Mechanisms of Axon Regeneration

  • Jan M. Schwab
  • Zhigang He


Epidermal Growth Factor Receptor Spinal Cord Injury Growth Cone Axon Regeneration Central Nervous System Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arquint, M., Roder, J., Chia, L.S., Down, J., Wilkinson, D., Bayley, H., et al., 1987, Molecular cloning and primary structure of myelin-associated glycoprotein, Proc. Natl. Acad. Sci. USA 84: 600–604.PubMedGoogle Scholar
  2. Bareyre, F.M., Kerschensteiner, M., Misgeld, T., and Sanes, J.R., 2005, Transgenic labeling of the corticospinal tract for monitoring axonal responses to spinal cord injury, Nat. Med. 11: 1355–1360.PubMedGoogle Scholar
  3. Bareyre, F.M., Kerschensteiner, M., Reinetaeu, O., Mettenleiter, T.C., Weinmann, O., and Schwab, M.E., 2004, The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat. Neusosci. 7: 269–277.Google Scholar
  4. Bartsch, U., Bandtlow, C.E., Schnell, L., Bartsch, S., Spillmann, A.A., Rubin, B.P., et al., 1995, Lack of evidence that myelin-associated glycoprotein is a major inhibitor of axonal regeneration in the CNS, Neuron 15: 1375–1381.PubMedGoogle Scholar
  5. Benson, M.D., Romero, M.I., Lush, M.E., Lu, Q.R., Henkemeyer, M., and Parada, L.F., 2005, Ephrin-B3 is a myelin-based inhibitor of neurite outgrowth. Proc. Natl. Acad. Sci. USA 102: 10694–10699.PubMedGoogle Scholar
  6. Bradbury, E.J., Moon, L.D., Popat, R.J., King, V.R., Bennett, G.S., Patel, P.N., et al., 2002, Chondroitinase ABC promotes functional recovery after spinal cord injury, Nature 416: 636–640.PubMedGoogle Scholar
  7. Bregman, B.S., Kunkel-Bagden, E., Schnell, L., Dai, H.N., Gao, D., and Schwab, M.E., 1995, Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors, Nature 378: 498–501.PubMedGoogle Scholar
  8. Bregman, B.S., McAtee, M., Dai, H.N., and Kuhn, P.L., 1997, Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat, Exp. Neurol. 148: 475–494.PubMedGoogle Scholar
  9. Brushart, T.M., 1998, Preferential reinnervation of motor nerves by regenerating motor axons, J. Neurosci. 8: 1026–1031.Google Scholar
  10. Cai, D., Shen, Y., De Bellard, M., Tang, S., and Filbin, M.T., 1999, Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism, Neuron 22: 89–101.PubMedGoogle Scholar
  11. Cai, D., Deng, K., Mellado, W., Lee, J., Ratan, R.R., and Filbin, M.T., 2002, Arginase I and polyamines act downstream from cyclic AMP in overcoming inhibition of axonal growth MAG and myelin in vitro, Neuron 35: 711–719.PubMedGoogle Scholar
  12. Camand, E., Morel, M.P., Faissner, A., Sotelo, C., and Dusart, I., 2004, Long-term changes in the molecular composition of the glial scar and progressive increase of serotoninergic fibre sprouting after hemisection of the mouse spinal cord, Eur. J. Neurosci. 20: 1161–1176.PubMedGoogle Scholar
  13. Carbonetto, S., Evans, D., and Cochard, P., 1987, Nerve fiber growth in culture on tissue substrata from central and peripheral nervous systems, J. Neurosci. 7: 610–620.PubMedGoogle Scholar
  14. Caroni, P., and Schwab, M.E., 1988a, Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter, Neuron 1: 85–96.PubMedGoogle Scholar
  15. Caroni, P., and Schwab, M.E., 1988b, Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading, J. Cell Biol. 106: 1281–1288.PubMedGoogle Scholar
