noses. Medicine, Food, and the Environment. Boca Raton, FL: CRC. pp. 593–612.

    Google Scholar 

  • Grate JW, Kaganove SN, Bhethanabotla VR (1997b) Examination of mass and modulus contributions to thickness shear mode and surface acoustic wave vapour sensor responses using partition coefficients. Faraday Discuss. 107:259–283.

    CAS  Google Scholar 

  • Grate JW, Kaganove SN, Bhethanabotla VR (1998) Comparisons of polymer/gas partition coefficients calculated from responses of thickness shear mode and surface acoustic wave vapor sensors. Anal. Chem. 70:199–203.

    CAS  Google Scholar 

  • Groves WA, Zellers ET, Frye GC (1998) Analyzing organic vapors in exhaled breath using a surface acoustic wave sensor array with preconcentration: Selection and characterization of the preconcentrator adsorbent. Anal. Chim. Acta 371:131–143.

    CAS  Google Scholar 

  • Hagleitner C, Hierlemann A, Brand O, Baltes H (2002) CMOS Single Chip Gas Detection Systems – Part I. In: Baltes H, Göpel W, Hesse J, editors. Sensors Update, Vol. 11. Weinheim: VCH. pp. 101–155.

    Google Scholar 

  • Hagleitner C, Hierlemann A, Brand O, Baltes H (2003) CMOS Single Chip Gas Detection Systems – Part II. In: Baltes H, Göpel W, Hesse J, editors. Sensors Update, Vol. 12. Weinheim: VCH. pp. 51–120.

    Google Scholar 

  • Hagleitner C, Hierlemann A, Lange D, Kummer A, Kerness N, Brand O, Baltes H (2001) Smart single-chip gas sensor microsystem. Nature 414:293–296.

    CAS  Google Scholar 

  • Hansen CL, Skordalakes E, Berger JM, Quake SR (2002) A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc. Natl. Acad. Sci. USA 99:16531–16536.

    CAS  Google Scholar 

  • Hansen KM, Ji H-F, Wu G, Datar R, Cote R, Majumdar A, Thundat T (2001) Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. Anal. Chem. 73:1567–1571.

    CAS  Google Scholar 

  • Harsanyi G (1995) Polymer Films in Sensor Applications. Lancaster, PA: Technomic.

    Google Scholar 

  • Hassibi A, Lee TH, Navid R, Dutton RW, Zahedi S (2004) Effects of scaling on the SNR and speed of biosensors. Conf. Proc. 26th Ann. Intl Conf. IEEE. Engineering in Medicine and Biology Society EMBS. pp. 2549–2552.

    Google Scholar 

  • Hierlemann A, Baltes H (2003) CMOS-based chemical microsensors. Analyst 128:15–28.

    CAS  Google Scholar 

  • Hirayama E, Sugiyama T, Hisamoto H, Suzuki K (2000) Visual and colorimetric lithium ion sensing based on digital color analysis. Anal. Chem. 72:465–474.

    CAS  Google Scholar 

  • Hirschfeld T (1985) Instrumentation in the next decade. Science 230:286–291.

    CAS  Google Scholar 

  • Hirschfeld T, Callis JB, Kowalski BR (1984) Chemical sensing in process analysis. Science 226:312–318.

    CAS  Google Scholar 

  • Hofmann MC, Kensy F, Buechs J, Mokwa W, Schnakenberg U (2005) Transponder-based sensor for monitoring electrical properties of biological cell solutions. J. Biosci. Bioeng. 100:172–177.

    CAS  Google Scholar 

  • Holtz JH, Asher SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389:829–832.

    CAS  Google Scholar 

  • Hoyt AE, Ricco AJ, Bartholomew JW, Osbourn GC (1998) SAW sensors for the room-temperature measurement of CO2 and relative humidity. Anal. Chem. 70:2137–2145.

    CAS  Google Scholar 

  • Hruschka WR, Massie DR, Anderson JD (1983) Computerized analysis of two-dimensional electrophoretograms. Anal. Chem. 55:2345–2348.