  16. Chan, C.C., Khodarahmi, K., Liu, J., Sutherland, D., Oschipok, L.W., Steeves, J.D., et al., 2005, Dose-dependent beneficial and detrimental effects of ROCK inhibitor Y27632 on axonal sprouting and functional recovery after rat spinal cord injury, Exp. Neurol. 196: 352–364.PubMedGoogle Scholar
  17. Chen, M.S., Huber, A.B., van der Haar, M.E., Frank, M., Schnell, L., Spillmann, A.A., et al., 2000, Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1, Nature 403: 434–439.PubMedGoogle Scholar
  18. Crutcher, K.A., 1989, Tissue sections from the mature rat brain and spinal cord as substrates for neurite outgrowth in vitro: Extensive growth on gray matter but little growth on white matter, Exp. Neurol. 104: 39–54.PubMedGoogle Scholar
  19. David, S., Bouchard, C., and Tsatas, O., and Giftochristos, N., 1990, Macrophages can modify the nonpermissive nature of the adult mammalian central nervous system, Neuron 5: 463–469.PubMedGoogle Scholar
  20. Davies, S.J., Fitch, M.T., Memberg, S.P., Hall, A.K., Raisman, G., and Silver, J., 1997, Regeneration of adult axons in white matter tracts of the central nervous system, Nature 390: 680–683.PubMedGoogle Scholar
  21. Davies, S.J., Goucher, D.R., Doller, C., and Silver, J., 1999, Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord, J. Neurosci. 19: 5810–5822.PubMedGoogle Scholar
  22. de La Houssaye, B.A., Mikule, K., Nikolic, D., and Pfenninger, K.H., 1999, Thrombin-induced growth cone collapse: Involvement of phospholipase A(2) and eicosanoid generation, J. Neurosci. 19: 10843–10855.Google Scholar
  23. De Winter, F., Oudega, M., Lankhorst, A.J., Hamers, F.P., Blits, B., Ruitenberg, M.J., et al., 2002, Injury-induced class 3 semaphorin expression in the rat spinal cord, Exp. Neurol. 175: 61–75.PubMedGoogle Scholar
  24. Dergham, P., Ellezam, B., Essagian, C., Avedissian, H., Lubell, W.D., and McKerracher, L., 2002, Rho signaling pathway targeted to promote spinal cord repair, J. Neurosci. 22: 6570–6577.PubMedGoogle Scholar
  25. Dickson, B.J., 2002, Molecular mechanisms of axon guidance, Science 298: 1959–1964.PubMedGoogle Scholar
  26. Domeniconi, M., Cao, Z., Spencer, T., Sivasankaran, R., Wang, K., Nikulina, E., et al., 2002, Myelin-associated glycoprotein interacts with the Nogo66 receptor to inhibit neurite outgrowth, Neuron 35: 283–290.PubMedGoogle Scholar
  27. Domeniconi, M., Zampieri, N., Spencer, T., Hilaire, M., Mellado, W., Chao, M.V., et al., 2005, MAG induces regulated intramembrane proteolysis of the p75 neurotrophin receptor to inhibit neurite outgrowth, Neuron 46: 849–855.PubMedGoogle Scholar
  28. Dubreuil, C.I., Winton, M.J., and McKerracher, L., 2003, Rho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system, J. Cell Biol. 162: 233–243.PubMedGoogle Scholar
  29. Fawcett, J.W., and Asher, R.A., 1999, The glial scar and central nervous system repair, Brain Res. Bull. 49: 377–391.PubMedGoogle Scholar
  30. Fournier, A.E., GrandPre, T., and Strittmatter, S.M., 2001, Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration, Nature 409: 341–346.PubMedGoogle Scholar
  31. Fournier, A.E., Gould, G.C., Liu, B.P., and Strittmatter, S.M., 2002, Truncated soluble Nogo receptor binds Nogo-66 and blocks inhibition of axon growth by myelin, J. Neurosci. 22: 8876–8883.PubMedGoogle Scholar