    CAS  Google Scholar 

  • Hsieh M-D, Zellers ET (2004) Limits of recognition for simple vapor mixtures determined with a microsensor array. Anal. Chem. 76:1885–1895.

    CAS  Google Scholar 

  • Hughes RC, Yelton WG, Pfeifer KB, Patel SV (2001) Characteristics and mechanisms in ion-conducting polymer films as chemical sensors. Polyethyleneoxide J. Electrochem. Soc. 148(4):H37–H44.

    CAS  Google Scholar 

  • Ivanisevic A, Yeh J-Y, Mawst L, Kuech TF, Ellis AB (2001) Light-emitting diodes as chemical sensors. Nature 409:476.

    CAS  Google Scholar 

  • Janata J (1989) Principles of Chemical Sensors. New York: Plenum.

    Google Scholar 

  • Janata J, Josowicz M (2002) Conducting polymers in electronic chemical sensors. Nat. Mater. 2:19–24.

    Google Scholar 

  • Jandeleit B, Schaefer DJ, Powers TS, Turner HW, Weinberg WH (1999) Combinatorial materials science and catalysis. Angew. Chem. Int. Ed. 38:2494–2532.

    CAS  Google Scholar 

  • Jarrett MR, Finklea HO (1999) Detection of nonpolar vapors on quartz crystal microbalances with Ni(SCN)2(4-picoline)4 coatings. Anal. Chem. 71:353–357.

    CAS  Google Scholar 

  • Jiang P, Smith DWJ, Ballato JM, Foujger SH (2005) Multicolor pattern generation in photonic bandgap composites. Adv. Mater. 17:179–184.

    CAS  Google Scholar 

  • Jones CL (2005) Cryptographic hash functions and CD-based optical biosensors. Prob. Nonlinear Anal. Eng. Syst. 2(23):17–36.

    Google Scholar 

  • Jones CL, Thigpen SA (2005) Microbial cell driven website design using genetic algorithms and optical disc computing. Australian Society for Microbiology 2005 National Conference. 25–29 September, 2005. National Convention Centre, Canberra, Australia.

    Google Scholar 

  • Jurs PC, Bakken GA, McClelland HE (2000) Computational methods for the analysis of chemical sensor array data from volatile analytes. Chem. Rev. 100:2649–2678.

    CAS  Google Scholar 

  • Kindlund A, Sundgren H, Lundstrom I (1984) Quartz crystal gas monitor with gas concentrating stage. Sens. Actuators 6:1–17.

    CAS  Google Scholar 

  • King WH, Jr. (1964) Piezoelectric sorption detector. Anal. Chem. 36:1735–1739.

    CAS  Google Scholar 

  • Koinuma H, Takeuchi I (2004) Combinatorial solid state chemistry of inorganic materials. Nat. Mater. 3:429–438.

    CAS  Google Scholar 

  • Korsah K, Ma CL, Dress B (1998) Harmonic frequency analysis of SAW resonator chemical sensors: Application to the detection of carbon dioxide and humidity. Sens. Actuators B 50:110–116.

    Google Scholar 

  • Kovalevskij V, Gulbinas V, Piskarskas A, Hines MA, Scholes GD (2004) Surface passivation in CdSe nanocrystal-polymer films revealed by ultrafast excitation relaxation dynamics. Phys. Stat. Sol. B 241(8):1986–1993.

    CAS  Google Scholar 

  • Kuban P, Berg JM, Dasgupta PK (2004) Durable microfabricated high-speed humidity sensors. Anal. Chem. 76:2561–2567.

    CAS  Google Scholar 

  • La Clair JJ, Burkart MD (2003) Molecular screening on a compact disc. Org. Biomol. Chem. 1:3244–3249.

    CAS  Google Scholar 

  • Lange SA, Roth G, Wittemann S, Lacoste T, Vetter A, Grässle J, Kopta S, Kolleck M, Breitinger B, Wick M, Hörber JKH, Dübel S, Bernard A (2006) Measuring biomolecular binding events with a compact disc player device. Angew. Chem. Int. Ed. 45:270–273.

    CAS  Google Scholar 

  • Lavrik NV, Sepaniak MJ, Datskos PG (2004) Cantilever transducers as a platform for chemical and biological sensors. Rev. Sci. Instrum. 75:2229–2253.

    CAS  Google Scholar 

  • Lawrence D (2005) Presented at Organic RFID Conference, San-Diego, CA, Oct. 19–21: TechVention.

    Google Scholar 

  • Leatherdale CA, Bawendi MG (2001) Observation of solvatochromism in CdSe colloidal quantum dots. Phys. Rev. B 63:165315 1–6.

    Google Scholar 

  • Mackay RS, Jaconson B (1957) Endoradiosonde. Nature 179:1239–1240.

    CAS  Google Scholar 

  • Madaras MB, Buck RP (1996) Miniaturized biosensors employing electropolymerized permselective films and their use for creatinine assays in human serum. Anal. Chem. 68:3832–3839.

    CAS  Google Scholar 

  • Madou MJ (2002) Fundamentals of Microfabrication. The Science of Miniaturization. Boca Raton, FL: CRC.

    Google Scholar 

  • Madou MJ, Cubicciotti R (2003) Scaling issues in chemical and biological sensors. Proc. IEEE 91:830–838.

    CAS  Google Scholar 

  • Maier W, Kirsten G, Orschel M, Weiß P-A, Holzwarth A, Klein J (2002) Combinatorial chemistry of materials, polymers, and catalysts. In: Malhotra R, editor. Combinatorial Approaches to Materials Development. Washington, DC: American Chemical Society. pp. 1–21.

    Google Scholar 

  • Manzano J, Filippini D, Lundström I (2003) Computer screen illumination for the characterization of colorimetric assays. Sens. Actuators B 96:173–179.

    Google Scholar 

  • Mascaro DJ, Baxter JC, Halvorsen A, White K, Scholz B, Schulz DL (2007) ChemiBlock transducers. Sens. Actuators B 120:353–361.

    Google Scholar 

  • McCurley MF, Seitz WR (1991) Fiber-optic sensor for salt concentration based on polymer swelling coupled to optical displacement. Anal. Chim. Acta 249:373–380.

    CAS  Google Scholar 

  • McGrath JE, Dunson DL, Mecham SJ, Hedrick JL (1999) Synthesis and characterization of segmented polyimide-polyorganosiloxane copolymers. Adv. Polym. Sci. 140:61–105.

    CAS  Google Scholar 

  • McQuade DT, Pullen AE, Swager TM (2000) Conjugated polymer-based chemical sensors. Chem. Rev. 100: 2537–2574.

    CAS  Google Scholar 

  • Meyerhoff ME (1993) In vivo blood-gas and electrolyte sensors: Progress and challenges. Trends Anal. Chem. 12:257–266.

    CAS  Google Scholar 

  • Middelhoek S, Noorlag JW (1981/1982) Three-dimensional representation of input and output transducers. Sens. Actuators 2:29–41.

    Google Scholar 

  • Mitchell GL (Future Focus Inc., Woodinville, WA, USA) Source: Proceedings of the SPIE - The International Society for Optical Engineering, v 2574, 1995, p 132–40

    Google Scholar 

  • Miyata T, Asami N, Uragami T (1999) A reversibly antigen-responsive hydrogel. Nature 399:766–769.

    CAS  Google Scholar 

  • Morris DR, Sun X (1993) Water-sorption and transport properties of Nafion 117H. J. Appl. Polym. Sci. 50:1445–1452.

    CAS  Google Scholar 

  • Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115:8706–8715.

    CAS  Google Scholar 

  • Nambi S, Nyalamadugu S, Wentworth SM, Chin BA (2003) Radio frequency identification sensors. Proceedings of the 7th World Multiconference on Systemics, Cybernetics & Informatics Orlando, Florida, USA, pp.386–390.

    Google Scholar 

  • Nath N, Chilkoti A (2002) A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal. Chem. 74:504–509.

    CAS  Google Scholar 

  • Nicolaou KC, Xiao X-Y, Parandoosh Z, Senyei A, Nova MP (1995) Radiofrequency encoded combinatorial chemistry. Angew. Chem. Int. Ed. 34:2289–2291.