  32. Fu, S.Y., and Gordon, T., 1997. The cellular and molecular basis of peripheral nerve regeneration, Mol. Neurobiol. 14: 67–116.PubMedGoogle Scholar
  33. Funk, C.D., Chen, X.S., Johnson, E.N., and Zhao, L., 2002, Lipoxygenase genes and their targeted disruption, Prostaglandins Other Lipid Mediat. 6869: 303–312.Google Scholar
  34. Ghoumari, A.M., Wehrle, R., De Zeeuw, C.I., Sotelo, C., and Dusart, I., 2002, Inhibition of protein kinase C prevents Purkinje cell death but does not affect axonal regeneration. J. Neurosci. 22: 3531–3542.PubMedGoogle Scholar
  35. Goldberg, J.L., Klassen, M.P., Hua, Y., and Barres, B.A., 2002, Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells, Science 296: 1860–1864.PubMedGoogle Scholar
  36. Goldshmit, Y., Galea, M.P., Wise, G., Bartlett, P.F., and Turnley, A.M., 2004, Axonal regeneration and lack of astrocytic gliosis in EphA4-deficient mice, J. Neurosci. 24: 10064–10073.PubMedGoogle Scholar
  37. Graef, I.A., Wang, F., Charron, F., Chen, L., Neilson, J., Tessier-Lavigne, et al., 2003, Neurotrophins and netrins require calcineurin/NFAT signaling to stimulate outgrowth of embryonic axons, Cell 113: 657–670.PubMedGoogle Scholar
  38. GrandPre, T., Nakamura, F., Vartanian, T., and Strittmatter, S.M., 2000, Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein, Nature 403: 439–444.PubMedGoogle Scholar
  39. Grimpe, B., and Silver, J., 2002, The extracellular matrix in axon regeneration, Prog. Brain Res. 137: 333–349.PubMedGoogle Scholar
  40. Guan, K.L., and Rao, Y., 2003, Signalling mechanisms mediating neuronal responses to guidance cues, Nat. Rev. Neurosci. 4: 941–956.PubMedGoogle Scholar
  41. Hannila, S.S., and Kawaja, M.D., 1999, Nerve growth factor-induced growth of sympathetic axons into the optic tract of mature mice is enhanced by an absence of p75NTR expression, J. Neurobiol. 39: 51–66.PubMedGoogle Scholar
  42. Hansson, A., Serhan, C.N., Haeggstrom, J., Ingelman-Sundberg, M., and Samuelsson, B., 1986, Activation of protein kinase C by lipoxin A and other eicosanoids. Intracellular action of oxygenation products of arachidonic acid, Biochem. Biophys. Res. Commun. 134: 1215–1222.PubMedGoogle Scholar
  43. Hempstead, B.L., 2002, The many faces of p75NTR, Curr. Opin. Neurobiol. 12: 260–267.PubMedGoogle Scholar
  44. Hill, C.E., Beattie, M.S., and Bresnahan, J.C., 2001, Degeneration and sprouting of identified descending supraspinal axons after contusive spinal cord injury in the rat, Exp. Neurol. 171: 153–169.PubMedGoogle Scholar
  45. Huang, D.W., McKerracher, L., Braun, P.E., and David, S., 1999, A therapeutic vaccine approach to stimulate axon regeneration in the adult mammalian spinal cord, Neuron 24: 639–647.PubMedGoogle Scholar
  46. Hunt, D., Mason, M.R., Campbell, G., Coffin, R., and Anderson, P.N., 2002a, Nogo receptor mRNA expression in intact and regenerating CNS neurons, Mol. Cell Neurosci. 20: 537–552.PubMedGoogle Scholar
  47. Hunt, D., Coffin, R.S., and Anderson, P.N., 2002b, The Nogo receptor, its ligands and axonal regeneration in the spinal cord; a review, J. Neurocytol. 31: 93–120.PubMedGoogle Scholar