    CAS  Google Scholar 

  • Ong KG, Wang J, Singh RS, Bachas LG, Grimes CA (2001) Monitoring of bacteria growth using a wireless, remote query resonant-circuit sensor: Application to environmental sensing. Biosens. Bioelectron. 16:305–312.

    CAS  Google Scholar 

  • Opekar F, Å¡tulik K (1999) Electrochemical sensors with solid polymer electrolytes. Anal. Chim. Acta 385:151–162.

    CAS  Google Scholar 

  • Oprea A, Henkel K, Oehmgen R, Appel G, Schmeißer D, Lauer H, Hausmann P (1999) Increased sensor sensitivities obtained by polymer-coated quartz microbalances. Mat. Sci. Eng. C 8–9:509–512.

    Google Scholar 

  • Park J, Groves WA, Zellers ET (1999) Vapor recognition with small arrays of polymer-coated microsensors. A comprehensive analysis. Anal. Chem. 71:3877–3886.

    CAS  Google Scholar 

  • Patrash SJ, Zellers ET (1993) Characterization of polymeric surface acoustic wave sensor coatings and semiempirical models of sensor responses to organic vapors. Anal. Chem. 65:2055–2066.

    CAS  Google Scholar 

  • Peterson DS (2005) Solid supports for micro analytical systems. Lab Chip 5:132–139.

    CAS  Google Scholar 

  • Pickup JC, Alcock S (1991) Clinicians' requirements for chemical sensors for in vivo monitoring: A multinational survey. Biosens. Bioelectron. 6:639–646.

    CAS  Google Scholar 

  • Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) Dip-pen nanolithography. Science 283:661–663.

    CAS  Google Scholar 

  • Potyrailo RA (2001) On-line measurement. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, editors. Encyclopedia of Materials: Science and Technology. Amsterdam, The Netherlands: Elsevier. pp. 6401–6411.

    Google Scholar 

  • Potyrailo RA (2002) Coating materials for sensors and monitoring systems, methods for detecting using sensors and monitoring systems: US Patent 6,500,547 B1.

    Google Scholar 

  • Potyrailo RA (2003) Devices and methods for simultaneous measurement of transmission of vapors through a plurality of sheet materials: US Patent 6,567,753 B2.

    Google Scholar 

  • Potyrailo RA (2006) Polymeric sensor materials: Toward an alliance of combinatorial and rational design tools? Angew. Chem. Int. Ed. 45:702–723.

    CAS  Google Scholar 

  • Potyrailo RA, Amis EJ, editors. (2003) High Throughput Analysis: A Tool for Combinatorial Materials Science. New York: Kluwer/Plenum.

    Google Scholar 

  • Potyrailo RA, Hassib L (2005) Analytical instrumentation infrastructure for combinatorial and high-throughput development of formulated discrete and gradient polymeric sensor materials arrays. Rev. Sci. Instrum. 76:062225.

    Google Scholar 

  • Potyrailo RA, Lemmon JP (2005) Time-modulated combinatorially developed optical sensors for determination of non-volatile analytes in complex samples. QSAR Comb. Sci. 24:7–17.

    CAS  Google Scholar 

  • Potyrailo RA, May RJ (2002) Dynamic high throughput screening of chemical libraries using acoustic-wave sensor system. Rev. Sci. Instrum. 73:1277–1283.

    CAS  Google Scholar 

  • Potyrailo RA, Morris WG (2006a) Implementation of commercially available passive RFID tags for quantitative detection of chemical warfare agent simulants. 2006 International Symposium on Spectral Science Research, May 29–June 02, 2006, Bar Harbor, ME. Organized by the U.S. Army Edgewood Chemical and Biological Center. pp. 264–265.

    Google Scholar 

  • Potyrailo RA, Morris WG (2006b) Passive RFID tags as chemical sensors. Abstracts of Papers, American Chemical Society 232nd National Meeting & Exposition, September 10–14, 2006, San Francisco, CA. p ANYL-300.

    Google Scholar 

  • Potyrailo RA, Morris WG (2007) Multianalyte chemical identification and quantitation using a single radio frequency identification sensor. Anal. Chem. 79:45–51.

    CAS  Google Scholar 

  • Potyrailo RA, Sivavec TM (2004) Boosting sensitivity of organic vapor detection with silicone block polyimide polymers. Anal. Chem. 76:7023–7027.

    CAS  Google Scholar 

  • Potyrailo RA, Sivavec TM (2005) Dual-response resonant chemical sensors for multianalyte analysis. Sens. Actuators B 106:249–252.

    Google Scholar 

  • Potyrailo RA, Takeuchi I, editors. (2005) Special feature on combinatorial and high-throughput materials research. Meas. Sci. Technol. 316: 1–4

    Google Scholar 

  • Potyrailo RA, Chisholm BJ, Olson DR, Brennan MJ, Molaison CA (2002) Development of combinatorial chemistry methods for coatings: High-throughput screening of abrasion resistance of coatings libraries. Anal. Chem. 74:5105–5111.

    CAS  Google Scholar 

  • Potyrailo RA, Conrad RC, Ellington AD, Hieftje GM (1998a) Adapting selected nucleic acid ligands (aptamers) to biosensors. Anal. Chem. 70:3419–3425.

    CAS  Google Scholar 

  • Potyrailo RA, Ding Z, Butts MD, Genovese SE (2008) Selective chemical sensing using structurally colored core-shell colloidal crystal films. 8:815–22.

    Google Scholar 

  • Potyrailo RA, Ghiradella H, Vertiatchikh A, Dovidenko K, Cournoyer JR, Olson E (2007b) Morpho butterfly wing scales demonstrate highly selective vapour response. Nat. Photon. 1:123–128 (Cover Story).

    CAS  Google Scholar 

  • Potyrailo RA, Hobbs SE, Hieftje GM (1998b) Optical waveguide sensors in analytical chemistry: Today's instrumentation, applications and future development trends. Fresenius' J. Anal. Chem. 362:349–373.

    CAS  Google Scholar 

  • Potyrailo RA, Karim A, Wang Q, Chikyow T, editors. (2004a) Combinatorial and Artificial Intelligence Methods in Materials Science II. Warrendale, PA: Materials Research Society.

    Google Scholar 

  • Potyrailo RA, Leach AM, Morris WG, Gamage SK (2006a) Chemical sensors based on micromachined transducers with integrated piezoresistive readout. Anal. Chem. 78:5633–5638.

    CAS  Google Scholar 

  • Potyrailo RA, May RJ, Sivavec TM (2004b) Recognition and quantification of perchloroethylene, trichloroethylene, vinyl chloride, and three isomers of dichloroethylene using acoustic-wave sensor array. Sens. Lett. 2:31–36.

    CAS  Google Scholar 

  • Potyrailo RA, Morris WG, Boyette SM (2005a) Sensor systems and methods for remote quantification of compounds. US Patent 20050111001.

    Google Scholar 

  • Potyrailo RA, Morris WG, Boyette SM, Wisnudel MB, Leach AM, Stanley ML (2005b) Sensor systems and methods for quantification of physical parameters, chemical and biochemical volatile and nonvolatile compounds in fluids. US Patent 20050111000.

    Google Scholar 

  • Potyrailo RA, Morris WG, Leach AM (2005c) Sensor system and methods for improved quantitation of environmental parameters. US Patent 20050111328.

    Google Scholar 

  • Potyrailo RA, Morris WG, Leach AM, Sivavec TM, Wisnudel MB, Boyette S (2006b) Analog signal acquisition from computer optical drives for quantitative chemical sensing. Anal. Chem. 78:5893–5899.

    CAS  Google Scholar 

  • Potyrailo RA, Morris WG, Leach AM, Wisnudel MB, Boyette S (2006c) Lab-on-DVD: Concept and feasibility demonstration for water analysis. 2006 International Symposium on Spectral Science Research, May 29–June 02, 2006, Bar Harbor, ME. Organized by the U.S. Army Edgewood Chemical and Biological Center. pp. 221–222.