  48. Irizarry-Ramirez, M., Willson, C.A., Cruz-Orengo, L., Figueroa, J., Velazquez, I., Jones, H., et al., 2005, Upregulation of EphA3 receptor after spinal cord injury, J. Neurotrauma 22: 929–935.PubMedGoogle Scholar
  49. Jalink, K., and Moolenaar, W.H., 1992, Thrombin receptor activation causes rapid neural cell rounding and neurite retraction independent of classic second messengers, J. Cell Biol. 118: 411–419.PubMedGoogle Scholar
  50. Jalink, K., van Corven, E.J., Hengeveld, T., Morii, N., Narumiya, S., and Moolenaar, W.H., 1994, Inhibition of lysophosphatidate- and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho, J. Cell Biol. 126: 801–810.PubMedGoogle Scholar
  51. Kater, S.B., and Mills, L.R., 1991, Regulation of growth cone behavior by calcium, J. Neurosci. 11: 891–899.PubMedGoogle Scholar
  52. Keirstead, H.S., Hasan, S.J., Muir, G.D., and Steeves, J.D., 1992, Suppression of the onset of myelination extends the permissive period for the functional repair of embryonic spinal cord, Proc. Natl. Acad. Sci. USA 89: 11664–11668.PubMedGoogle Scholar
  53. Kerschensteiner, M., Schwab, M.E., Lichtman, J.W., and Misgeld, T., 2005, In vivo imaging of axonal degeneration and regeneration in the injured spinal cord, Nat. Med. 11: 572–577.PubMedGoogle Scholar
  54. Koprivica, V., Cho, K.S., Park, J.B., Yiu, G., Atwal, J., Gore, B., et al., 2005, EGFR activation mediates inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans, Science 310: 106–110.PubMedGoogle Scholar
  55. Kury, P., Abankwa, D., Kruse, F., Greiner-Petter, R., and Muller, H.W., 2004, Gene expression profiling reveals multiple novel intrinsic and extrinsic factors associated with axonal regeneration failure, Eur. J. Neurosci. 19: 32–42.PubMedGoogle Scholar
  56. Laskowski, M.B., and Sanes, J.R., 1988, Topographically selective reinnervation of adult mammalian skeletal muscles, J. Neurosci. 8: 3094–3099.PubMedGoogle Scholar
  57. Lehmann, M., Fournier, A., Selles-Navarro, I., Dergham, P., Sebok, A., Leclerc, N., et al., 1999, Inactivation of Rho signaling pathway promotes CNS axon regeneration, J. Neurosci. 19: 7537–7547.PubMedGoogle Scholar
  58. Li, M., Shibata, A., Li, C., Braun, P.E., McKerracher, L., Roder, J., et al., 1996, Myelin-associated glycoprotein inhibits neurite/axon growth and causes growth cone collapse, J. Neurosci. Res. 46: 404–414.PubMedGoogle Scholar
  59. Liu, B.P., Fournier, A., GrandPre, T., and Strittmatter, S.M., 2002, Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor, Science 297: 1190–1193.PubMedGoogle Scholar
  60. Mandolesi, G., Madeddu, F., Bozzi, Y., Maffei, L., Ratto, G.M., 2004, Acute physiological response of mammalian central neurons to axotomy: Ionic regulation and electrical activity, FASEB J. 18: 1934–1936.PubMedGoogle Scholar
  61. Manitt, C., and Kennedy, T.E., 2002, Where the rubber meets the road: Netrin expression and function in developing and adult nervous systems, Prog. Brain Res. 137: 425–442.PubMedGoogle Scholar
  62. Matsunaga, E., Tauszig-Delamasure, S., Monnier, P.P., Mueller, B.K., Strittmatter, S.M., Mehlen, P., et al., 2004, RGM and its receptor neogenin regulate neuronal survival, Nat. Cell Biol. 6: 749–755.PubMedGoogle Scholar