    Google Scholar 

  • Potyrailo RA, Morris WG, Wroczynski RJ (2003) Acoustic-wave sensors for high-throughput screening of materials. In: Potyrailo RA, Amis EJ, editors. High Throughput Analysis: A Tool for Combinatorial Materials Science. New York: Kluwer/Plenum. Chapter 11.

    Google Scholar 

  • Potyrailo RA, Morris WG, Wroczynski RJ (2004c) Multifunctional sensor system for high-throughput primary, secondary, and tertiary screening of combinatorially developed materials. Rev. Sci. Instrum. 75:2177–2186.

    CAS  Google Scholar 

  • Potyrailo RA, Szumlas AW, Danielson TL, Johnson M, Hieftje GM (2005d) A dual-parameter optical sensor fabricated by gradient axial doping of an optical fibre. Meas. Sci. Technol. 16:235–241.

    CAS  Google Scholar 

  • Potyrailo RA, Wroczynski RJ, Lemmon JP, Flanagan WP, Siclovan OP (2004d) Multivariate tools for real-time monitoring and optimization of combinatorial materials and process conditions. In: Yan B, editor. Analysis and Purification Methods in Combinatorial Chemistry. Hoboken, NJ: Wiley. pp. 87–123.

    Google Scholar 

  • Quercioli F, Tiribilli B, Ascoli C, Baschieri P, Frediani C (1999) Monitoring of an atomic force microscope cantilever with a compact disk pickup. Rev. Sci. Instrum. 70:3620–3624.

    CAS  Google Scholar 

  • Rabani E, Hetényi B, Berne BJ, Brus LE (1999) Electronic properties of CdSe nanocrystals in the absence and presence of a dielectric medium. J. Chem. Phys. 110:5355–5369.

    CAS  Google Scholar 

  • Rakow NA, Suslick KS (2000) A colorimetric sensor array for odour visualization. Nature 406:710–713.

    CAS  Google Scholar 

  • Ren M, Forzani ES, Tao N (2005) Chemical sensor based on microfabricated wristwatch tuning forks. Anal. Chem. 77:2700–2707.

    CAS  Google Scholar 

  • Rosler S, Lucklum R, Borngraber R, Hartmann J, Hauptmann P (1998) Sensor system for the detection of organic pollutants in water by thickness shear mode resonators. Sens. Actuators B 48:415–424.

    Google Scholar 

  • Savran CA, Knudsen SM, Ellington AD, Manalis SR (2004) Micromechanical detection of proteins using aptamer-based receptor molecules. Anal. Chem. 76:3194–3198.

    CAS  Google Scholar 

  • Scheidtmann J, Frantzen A, Frenzer G, Maier WF (2005) A combinatorial technique for the search of solid state gas sensor materials. Meas. Sci. Technol. 16:119–127.

    CAS  Google Scholar 

  • Seitz WR (1988) Chemical sensors based on immobilized indicators and fiber optics. CRC Crit. Rev. Anal. Chem. 19(2):135–173.

    CAS  Google Scholar 

  • Sepaniak MJ, Datskos PG, Lavrik NV, Tipple C (2002) Microcantilever transducers: A new approach in sensor technology. Anal. Chem. 74:568A–575A.

    Google Scholar 

  • Shaffer RE, Potyrailo RA, Salvo JJ, Sivavec TM, Salsman L (2003) GE/Nomadics in-well monitoring system for vertical profiling of DNAPL contaminants. Final Technical Report of Work Performed Under Contract DE-AC26-01NT41188, OSTI ID: 834346, http://www.osti.gov/servlets/purl/834346-tEuKN5/native/: US Department of Energy Information Bridge.

  • Sheehan PE, Whitman LJ (2005) Detection limits for nanoscale biosensors. Nano Lett. 5:803–807.

    CAS  Google Scholar 

  • Sherman RE, editor. (1996) Analytical Instrumentation: Practical Guides for Measurement and Control. Research Triangle Park, NC: Instrument Society of America.

    Google Scholar 

  • Singh K, Shahi VK (1998) Electrochemical studies on nation membrane. J. Memb. Sci. 140:51–56.

    CAS  Google Scholar 

  • Sivavec TM, Potyrailo RA (2002) Polymer coatings for chemical sensors. US Patent 6,357,278 B1.

    Google Scholar 

  • Smit MA, Ocampo AL, Espinosa-Medina MA, Sebastián PJ (2003) A modified Nafion membrane with in situ polymerized polypyrrole for the direct methanol fuel cell. J. Power Sources 124:59–64.

    CAS  Google Scholar 

  • Steinberg TH, Jones LJ, Haugland RP, Singer VL (1996) SYPRO orange and SYPRO red protein gel stains: One-step fluorescent staining of denaturing gels for detection of nanogram levels of protein. Anal. Biochem. 239:223–237.

    CAS  Google Scholar 

  • Su M, Li S, Dravid VP (2003) Microcantilever resonance-based DNA detection with nanoparticle probes. Appl. Phys. Lett. 82:3562–3564.

    CAS  Google Scholar 

  • Su P-G, Sun Y-L, Lin C-C (2006) A low humidity sensor made of quartz crystal microbalance coated with multi-walled carbon nanotubes/Nafion composite material films. Sens. Actuators B 115:338–343.

    Google Scholar 

  • Suzuki H (2000) Advances in the microfabrication of electrochemical sensors and systems. Electroanalysis 12:703–715.

    CAS  Google Scholar 

  • Suzuki K, Hirayama E, Sugiyama T, Yasuda K, Okabe H, Citterio D (2002) Ionophore-based lithium ion film optode realizing multiple color variations utilizing digital color analysis. Anal. Chem. 74:5766–5773.

    CAS  Google Scholar 

  • Tailoka F, Fray DJ, Kumar RV (2003) Application of Nafion electrolytes for the detection of humidity in a corrosive atmosphere. Solid State Ionics 161:267–277.

    CAS  Google Scholar 

  • Tani H, Maehana K, Kamidate T (2004) Chip-based bioassay using bacterial sensor strains immobilized in three-dimensional microfluidic network. Anal. Chem. 76:6693–6697.

    CAS  Google Scholar 

  • Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 289:1757–1760.

    CAS  Google Scholar 

  • Taylor RF, Schultz JS, editors. (1996) Handbook of Chemical and Biological Sensors. Bristol: IOP.

    Google Scholar 

  • Thompson M, Stone DC (1997) Surface-Launched Acoustic Wave Sensors: Chemical Sensing and Thin-Film Characterization. New York: Wiley. 196 p.

    Google Scholar 

  • Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298:580–584.

    CAS  Google Scholar 

  • Tricoli V, Nannetti F (2003) Zeolite-Nafion composites as ion conducting membrane materials. Electrochim. Acta 48:2625–2633.

    CAS  Google Scholar 

  • Vikalo H, Hassibi B, Hassibi A (2006) A statistical model for microarrays, optimal estimation algorithms, and limits of performance. IEEE Trans. Signal Proc. 54:2444–2455.

    Google Scholar 

  • Vilkner T, Janasek D, Manz A (2004) Micro total analysis systems. Recent developments. Anal. Chem. 76:3373–3386.

    CAS  Google Scholar 

  • Vo-Dinh T, Alarie JP, Isola N, Landis D, Wintenberg AL, Ericson MN (1999) DNA biochip using a phototransistor integrated circuit. Anal. Chem. 71:358–363.

    CAS  Google Scholar 

  • Wang H, Feng C-D, Sun S-L, Segre CU, Stetter JR (1997) Comparison of conductometric humidity-sensing polymers. Sens. Actuators B 40:211–216.

    Google Scholar 

  • Wang J (2002) Electrochemical detection for microscale analytical systems: A review. Talanta 56:223–231.

    CAS  Google Scholar 

  • Wang J, Musameh M, Lin Y (2003) Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. J. Am. Chem. Soc. 125:2408–2409.

    CAS  Google Scholar 

  • Wang N, Zhang N, Wang M (2006) Wireless sensors in agriculture and food industry – Recent development and future perspective. Comput. Electron. Agri. 50:1–14.

    CAS  Google Scholar 

  • Want R. (2004) Enabling ubiquitous sensing with RFID. Computer 37(4):84–86.

    Google Scholar 

  • Ward M, Buttry DA (1990) In situ interfacial mass detection with piezoelectric transducers. Science 249:1000–1007.

    CAS  Google Scholar 

  • Webster JG, editor. (1999) The Measurement, Instrumentation, and Sensors Handbook. Boca Raton, FL: CRC.

    Google Scholar 

  • Wetzl BK, Yarmoluk SM, Craig DB, Wolfbeis OS (2004) Chameleon labels for staining and quantifying proteins. Angew. Chem. Int. Ed. 43:5400–5402.

    CAS  Google Scholar 

  • Wohltjen H (2006) A journey: From sensor ideas to sensor products. Plenary talk at the 11th International Meeting on Chemical Sensors, University of Brescia, Italy, July 16–19, 2006: Elsevier Science.

    Google Scholar 

  • Wolfbeis OS, editor. (1991) Fiber Optic Chemical Sensors and Biosensors. Boca Raton, FL: CRC.

    Google Scholar 

  • Wolfbeis OS (2004) Fiber-optic chemical sensors and biosensors. Anal. Chem. 76:3269–3284.

    CAS  Google Scholar 

  • Wolfbeis OS (2006) Fiber-optic chemical sensors and biosensors. Anal. Chem. 78:3859–3874.

    CAS  Google Scholar 

  • Wu R-J, Sun Y-L, Lin C-C, Chen H-W, Chavali M (2006) Composite of TiO2 nanowires and Nafion as humidity sensor material. Sens. Actuators B 115:198–204.

    Google Scholar 

  • Yeo SC, Eisenberg A (1977) Physical properties and supermolecular structure of perfluorinated ion-containing (Nafion) polymers. J. Appl. Polym. Sci. 21:875–898.

    CAS  Google Scholar 

  • Zahedi S, Navid R, Hassibi A (2004) Statistical modeling of biochemical detection systems. Proceedings of the 26th Annual International Conference of IEEE Engineering in Medicine and Biology Society, EMBS; San Francisco, CA, USA, pp. 208–211.

    Google Scholar 

  • Zemel JN (1990) Microfabricated nonoptical chemical sensors. Rev. Sci. Instrum. 61:1579–1606.

    CAS  Google Scholar 

  • Zen J-M, Kumar AS (2001) A mimicking enzyme analogue for chemical sensors. Acc. Chem. Res. 34:772–780.

    CAS  Google Scholar 

  • Zhang C, Suslick KS (2005) Colorimetric sensor array for organics in water. J. Am. Chem. Soc. 127:11548–11549.

    CAS  Google Scholar 

  • Zhang Y, Ji H-F, Brown GM, Thundat T (2003) Detection of CrO4 2− using a hydrogel swelling microcantilever sensor. Anal. Chem. 75:4773–4777.

    CAS  Google Scholar 

Download references

Acknowledgments

This research has been inspired by the creative teammates at GE Global Research, Nomadics, and Indiana University, Bloomington, IN who have coauthored original contributions cited here: S. Boyette, M. D. Butts, J. R. Cournoyer, Z. Ding, K. Dovidenko, W. P. Flanagan, S. K. Gamage, S. E. Genovese, L. Hassib, A. M. Leach, J. P. Lemmon, R. J. May, W. G. Morris, E. Olson, J. J. Salvo, O. P. Siclovan, R. E. Shaffer, T. M. Sivavec, A. Vertiatchikh, M. B. Wisnudel, and R. J. Wroczynski (GE), L. Salsman (Nomadics), R. C. Conrad, T. L. Danielson, M. Johnson, and A. W. Szumlas (Indiana University), and H. Ghiradella (SUNY Albany). Special thanks go to G. M. Hieftje (Indiana University), A. D. Ellington (while at Indiana University), T. K. Leib, and A. Linsebigler (GE) for letting the creativity grow and expand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radislav A. Potyrailo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Potyrailo, R. (2009). Chemical Sensors: New Ideas for the Mature Field. In: Zribi, A., Fortin, J. (eds) Functional Thin Films and Nanostructures for Sensors. Integrated Analytical Systems. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68609-7_6

Download citation

Publish with us

Policies and ethics