  63. McKeon, R.J., Schreiber, R.C., Rudge, J.S., and Silver, J., 1991, Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes, J. Neurosci. 11: 3398–3411.PubMedGoogle Scholar
  64. McKerracher, L., David, S., Jackson, D.L., Kottis, V., Dunn, R.J., and Braun, P.E., 1994, Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth, Neuron 13: 805–811.PubMedGoogle Scholar
  65. Mi, S., Lee, X., Shao, Z., Thill, G., Ji, B., Relton, J., et al., 2004, LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex, Nat. Neurosci. 7: 221–228.PubMedGoogle Scholar
  66. Mikule, K., Gatlin, J.C., de la Houssaye, B.A., and Pfenninger, K.H., 2002, Growth cone collapse induced by semaphorin 3A requires 12/15-lipoxygenase, J. Neurosci. 22: 4932–4941.PubMedGoogle Scholar
  67. Mikule, K., Sunpaweravong, S., Gatlin, J.C., and Pfenninger, K.H., 2003, Eicosanoid activation of protein kinase C epsilon: Involvement in growth cone repellent signaling, J. Biol. Chem. 278: 21168–21177.PubMedGoogle Scholar
  68. Miranda, J.D., White, L.A., Marcillo, A.E., Willson, C.A., Jagid, J., and Whittemore, S.R., 1999, Induction of Eph B3 after spinal cord injury, Exp. Neurol. 156: 218–222.PubMedGoogle Scholar
  69. Mohajeri, M.H., Bartsch, U., van der Putten, H., Sansig, G., Mucke, L., and Schachner, M., 1996, Neurite outgrowth on non-permissive substrates in vitro is enhanced by ectopic expression of the neural adhesion molecule L1 by mouse astrocytes, Eur. J. Neurosci. 8: 1085–1097.PubMedGoogle Scholar
  70. Moolenaar, W.H., 1995, Lysophosphatidic acid signaling, Curr. Opin. Cell. Biol. 7: 203–210.PubMedGoogle Scholar
  71. Monnier, P.P., Sierra, A., Macchi, P., Deitinghoff, L., Andersen, J.S., Mann, M., et al., 2002, RGM is a repulsive guidance molecule for retinal axons, Nature 419: 392–395.PubMedGoogle Scholar
  72. Monnier, P.P., Sierra, A., Schwab, J.M., Henke-Fahle, S., and Mueller, B.K., 2003, The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar, Mol. Cell Neurosci. 22: 319–330.PubMedGoogle Scholar
  73. Moon, L.D., Asher, R.A., Rhodes, K.E., and Fawcett, J.W., 2001, Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC, Nat. Neurosci. 4: 465–466.PubMedGoogle Scholar
  74. Moreau-Fauvarque, C., Kumanogoh, A., Camand, E., Jaillard, C., Barbin, G., Boquet, I., et al., 2003. The transmembrane semaphorin Sema4D/CD100, an inhibitor of axonal growth, is expressed on oligodendrocytes and upregulated after CNS lesion, J. Neurosci. 23: 9229–9239.PubMedGoogle Scholar
  75. Morgenstern, D.A., Asher, R.A., and Fawcett, J.W, 2002, Chondroitin sulphate proteoglycans in the CNS injury response, Prog. Brain Res. 137: 313–332.PubMedGoogle Scholar
  76. Mukhopadhyay, G., Doherty, P., Walsh, F.S., Crocker, P.R., and Filbin, M.T., 1994, A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration, Neuron 13: 757–767.PubMedGoogle Scholar
  77. Neumann, H., Schweigreiter, R., Yamashita, T., Rosenkranz, K., Wekerle, H., and Barde, Y.A., 2002, Tumor necrosis factor inhibits neurite outgrowth and branching of hippocampal neurons by a rho-dependent mechanism, J. Neurosci. 22: 854–862.PubMedGoogle Scholar
  78. Niederost, B.P., Zimmermann, D.R., Schwab, M.E., and Bandtlow, C.E., 1999, Bovine CNS myelin contains neurite growth-inhibitory activity associated with chondroitin sulfate proteoglycans, J. Neurosci. 19: 8979–8989.PubMedGoogle Scholar
  79. Niederost, B.P., Oertle, T., Fritsche, J., McKinney, R.A., and Bandtlow, C.E., 2002, Nogo-A and myelin-associated glycoprotein mediate neurite growth inhibition by antagonistic regulation of RhoA and Rac1, J. Neurosci. 22: 10368–10376.PubMedGoogle Scholar
  80. Prinjha, R., Moore, S.E., Vinson, M., Blake, S., Morrow, R., Christie, G., et al., 2000, Inhibitor of neurite outgrowth in humans, Nature 403: 383–384.PubMedGoogle Scholar
  81. Qiu, J., Cai, D., Dai, H., McAtee, M., Hoffman, P.N., Bregman, B.S., et al., 2002, Spinal axon regeneration induced by elevation of cyclic AMP, Neuron 34: 895–903.PubMedGoogle Scholar
  82. Raineteau, O., Fouad, K., Bareyre, F.M., and Schwab, M.E., 2002, Reorganization of descending motor tracts in the rat spinal cord, Eur. J. Neurosci. 16: 1761–1771.PubMedGoogle Scholar
  83. Rajagopalan, S., Deitinghoff, L., Davis, D., Conrad, S., Skutella, T., Chedotal, A., Mueller, B.K., and Strittmatter, S.M., 2004, Neogenin mediates the action of repulsive guidance molecule, Nat. Cell Biol. 6: 756–762.PubMedGoogle Scholar
  84. Ramakers, G.J., 2002, Rho proteins, mental retardation and the cellular basis of cognition, Trends Neurosci. 25: 191–199.PubMedGoogle Scholar
  85. Ramon y Cajal, S., 1928, Degeneration and Regeneration of the Nervous System, R.M. May, ed. and tr., Oxford University Press, London.Google Scholar
  86. Roux, P.P., and Barker, P.A., 2002, Neurotrophin signaling through the p75 neurotrophin receptor, Prog. Neurobiol. 67: 203–233.PubMedGoogle Scholar
  87. Sagot, Y., Swerts, J.P., Cochard, P., 1991, Changes in permissivity for neuronal attachment and neurite outgrowth of spinal cord grey and white matters during development: A study with the ‘cryoculture’ bioassay, Brain Res. 543: 25–35.PubMedGoogle Scholar
  88. Salzer, J.L., Holmes, W.P., and Colman, D.R., 1987, The amino acid sequences of the myelin-associated glycoproteins: Homology to the immunoglobulin gene superfamily, J. Cell Biol. 104: 957–965.PubMedGoogle Scholar
  89. Savio, T., and Schwab, M.E., 1989, Rat CNS white matter, but not gray matter, is nonpermissive for neuronal cell adhesion and fiber outgrowth, J. Neurosci. 9: 1126–1133.PubMedGoogle Scholar
  90. Schafer, M., Fruttiger, M., Montag, D., Schachner, M., and Martini, R, 1996, Disruption of the gene for the myelin-associated glycoprotein improves axonal regrowth along myelin in C57BL/Wlds mice, Neuron 16: 1107–1113.PubMedGoogle Scholar
  91. Schnell, L., and Schwab, M.E., 1990, Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors, Nature 343: 269–272.PubMedGoogle Scholar
  92. Schnell, L., Schneider, R., Kolbeck, R., Barde, Y.A., and Schwab, M.E, 1994, Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion, Nature 367: 170–173.PubMedGoogle Scholar
  93. Schwab, J.M., Hirsch, S., Brechtel, K., Stiefel, A., Leppert, C.A., Schluesener, H.J., et al., 2002, The Rho-GTPase inhibitor C2IN-C3 induces functional neuronal recovery in a rat model of severe spinal cord injury, Soc. Neurosci. [Abstract 204.7].Google Scholar
  94. Schwab, J.M., Monnier, P.P., Schluesener, H.J., Conrad, S., Beschorner, R., Chen, L., et al., 2005a, Central nervous system injury-induced repulsive guidance molecule expression in the adult human brain, Arch. Neurol. 62: 1561–1568.PubMedGoogle Scholar
  95. Schwab, J.M., Conrad, S., Monnier, P.P., Julien, S., Mueller, B.K., and Schluesener, H.J., 2005b. Spinal cord injury-induced lesional expression of the repulsive guidance molecule, RGM, Eur. J. Neurosci. 21: 1569–1576.PubMedGoogle Scholar
  96. Schwab, J.M., Failli, V., and Chedotal, A., 2005c, Injury-related dynamic myelin/oligodendrocyte axon-outgrowth inhibition in the central nervous system, Lancet 365: 2055–2057.PubMedGoogle Scholar
  97. Schwab, M.E., and Caroni, P., 1988, Oligodendrocytes and CNS myelin are nonpermissive substrates for neurite growth and fibroblast spreading in vitro, J. Neurosci. 8: 2381–2393.PubMedGoogle Scholar
  98. Schwab, M.E., and Thoenen, H., 1985, Dissociated neurons regenerate into sciatic but not optic nerve explants in culture irrespective of neurotrophic factors, J. Neurosci. 5: 2415–2423.PubMedGoogle Scholar
  99. Shearman, M.S., Naor, Z., Sekiguchi, K., Kishimoto, A., and Nishizuka, Y., 1989, Selective activation of the gamma-subspecies of protein kinase C from bovine cerebellum by arachidonic acid and its lipoxygenase metabolites, FEBS Lett. 243: 177–182.PubMedGoogle Scholar
  100. Silver, J., and Miller, J.H., 2004, Regeneration beyond the glial scar, Nat. Rev. Neurosci. 5: 146–156.PubMedGoogle Scholar
  101. Sivasankaran, R., Pei, J., Wang, K.C., Zhang, Y.P., Schields, C.B., Xu, X.M., and He, Z., 2004, PKC mediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonal regeneration. Nat. Neurosci. 7: 261–268.PubMedGoogle Scholar
  102. Soileau, L.C., Silberstein, L., Blau, H.M., and Thompson, W.J., 1987, Reinnervation of muscle fiber types in the newborn rat soleus, J. Neurosci. 7: 4176–4194.PubMedGoogle Scholar
  103. Song, H.J., Ming, G.L., and Poo, M.M., 1997, cAMP-induced switching in turning direction of nerve growth cones, Nature 388: 275–279.PubMedGoogle Scholar
  104. Song, X.Y., Zhong, J.H., Wang, X, and Zhou, X.F., 2004, Suppression of p75NTR does not promote regeneration of injured spinal cord in mice, J. Neurosci. 24: 542–546.PubMedGoogle Scholar
  105. Sotelo, C., and Palay, S.L., 1971, Altered axons and axon terminals in the lateral vestibular nucleus of the rat. Possible example of axonal remodeling, Lab. Invest. 25: 653–671.PubMedGoogle Scholar
  106. Spillmann, A.A., Bandtlow, C.E., Lottspeich, F., Keller, F., and Schwab, M.E., 1998, Identification and characterization of a bovine neurite growth inhibitor, bNI-220, J. Biol. Chem. 273: 19283–19293.PubMedGoogle Scholar
  107. Stahl, B., Muller, B., von Boxberg, Y., Cox, E.C., and Bonhoeffer, F., 1990, Biochemical characterization of a putative axonal guidance molecule of the chick visual system, Neuron 5: 735–743.PubMedGoogle Scholar
  108. Stichel, C.C., and Muller, H.W., 1998, The CNS lesion scar: New vistas on an old regeneration barrier, Cell Tissue Res. 294: 1–9.PubMedGoogle Scholar
  109. Tang, S., Woodhall, R.W., Shen, Y.J., deBellard, M.E., Saffell, J.L., Doherty, P., et al., 1997, Soluble myelin-associated glycoprotein (MAG) found in vivo inhibits axonal regeneration, Mol. Cell Neurosci. 9: 333–346.PubMedGoogle Scholar
  110. Thallmair, M., Metz, G.A., Z'Graggen, W.J., Raineteau, O., Kartje, G.L., Schwab, M.E., 1998, Neurite growth inhibitors restrict plasticity and functional recovery following corticospinal tract lesions, Nat. Neurosci. 1: 124–131.PubMedGoogle Scholar
  111. Tom, V.J., Steinmetz, M.P., Miller, J.H., Doller, C.M., and Silver, J., 2004, Studies on the development and behavior of the dystrophic growth cone, the hallmark of regeneration failure, in an in vitro model of the glial scar and after spinal cord injury, J. Neurosci. 24: 6531–6539.PubMedGoogle Scholar
  112. Vanek, P., Thallmair, M., Schwab, M.E., and Kapfhammer, J.P., 1998, Increased lesion-induced sprouting of corticospinal fibres in the myelin-free rat spinal cord, Eur. J. Neurosci. 10: 45–56.PubMedGoogle Scholar
  113. Walsh, G.S., Krol, K.M., Crutcher, K.A., and Kawaja, M.D., 1999, Enhanced neurotrophin-induced axon growth in myelinated portions of the CNS in mice lacking the p75 neurotrophin receptor, J. Neurosci. 19: 4155–4168.PubMedGoogle Scholar
  114. Wang, K.C., Koprivica, V., Kim, J.A., Sivasankaran, R., Guo, Y., Neve, R.L., et al., 2002a, Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth, Nature 417: 941–944.PubMedGoogle Scholar
  115. Wang, K.C., Kim, J.A., Sivasankaran, R., Segal, R., and He, Z., 2002b, P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp, Nature 420: 74–78.PubMedGoogle Scholar
  116. Wang, X., Chun, S.J., Treloar, H., Vartanian, T., Greer, C.A., and Strittmatter, S.M., 2002c, Localization of Nogo-A and Nogo-66 receptor proteins at sites of axon-myelin and synaptic contact, J. Neurosci. 22: 5505–5515.PubMedGoogle Scholar
  117. Wehrle, R., Camand, E., Chedotal, A., Sotelo, C., and Dusart, I., 2005, Expression of netrin-1, slit-1 and slit-3 but not of slit-2 after cerebellar and spinal cord lesions, Eur. J. Neurosci. 22: 2134–2144.PubMedGoogle Scholar
  118. Willson, C.A., Irizarry-Ramirez, M., Gaskins, H.E., Cruz-Orengo, L., Figueroa, J.D., Whittemore, S.R., et al., 2002, Upregulation of EphA receptor expression in the injured adult rat spinal cord, Cell Transplant 11: 229–239.PubMedGoogle Scholar
  119. Willson, C.A., Miranda, J.D., Foster, R.D., Onifer, S.M., and Whittemore, S.R., 2003, Transection of the adult rat spinal cord upregulates EphB3 receptor and ligand expression, Cell Transplant 12: 279–290.PubMedGoogle Scholar
  120. Wizenmann, A., Thies, E., Klostermann, S., Bonhoeffer, F., and Bahr, M., 1993, Appearance of target-specific guidance information for regenerating axons after CNS lesions, Neuron 11: 975–983.PubMedGoogle Scholar
  121. Wong, S.T., Henley, J.R., Kanning, K.C., Huang, K.H., Bothwell, M., and Poo, M.M., 2002, A p75(NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein, Nat. Neurosci. 5: 1302–1308.PubMedGoogle Scholar
  122. Yamashita, T., Higuchi, H., and Tohyama, M., 2002, The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho, J. Cell Biol. 157: 565–570.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Jan M. Schwab
    • 1
  • Zhigang He
    • 2
  1. 1.Center for Experimental Therapeutics and Reperfusion InjuryBrigham and Women's Hospital and Harvard Medical SchoolUSA
  2. 2.Division of Neuroscience Children's HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations