Skip to main content

Part of the book series: BIOLOGICAL AND MEDICAL PHYSICS BIOMEDICAL ENGINEERING ((BIOMEDICAL))

Abstract

One might say that “protein science” got its start in the domestic arts, built around the abilities of proteins to aggregate in response to environmental stresses such as heating (boiled eggs), heating and cooling (gelatin), and pH (cheese). Characterization of proteins in the late nineteenth century likewise focused on the ability of proteins to precipitate in response to certain salts and to aggregate in response to heating. Investigations by Chick and Martin (Chick and Martin, 1910) showed that the inactivating response of proteins to heat or solvent treatment is a two-step process involving separate denaturation and precipitation steps. Monitoring the coagulation and flocculation responses of proteins to heat and other stresses remained a major approach to understanding protein structure for decades, with solubility, or susceptibility to aggregation, serving as a kind of benchmark against which results of other methods, such as viscosity, chemical susceptibility, immune activity, crystallizability, and susceptibility to proteolysis, were compared (Mirsky and Pauling, 1936;Wu, 1931). Toward the middle of the last century, protein aggregation studies were largely left behind, as improved methods allowed elucidation of the primary sequence of proteins, reversible unfolding studies, and ultimately high-resolution structures. Curiously, the field of protein science, and in particular protein folding, is now gravitating back to a closer look at protein aggregation and protein aggregates. Unfortunately, the means developed during the second half of the twentieth century for studying native, globular proteins have not proved immediately amenable to the study of aggregate structures. Great progress is being made, however, to modify classical methods, including NMR and X-ray diffraction, as well as to develop newer techniques, that together should continue to expand our picture of aggregate structure (Kheterpal and Wetzel, 2006; Wetzel, 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anfinsen, C.B. 1973. Principles that govern the folding of protein chains. Science. 181:223–230.

    Article  ADS  Google Scholar 

  • Baker, D., Sohl, J.L., and Agard, D.A. 1992. A protein-folding reaction under kinetic control. Nature. 356:263–265.

    Article  ADS  Google Scholar 

  • Balbirnie, M., Grothe, R., and Eisenberg, D.S. 2001. An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid. Proc. Natl. Acad. Sci. USA. 98:2375–2380.

    Article  ADS  Google Scholar 

  • Benyamini, H., Gunasekaran, K., Wolfson, H., and Nussinov, R. 2003. Beta2-microglobulin amyloidosis: Insights from conservation analysis and fibril modelling by protein docking techniques. J. Mol. Biol. 330:159–174.

    Article  Google Scholar 

  • Benzinger, T.L., Gregory, D.M., Burkoth, T.S., Miller-Auer, H., Lynn, D.G., Botto, R.E., and Meredith, S.C. 1998. Propagating structure of Alzheimer's beta-amyloid(10-35) is parallel beta-sheet with residues in exact register. Proc. Natl. Acad. Sci. USA. 95:13407–13412.

    Article  ADS  Google Scholar 

  • Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E. 2000. The Protein Data Bank. Nucleic Acids Res. 28:235–242.

    Article  Google Scholar 

  • Bhattacharyya, A.M., Thakur, A., and Wetzel, R. 2005. Polyglutamine aggregation nucleation: Thermodynamics of a highly unfavorable protein folding reaction. Proc. Natl. Acad. Sci USA. 102:15400–15405.

    Article  ADS  Google Scholar 

  • Bitan, G., and Teplow, D.B. 2004. Rapid photochemical cross-linking—A new tool for studies of metastable, amyloidogenic protein assemblies. Acc. Chem. Res. 37:357–364.

    Article  Google Scholar 

  • Blake, C.C., Geisow, M.J., Oatley, S.J., Rerat, B., and Rerat, C. 1978. Structure of prealbumin: Secondary, tertiary and quaternary interactions determined by Fourier refinement at 1.8 å. J. Mol. Biol. 121:339–356.

    Article  Google Scholar 

  • Blondelle, S.E., Forood, B., Houghten, R.A., and Perez-Paya, E. 1997. Polyalanine-based peptides as models for self-associated beta-pleated-sheet complexes. Biochemistry. 36:8393–8400.

    Article  Google Scholar 

  • Bratko, D., and Blanch, H.W. 2001. Competition between protein folding and aggregation: A three-dimensional lattice-model simulation. J. Chem. Phys. 114:561–569.

    Article  ADS  Google Scholar 

  • Broglia, R.A., Tiana, G., Pasquali, S., Roman, H.E., and Vigezzi, E. 1998. Folding and aggregation of designed proteins. Proc. Nat. Acad. Sci. USA. 95:12930–12933.

    Article  ADS  Google Scholar 

  • Bucciantini, M., Giannoni, E., Chiti, F., Baroni, F., Formigli, L., Zurdo, J., Taddei, N., Ramponi, G., Dobson, C.M., and Stefani, M. 2002. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature. 416:507–511.

    Article  ADS  Google Scholar 

  • Caughey, B., and Lansbury, P.T. 2003. Protofibrils, pores, fibrils, and neurodegeneration: Separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26:267–298.

    Article  Google Scholar 

  • Cellmer, T., Bratko, D., Prausnitz, J.M., and Blanch, H. 2005. Thermodynamics of folding and association of lattice-model proteins. J. Chem. Phys. 122:174908.

    Article  ADS  Google Scholar 

  • Chan, H.S., and Dill, K.A. 1990. Origins of structure in globular-proteins. Proc. Nat. Acad. Sci. USA. 87:6388–6392.

    Article  ADS  Google Scholar 

  • Chan, W., Helms, L.R., Brooks, I., Lee, G., Ngola, S., McNulty, D., Maleeff, B., Hensley, P., and Wetzel, R. 1996. Mutational effects on inclusion body formation in the periplasmic expression of the immunoglobulin VL domain REI. Fold. Des. 1:77–89.

    Article  Google Scholar 

  • Chaney, M.O., Webster, S.D., Kuo, Y.M., and Roher, A.E. 1998. Molecular modeling of the Abeta1-42 peptide from Alzheimer's disease. Protein Eng. 11:761–767.

    Article  Google Scholar 

  • Chen. S., Ferrone, F., and Wetzel, R. 2002. Huntington's disease age-of-onset linked to polyglutamine aggregation nucleation. Proc. Natl. Acad. Sci. USA. 99:11884–11889.

    Article  ADS  Google Scholar 

  • Chick, H., and Martin, C.J. 1910. On the “heat coagulation” of proteins. J. Physiol. 40:404–430.

    Google Scholar 

  • Chowdhry, V., and Westheimer, F.H. 1979. Photoaffinity labeling of biological systems. Annu. Rev. Biochem. 48:293–325.

    Article  Google Scholar 

  • Cleland, J.L., Powell, M.F., and Shire, S.J. 1993. The development of stable protein formulations: A close look at protein aggregation, deamidation, and oxidation. Crit. Rev. Ther. Drug Carrier Syst. 10:307–377.

    Google Scholar 

  • Coles, M., Bicknell, W., Watson, A.A., Fairlie, D.P., and Craik, D.J. 1998. Solution structure of amyloid beta-peptide(1-40) in a water-micelle environment. Is the membrane-spanning domain where we think it is? Biochemistry. 37:11064–11077.

    Article  Google Scholar 

  • Collins, S.R., Douglass, A., Vale, R.D., and Weissman, J.S. 2004. Mechanism of prion propagation: Efficient amyloid growth in the absence of oligomeric intermediates. PLoS 2:1582–1590.

    Google Scholar 

  • Colon, W., and Kelly, J.W. 1992. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry. 31:8654–8660.

    Article  Google Scholar 

  • Combe, N., and Frenkel, D. 2003. Phase behavior of a lattice protein model. J. Chem. Phys. 118:9015–9022.

    Article  ADS  Google Scholar 

  • Creighton, T.E. 1992. Protein folding. Up the kinetic pathway [news; comment]. Nature. 356:194–195.

    Article  ADS  Google Scholar 

  • De Bernardez Clark, E., Schwarz, E., and Rudolph, R. 1999. Inhibition of aggregation side reactions during in vitro. protein folding. Methods Enzymol. 309:217–236.

    Article  Google Scholar 

  • Del Mar, C., Greenbaum, E., Mayne, L., Englander, S.W., and Woods, V.L., Jr. 2005. Amyloid structure: alpha-synuclein studied by hydrogen exchange and mass spectrometry. Proc. Natl. Acad. Sci. USA. 102: 15477–15482.

    Article  ADS  Google Scholar 

  • Derreumaux, P. 1999. From polypeptide sequences to structures using Monte Carlo simulations and an optimized potential. J. Chem. Phys. 111:2301–2310.

    Article  ADS  Google Scholar 

  • DiFiglia, M., Sapp, E., Chase, K.O., Davies, S.W., Bates, G.P., Vonsattel, J.P., and Aronin, N. 1997. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science. 277:1990–1993.

    Article  Google Scholar 

  • Dill, K.A. 1990. Dominant forces in protein folding. Biochemistry. 29:7133–7155.

    Article  Google Scholar 

  • Dill, K.A., and Chan, H.S. 1997. From Levinthal to pathways to funnels. Nat. Struct. Biol. 4:10–19.

    Article  Google Scholar 

  • Dima, R.I., and Thirumalai, D. 2002. Exploring protein aggregation and self-propagation using lattice models: Phase diagram and kinetics. Protein Sci. 11:1036–1049.

    Article  Google Scholar 

  • Ding, F., Borreguero, J.M., Buldyrey, S.V., Stanley, H.E., and Dokholyan, N.V. 2003. Mechanism for the alpha-helix to beta-hairpin transition. Proteins Struct. Funct. Genet. 53:220–228.

    Article  Google Scholar 

  • Ding, F., Dokholyan, N.V., Buldyrev, S.V., Stanley, H.E., and Shakhnovich, E.I. 2002a. Direct molecular dynamics observation of protein folding transition state ensemble. Biophys. J. 83:3525–3532.

    Article  ADS  Google Scholar 

  • Ding, F., Dokholyan, N.V., Buldyrev, S.V., Stanley, H.E., and Shakhnovich, E.I. 2002b. Molecular dynamics simulation of the SH3 domain aggregation suggests a generic amyloidogenesis mechanism. J. Mol. Biol. 324:851–857.

    Article  Google Scholar 

  • Dobson, C.M. 1999. Protein misfolding, evolution and disease. Trends Biochem. Sci. 24:329–332.

    Article  Google Scholar 

  • Dobson, C.M. 2003. Protein folding and misfolding. Nature. 426:884–890.

    Article  ADS  Google Scholar 

  • Elam, J.S., Taylor, A.B., Strange, R., Antonyuk, S., Doucette, P.A., Rodriguez, J.A., Hasnain, S.S., Hayward, L.J., Valentine, J.S., Yeates, T.O., and Hart, P.J. 2003. Amyloid-like filaments and water-filled nanotubes formed by SOD1 mutant proteins linked to familial ALS. Nat. Struct. Biol. 10:461–467.

    Article  Google Scholar 

  • Ferraro, D.M., Lazo, N.D., and Robertson, A.D. 2004. EX1 hydrogen exchange and protein folding. Biochemistry. 43:587–594.

    Article  Google Scholar 

  • Ferrone, F. 1999. Analysis of protein aggregation kinetics. Methods Enzymol. 309:256–274.

    Article  Google Scholar 

  • Finke, J.M., Gross, L.A., Ho, H.M., Sept, D., Zimm, B.H., and Jennings, P.A. 2000. Commitment to folded and aggregated states occurs late in interleukin-1 beta folding. Biochemistry. 39:15633–15642.

    Article  Google Scholar 

  • Fleming, P.J., and Rose, G.D. 2005. Conformational properties of unfolded proteins. In Protein Folding Handbook, Part I. (J. Buchner and T. Kiefhaber, Eds.). Weinheim, Wiley-VCH, pp. 710–736.

    Chapter  Google Scholar 

  • Fontana, A., Polverino de Laureto, P., De Filippis, V., Scaramella, E., and Zambonin, M. 1997. Probing the partly folded states of proteins by limited proteolysis. Fold. Des. 2:R17–26.

    Article  Google Scholar 

  • Giugliarelli, G., Micheletti, C., Banavar, J.R., and Maritan, A. 2000. Compactness, aggregation, and prionlike behavior of protein: A lattice model study. J. Chem. Phys. 113:5072–5077.

    Article  ADS  Google Scholar 

  • Glickman, M.H. 2000. Getting in and out of the proteasome. Semin. Cell Dev. Biol. 11:149–158.

    Article  Google Scholar 

  • Go, N., and Taketomi, H. 1978. Respective roles of short- and long-range interactions in protein folding. Proc. Natl. Acad. Sci. USA. 75:559–563.

    Article  ADS  Google Scholar 

  • Go, N., and Taketomi, H. 1979. Studies on protein folding, unfolding and fluctuations by computer simulation. III. Effect of short-range interactions. Int. J. Pept. Protein Res. 13:235–252.

    Article  Google Scholar 

  • Goldberg, M.E., Rudolph, R., and Jaenicke, R. 1991. A kinetic study of the competition between renaturation and aggregation during the refolding of denatured-reduced egg white lysozyme. Biochemistry. 30:2790–2797.

    Article  Google Scholar 

  • Goldsbury, C., Kistler, J., Aebi, U., Arvinte, T., and Cooper, G.J. 1999. Watching amyloid fibrils grow by time-lapse atomic force microscopy. J. Mol. Biol. 285:33–39.

    Article  Google Scholar 

  • Goldsbury, C.S., Wirtz, S., Muller, S.A., Sunderji, S., Wicki, P., Aebi, U., and Frey, P. 2000. Studies on the in vitro. assembly of A beta 1-40: Implications for the search for A beta fibril formation inhibitors. J. Struct. Biol. 130:217–231.

    Article  Google Scholar 

  • Govaerts, C., Wille, H., Prusiner, S.B., and Cohen, F.E. 2004. Evidence for assembly of prions with left-handed beta-helices into trimers. Proc. Natl. Acad. Sci. USA. 101:8342–8347.

    Article  ADS  Google Scholar 

  • Guo, J.T., Wetzel, R., and Xu, Y. 2004. Molecular modeling of the core of Abeta amyloid fibrils. Proteins. 57:357–364.

    Article  Google Scholar 

  • Gupta, P., and Hall, C.K. 1997. Effect of solvent conditions upon refolding pathways and intermediates for a simple lattice protein. Biopolymers. 42:399–409.

    Article  Google Scholar 

  • Gupta, P., Hall, C.K., and Voegler, A.C. 1998. Effect of denaturant and protein concentrations upon protein refolding and aggregation: A simple lattice model. Protein Sci. 7:2642–2652.

    Article  Google Scholar 

  • Haase-Pettingell, C.A., and King, J. 1988. Formation of aggregates from a thermolabile in vivo. folding intermediate in P22 tailspike maturation: A model for inclusion body formation. J. Biol. Chem. 263:4977–4983.

    Google Scholar 

  • Harper, J.D., Lieber, C.M., and Lansbury, P.T., Jr. 1997. Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer's disease amyloid-beta protein. Chem. Biol. 4:951–959.

    Article  Google Scholar 

  • Harrison, P.M., Chan, H.S., Prusiner, S.B., and Cohen, F.E. 1999. Thermodynamics of model prions and its implications for the problem of prion protein folding. J. Mol. Biol. 286:593–606.

    Article  Google Scholar 

  • Harrison, P.M., Chan, H.S., Prusiner, S.B., and Cohen, F.E. 2001. Conformational propagation with prion-like characteristics in a simple model of protein folding. Protein Sci. 10:819–835.

    Article  Google Scholar 

  • Hartl, F.U., and Hayer-Hartl, M. 2002. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science. 295:1852–1858.

    Article  ADS  Google Scholar 

  • Haspel, N., Zanuy, D., Ma, B., Wolfson, H., and Nussinov, R. 2005. A comparative study of amyloid fibril formation by residues 15–19 of the human calcitonin hormone: A single beta-sheet model with a small hydrophobic core. J. Mol. Biol. 345:1213–1227.

    Article  Google Scholar 

  • Hermeling, S., Crommelin, D.J., Schellekens, H., and Jiskoot, W. 2004. Structure-immunogenicity relationships of therapeutic proteins. Pharm. Res. 21:897–903.

    Article  Google Scholar 

  • Horiuchi, M., Priola, S.A., Chabry, J., and Caughey, B. 2000. Interactions between heterologous forms of prion protein: Binding, inhibition of conversion, and species barriers. Proc. Natl. Acad. Sci. USA. 97:5836–5841.

    Article  ADS  Google Scholar 

  • Hoshino, M., Katou, H., Hagihara, Y., Hasegawa, K., Naiki, H., and Goto, Y. 2002. Mapping the core of the beta(2)-microglobulin amyloid fibril by H/D exchange. Nat. Struct. Biol. 9:332–336.

    Article  Google Scholar 

  • Hua, Q.X., Gozani, S.N., Chance, R.E., Hoffmann, J.A., Frank, B.H., and Weiss, M.A. 1995. Structure of a protein in a kinetic trap. Nat. Struct. Biol. 2:129–138.

    Article  Google Scholar 

  • Hubbell, W.L., Cafiso, D.S., and Altenbach, C. 2000. Identifying conformational changes with site-directed spin labeling. Nat. Struct. Biol. 7:735–739.

    Article  Google Scholar 

  • Hurle, M.R., Helms, L.R., Li, L., Chan, W., and Wetzel, R. 1994. A role for destabilizing amino acid replacements in light chain amyloidosis. Proc. Natl. Acad. Sci. USA. 91:5446–5450.

    Article  ADS  Google Scholar 

  • Ignatova, Z., and Gierasch, L.M. 2005. Aggregation of a slow-folding mutant of a beta-clam protein proceeds through a monomeric nucleus. Biochemistry. 44:7266–7274.

    Article  Google Scholar 

  • Istrail, S., Schwartz, R., and King, J. 1999. Lattice simulations of aggregation funnels for protein folding. J. Comput. Biol. 6:143–162.

    Article  Google Scholar 

  • Iwata, K., Eyles, S.J, and Lee, J.P. 2001. Exposing asymmetry between monomers in Alzheimer's amyloid fibrils via reductive alkylation of lysine residues. J. Am. Chem. Soc. 123:6728–6729.

    Article  Google Scholar 

  • Jang, H.B., Hall, C.K., and Zhou, Y.Q. 2004a. Assembly and kinetic folding pathways of a tetrameric beta-sheet complex: Molecular dynamics simulations on simplified off-lattice protein models. Biophys. J. 86:31–49.

    Article  Google Scholar 

  • Jang, H.B., Hall, C.K., and Zhou, Y.Q. 2004b. Thermodynamics and stability of a beta-sheet complex: Molecular dynamics simulations on simplified off-lattice protein models. Protein Sci. 13:40–53.

    Article  Google Scholar 

  • Jaroniec, C.P., MacPhee, C.E., Bajaj, V.S., McMahon, M.T., Dobson, C.M., and Griffin, R.G. 2004. High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc. Natl. Acad. Sci. USA. 101:711–716.

    Article  ADS  Google Scholar 

  • Jarrett, J.T., Costa, P.R., Griffin, R.G., and Lansbury, P.T., Jr. 1994. Models of the b protein C-terminus: Differences in amyloid structure may lead to segregation of “long” and “short” fibrils. J. Am. Chem. Soc. 116:9741–9742.

    Article  Google Scholar 

  • Jenkins, J., and Pickersgill, R. 2001. The architecture of parallel beta-helices and related folds. Prog. Biophys. Mol. Biol. 77:111–175.

    Article  Google Scholar 

  • Jimenez, J.L., Guijarro, J.I., Orlova, E., Zurdo, J., Dobson, C.M., Sunde, M., and Saibil, H.R. 1999. Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J. 18:815–821.

    Article  Google Scholar 

  • Jimenez, J.L., Nettleton, E.J., Bouchard, M., Robinson, C.V., Dobson, C.M., and Saibil, H.R. 2002. The protofilament structure of insulin amyloid fibrils. Proc. Natl. Acad. Sci. USA. 99:9196–9201.

    Article  ADS  Google Scholar 

  • Kanno, T., Yamaguchi, K., Naiki, H., Goto, Y., and Kawai, T. 2005. Association of thin filaments into thick filaments revealing the structural hierarchy of amyloid fibrils. J. Struct. Biol. 149:213–218.

    Article  Google Scholar 

  • Karplus, M., and McCammon, J.A. 2002. Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 9:646–652.

    Article  Google Scholar 

  • Kayed, R., Head, E., Thompson, J.L., McIntire, T.M., Milton, S.C., Cotman, C.W., and Glabe, C.G. 2003. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science. 300:486–489.

    Article  ADS  Google Scholar 

  • Kellermayer, M.S., Grama, L., Karsai, A., Nagy, A., Kahn, A., Datki, Z.L., and Penke, B. 2005. Reversible mechanical unzipping of amyloid beta-fibrils. J. Biol. Chem. 280:8464–8470.

    Article  Google Scholar 

  • Khare, S.D., Ding, F., Gwanmesia, K.N., and Dokholyan, N.V. 2005. Molecular origin of polyglutamine aggregation in neurodegenerative diseases. PLoS Comput. Biol. 1:230–235.

    Article  Google Scholar 

  • Kheterpal, I., Chen, M., Cook, K.D., and Wetzel, R. 2006. Structural differences in Abeta amyloid protofibrils and fibrils mapped by hydrogen exchange-mass spectrometry with on-line pratcolytic fragmentation. J. Mol. Biol. 361:785–795.

    Article  Google Scholar 

  • Kheterpal, I., Lashuel, H.A., Hartley, D.M., Walz, T., Lansbury, P.T., and Jr., Wetzel, R. 2003a. Abeta protofibrils possess a stable core structure resistant to hydrogen exchange. Biochemistry. 42:14092–8.

    Article  Google Scholar 

  • Kheterpal, I., and Wetzel, R. 2006. Amyloid, prions, and other protein aggregates II. In Methods in Enzymology. (J. N. Abelson and M. I. Simon, Eds.), San Diego, Academic Press.

    Google Scholar 

  • Kheterpal, I., Wetzel, R., and Cook, K.D. 2003b. Enhanced correction methods for hydrogen exchange–mass spectrometric studies of amyloid fibrils. Protein Sci. 12:635–643.

    Article  Google Scholar 

  • Kheterpal, I., Williams, A., Murphy, C., Bledsoe, B., and Wetzel, R. 2001. Structural features of the Abeta amyloid fibril elucidated by limited proteolysis. Biochemistry. 40:11757–11767.

    Article  Google Scholar 

  • Kheterpal, I., Zhou, S., Cook, K.D., and Wetzel, R. 2000. Abeta amyloid fibrils possess a core structure highly resistant to hydrogen exchange. Proc. Natl. Acad. Sci. USA. 97:13597–13601.

    Article  ADS  Google Scholar 

  • Kolinski, A., Skolnick, J., and Yaris, R. 1986. Monte-Carlo simulations on an equilibrium globular protein folding model. Proc. Nat. Acad. Sci. USA. 83:7267–7271.

    Article  ADS  Google Scholar 

  • Kopito, R.R. 2000. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 10:524–530.

    Article  Google Scholar 

  • Kuntz, I.D., Crippen, G.M., Kollman, P.A., and Kimelman, D. 1976. Calculation of protein tertiary structure. J. Mol. Biol. 106:983–994.

    Article  Google Scholar 

  • Kuwata, K., Matumoto, T., Cheng, H., Nagayama, K., James, T.L., and Roder, H. 2003. NMR-detected hydrogen exchange and molecular dynamics simulations provide structural insight into fibril formation of prion protein fragment 106–126. Proc. Natl. Acad. Sci. USA. 100:14790–14795.

    Article  ADS  Google Scholar 

  • Kyte, J., and Doolittle, R.F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157:105–132.

    Article  Google Scholar 

  • Lakdawala, A.S., Morgan, D.M., Liotta, D.C., Lynn, D.G., and Snyder, J.P. 2002. Dynamics and fluidity of amyloid fibrils: a model of fibrous protein aggregates. J. Am. Chem. Soc. 124:15150–15151.

    Article  Google Scholar 

  • Lau, K.F., Dill, K.A. 1989. A lattice statistical-mechanics model of the conformational and sequence-spaces of proteins. Macromolecules. 22:3986–3997.

    Article  ADS  Google Scholar 

  • Leonhard, K., Prausnitz, J.M., and Radke, C.J. 2003. Solvent–amino acid interaction energies in 3-D-lattice MC simulations of model proteins. Aggregation thermodynamics and kinetics. Phys. Chem. Chem. Phys. 5:5291–5299.

    Article  Google Scholar 

  • Levin, E.G., and Santell, L. 1987. Conversion of the active to latent plasminogen activator inhibitor from human endothelial cells. Blood. 70:1090–1098.

    Google Scholar 

  • Levinthal, C. 1969. How to fold gratiously. Univ. Ill. Bull. 41:22–24.

    Google Scholar 

  • Levitt, M. 1976. Simplified representation of protein conformations for rapid simulation of protein folding. J. Mol. Biol. 104:59–107.

    Article  Google Scholar 

  • Levitt, M., and Warshel, A. 1975. Computer-simulation of protein folding. Nature. 253:694–698.

    Article  ADS  Google Scholar 

  • Li, L., Darden, T.A., Bartolotti, L., Kominos, D., and Pedersen, L.G. 1999. An atomic model for the pleated beta-sheet structure of Abeta amyloid protofilaments. Biophys. J. 76:2871–2878.

    Article  Google Scholar 

  • Li, R., and Woodward, C. 1999. The hydrogen exchange core and protein folding. Protein Sci. 8:1571–1590.

    Article  Google Scholar 

  • Liwo, A., Oldziej, S., Kazmierkiewicz, R., Groth, M., Czaplewski, C. 1997. Design of a knowledge-based force field for off-lattice simulations of protein structure. Acta. Biochim. Pol. 44:527–547.

    Google Scholar 

  • Lynn, G.W., Heller, W.T., Mayasundari, A., Minor, K.H., and Peterson, C.B. 2005. A model for the three-dimensional structure of human plasma vitronectin from small-angle scattering measurements. Biochemistry. 44:565–574.

    Article  Google Scholar 

  • Ma, B., and Nussinov, R. 2002a. Molecular dynamics simulations of alanine rich beta-sheet oligomers: Insight into amyloid formation. Protein Sci. 11:2335–2350.

    Article  Google Scholar 

  • Ma, B., and Nussinov, R. 2002b. Stabilities and conformations of Alzheimer's beta -amyloid peptide oligomers (Abeta 16-22, Abeta 16-35, and Abeta 10-35): Sequence effects. Proc. Natl. Acad. Sci. USA. 99:14126–14131.

    Article  ADS  Google Scholar 

  • Ma, J., Sigler, P.B., Xu, Z., and Karplus, M. 2000. A dynamic model for the allosteric mechanism of GroEL. J. Mol. Biol. 302:303–313.

    Article  Google Scholar 

  • Makin, O.S., Atkins, E., Sikorski, P., Johansson, J., and Serpell, L.C. 2005. Molecular basis for amyloid fibril formation and stability. Proc. Natl. Acad. Sci. USA. 102:315–320.

    Article  ADS  Google Scholar 

  • Marston, F.A., and Hartley, D.L. 1990. Solubilization of protein aggregates. Methods Enzymol. 182:264–276.

    Article  Google Scholar 

  • Martin, J.B. 1999. Molecular basis of the neurodegenerative disorders [published erratum appears in N. Engl. J. Med. 1999 Oct 28;341(18):1407]. N. Engl. J. Med. 340:1970–1980.

    Article  Google Scholar 

  • McCutchen, S.L., Colon, W., and Kelly, J.W. 1993. Transthyretin mutation Leu-55-Pro significantly alters tetramer stability and increases amyloidogenicity. Biochemistry. 32:12119–12127.

    Article  Google Scholar 

  • Means, G.E., and Feeney, R.E. 1971. Chemical Modification of Proteins. San Francisco, Holden–Day.

    Google Scholar 

  • Merkel, J.S., Sturtevant, J.M., and Regan, L. 1999. Sidechain interactions in parallel beta sheets: The energetics of cross-strand pairings. Struct. Fold. Des. 7:1333–1343.

    Article  Google Scholar 

  • Merlini, G., and Bellotti, V. 2003. Molecular mechanisms of amyloidosis. N. Engl. J. Med. 349:583–596.

    Article  Google Scholar 

  • Mirsky, A.E., and Pauling, L. 1936. On the structure of native, denatured and coagulated protein. Proc. Natl. Acad. Sci. USA. 22:439–447.

    Article  ADS  Google Scholar 

  • Miyazawa, S., and Jernigan, R.L. 1985. Estimation of effective interresidue contact energies from protein crystal-structures—Quasi-chemical approximation. Macromolecules. 18:534–552.

    Article  ADS  Google Scholar 

  • Monti, M., Principe, S., Giorgetti, S., Mangione, P., Merlini, G., Clark, A., Bellotti, V., Amoresano, A., and Pucci, P. 2002. Topological investigation of amyloid fibrils obtained from beta2-microglobulin. Protein Sci 11:2362–2369.

    Article  Google Scholar 

  • Morimoto, A., Irie, K., Murakami, K., Masuda, Y., Ohigashi, H., Nagao, M., Fukuda, H., Shimizu, T., and Shirasawa, T. 2004. Analysis of the secondary structure of beta-amyloid (Abeta42) fibrils by systematic proline replacement. J. Biol. Chem. 279:52781–52788.

    Article  Google Scholar 

  • Muchowski, P.J., Schaffar, G., Sittler, A., Wanker, E.E., Hayer-Hartl, M.K., and Hartl, F.U. 2000. Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc. Natl. Acad. Sci. USA. 97:7841–7846.

    Article  ADS  Google Scholar 

  • Nelson, R., Sawaya, M.R., Balbirnie, M., Madsen, A.O., Riekel, C., Grothe, R., and Eisenberg, D. 2005. Structure of the cross-beta spine of amyloid-like fibrils. Nature. 435:773–778.

    Article  ADS  Google Scholar 

  • Nguyen, H.D., Hall, C.K. 2002. Effect of rate of chemical or thermal renaturation on refolding and aggregation of a simple lattice protein. Biotechnol. Bioeng. 80:823–834.

    Article  Google Scholar 

  • Nguyen, H.D., and Hall, C.K. 2004a. Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides. Proc. Natl. Acad. Sci. USA. 101:16180–16185.

    Article  ADS  Google Scholar 

  • Nguyen, H.D., and Hall, C.K. 2004b. Phase diagrams describing fibrillization by polyalanine peptides. Biophys. J. 87:4122–4134.

    Article  Google Scholar 

  • Nguyen, H.D., Hall, C.K. 2005. Kinetics of fibril formation by polyalanine peptides. J. Biol. Chem. 280:9074–9082.

    Article  Google Scholar 

  • Nguyen, H.D., Marchut, A.J., and Hall, C.K. 2004. Solvent effects on the conformational transition of a model polyalanine peptide. Protein Sci. 13:2909–2924.

    Article  Google Scholar 

  • Nilsson, M.R. 2004. Techniques to study amyloid fibril formation in vitro. Methods. 34:151–160.

    Article  Google Scholar 

  • Oberg, K., Chrunyk, B.A., Wetzel, R., and Fink, A. 1994. Native-like secondary structure in interleukin-1β inclusion bodies by attenuated total reflectance FTIR. Biochemistry. 33:2628–2634.

    Article  Google Scholar 

  • O'Nuallain, B., Shivaprasad, S., Kheterpal, I, and Wetzel, R. 2005. Thermodynamics of Aβ(1–40) amyloid fibril formation. Biochemistry 44:12709–12718.

    Article  Google Scholar 

  • O'Nuallain, B., Williams, A.D., Westermark, P., and Wetzel, R. 2004. Seeding specificity in amyloid growth induced by heterologous fibrils. J. Biol. Chem. 279:17490–17499.

    Article  Google Scholar 

  • Patro, S.Y., and Przybycien, T.M. 1994. Simulations of kinetically irreversible protein aggregate structure. Biophys J. 66:1274–1289.

    Article  Google Scholar 

  • Patro, S.Y., Przybycien, T.M., and Isermann, H.P. 1996. Simulations of reversible protein-aggregate and crystal structure. Abstr. Pap. Am. Chem. Soc. 211:176-Biot.

    Google Scholar 

  • Perez-Paya, E., Forood, B., Houghten, R.A., and Blondelle, S.E. 1996. Structural characterization and 5′-mononucleotide binding of polyalanine beta-sheet complexes. J. Mol. Recognit. 9:488–493.

    Article  Google Scholar 

  • Perutz, M.F., Finch, J.T., Berriman, J., and Lesk, A. 2002. Amyloid fibers are water-filled nanotubes. Proc. Natl. Acad. Sci. USA. 99:5591–5595.

    Article  ADS  Google Scholar 

  • Petkova, A.T., Ishii, Y., Balbach, J.J., Antzutkin, O.N., Leapman, R.D., Delaglio, F., and Tycko, R. 2002. A structural model for Alzheimer's beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc. Natl. Acad. Sci. USA. 99:16742–16747.

    Article  ADS  Google Scholar 

  • Petkova, A.T, Leapman, R.D., Guo, Z., Yau, W.M., Mattson, M.P., and Tycko, R. 2005. Self-propagating, molecular-level polymorphism in Alzheimer's β-amyloid fibrils. Science 307:262–265.

    Article  ADS  Google Scholar 

  • Petrucelli, L., and Dawson, T.M. 2004. Mechanism of neurodegenerative disease: Role of the ubiquitin proteasome system. Ann. Med. 36:315–320.

    Article  Google Scholar 

  • Polverino de Laureto, P., Taddei, N., Frare, E., Capanni, C., Costantini, S., Zurdo, J., Chiti, F., Dobson, C.M., and Fontana, A. 2003. Protein aggregation and amyloid fibril formation by an SH3 domain probed by limited proteolysis. J. Mol. Biol. 334:129–141.

    Article  Google Scholar 

  • Prouty, W.F., Karnovsky, M.J., Goldberg, A.L. 1975. Degradation of abnormal proteins in Escherichia coli.: Formation of protein inclusions in cells exposed to amino acid analogs. J. Biol. Chem. 250:1112–1122.

    Google Scholar 

  • Rapaport, D.C. 1978. Molecular dynamics simulation of polymer chains with excluded volume. J. Phys. A-Math. Gen. 11:L213–L217.

    Article  ADS  Google Scholar 

  • Rapaport, D.C. 1979. Molecular dynamics study of a polymer-chain in solution. J. Chem. Phys. 71:3299–3303.

    Article  ADS  Google Scholar 

  • Richardson, J.S., and Richardson, D.C. 2002. Natural beta-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc. Natl. Acad. Sci. USA. 99:2754–2759.

    Article  ADS  Google Scholar 

  • Riek, R., Hornemann, S., Wider, G., Billeter, M., Glockshuber, R., and Wuthrich, K. 1996. NMR structure of the mouse prion protein domain PrP(121–321). Nature. 382:180–182.

    Article  ADS  Google Scholar 

  • Saper, M.A., Bjorkman, P.J., and Wiley, D.C. 1991. Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 A resolution. J. Mol. Biol. 219:277–319.

    Article  Google Scholar 

  • Scherzinger, E., Lurz, R., Turmaine, M., Mangiarini, L., Hollenbach, B., Hasenbank, R., Bates, G.P., Davies, S.W., Lehrach, H., and Wanker, E.E. 1997. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro. and in vivo. Cell. 90:549–558.

    Article  Google Scholar 

  • Schiffer, M., Chang, C.H., and Stevens, F.J. 1985. Formation of an infinite beta-sheet arrangement dominates the crystallization behavior of lambda-type antibody light chains. J. Mol. Biol. 186:475–478.

    Article  Google Scholar 

  • Serio, T.R., Cashikar, A.G., Kowal, A.S., Sawicki, G.J., Moslehi, J.J., Serpell, L., Arnsdorf, M.F., and Lindquist, S.L. 2000. Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science. 289:1317–1321.

    Article  ADS  Google Scholar 

  • Sharma, D., Shinchuk, L., Inouye, H., Wetzel, R., and Kirschner, D.A. 2005. Polyglutamine homopolymers having 8–45 repeats form slablike βcrystallite assemblies. Proteins. Struct. Funct. Bioinf. 61:398–411.

    Article  Google Scholar 

  • Shire, S.J., Shahrokh, Z., and Liu, J. 2004. Challenges in the development of high protein concentration formulations. J. Pharm. Sci. 93:1390–1402.

    Article  Google Scholar 

  • Shivaprasad, S., and Wetzel, R. 2004. An intersheet packing interaction in Aβ fibrils mapped by disulfide crosslinking. Biochemistry. 43:15310–15317.

    Article  Google Scholar 

  • Shivaprasad, S., and Wetzel, R. 2006. Scanning cysteine mutagenesis analysis of Aβ(1–40) amyloid fibrils. J. Biol. Chem. 281:993–1000.

    Article  Google Scholar 

  • Skolnick, J., and Kolinski, A. 1990. Simulations of the folding of a globular protein. Science. 250:1121–1125.

    Article  ADS  Google Scholar 

  • Smith, A.V., Hall, C.K. 2001a. Alpha-helix formation: Discontinuous molecular dynamics on an intermediate-resolution protein model. Proteins. 44:344–360.

    Article  Google Scholar 

  • Smith, A.V., and Hall, C.K. 2001b. Assembly of a tetrameric alpha-helical bundle: Computer simulations on an intermediate-resolution protein model. Proteins. 44:376–391.

    Article  Google Scholar 

  • Smith, A.V., and Hall, C.K. 2001c. Protein refolding versus aggregation: Computer simulations on an intermediate-resolution protein model. J. Mol. Biol. 312:187–202.

    Article  Google Scholar 

  • Stanger, H.E., Syud, F.A., Espinosa, J.F., Giriat, I., Muir, T., and Gellman, S.H. 2001. Length-dependent stability and strand length limits in antiparallel beta -sheet secondary structure. Proc. Natl. Acad. Sci. USA. 98:12015–12020.

    Article  ADS  Google Scholar 

  • Sticht, H., Bayer, P., Willbold, D., Dames, S., Hilbich, C., Beyreuther, K., Frank, R.W., and Rosch, P. 1995. Structure of amyloid A4-(1-40)-peptide of Alzheimer's disease. Eur. J. Biochem. 233:293–298.

    Article  Google Scholar 

  • Stine, W.B., Jr., Snyder, S.W., Ladror, U.S., Wade, W.S., Miller, M.F., Perun, T.J., Holzman, T.F., and Krafft, G.A. 1996. The nanometer-scale structure of amyloid-beta visualized by atomic force microscopy. J. Protein. Chem. 15:193–203.

    Article  Google Scholar 

  • Sunde, M., and Blake, C. 1997. The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv. Protein. Chem. 50:123–159.

    Article  Google Scholar 

  • Sunde, M., and Blake, C.C. 1998. From the globular to the fibrous state: Protein structure and structural conversion in amyloid formation. Q. Rev. Biophys. 31:1–39.

    Article  Google Scholar 

  • Takada, S., Luthey-Schulten, Z., and Wolynes, P.G. 1999. Folding dynamics with nonadditive forces: A simulation study of a designed helical protein and a random heteropolymer. J. Chem. Phys. 110:11616–11629.

    Article  ADS  Google Scholar 

  • Taketomi, H., Ueda, Y., and Go, N. 1975. Studies on protein folding, unfolding and fluctuations by computer simulation. I. The effect of specific amino acid sequence represented by specific inter-unit interactions. Int. J. Pept. Protein. Res. 7:445–459.

    Article  Google Scholar 

  • Tanaka, M., Chien, P., Naber, N., Cooke, R., and Weissman, J.S. 2004. Conformational variations in an infectious protein determine prion strain differences. Nature. 428:323–328.

    Article  ADS  Google Scholar 

  • Tanaka, S., and Scheraga, H.A. 1976. Medium- and long-range interaction parameters between amino acids for predicting three-dimensional structures of proteins. Macromolecules. 9:945–950.

    Article  ADS  Google Scholar 

  • Thakur, A., Wetzel, R. 2002. Mutational analysis of the structural organization of polyglutamine aggregates. Proc. Natl. Acad. Sci. USA. 99:17014–17019.

    Article  ADS  Google Scholar 

  • Toma, L., and Toma, S. 2000. A lattice study of multimolecular ensembles of protein models. Effect of sequence on the final state: Globules, aggregates, dimers, fibrillae. Biomacromolecules. 1:232–238.

    Article  Google Scholar 

  • Torok, M., Milton, S., Kayed, R., Wu, P., McIntire, T., Glabe, C.G., and Langen, R. 2002. Structural and dynamic features of Alzheimer's Abeta peptide in amyloid fibrils studied by site-directed spin labeling. J. Biol. Chem. 277:40810–40815.

    Article  Google Scholar 

  • Turner, G.C., and Varshavsky, A. 2000. Detecting and measuring cotranslational protein degradation in vivo. Science. 289:2117–2120.

    Article  ADS  Google Scholar 

  • Tycko, R. 2000. Solid-state NMR as a probe of amyloid fibril structure. Curr. Opin. Chem. Biol. 4:500–506.

    Article  Google Scholar 

  • Urbanc, B., Cruz, L., Ding, F., Sammond, D., Khare, S., Buldyrev, S.V., Stanley, H.E., and Dokholyan, N.V. 2004a. Molecular dynamics simulation of amyloid beta dimer formation. Biophys. J. 87:2310–2321.

    Article  ADS  Google Scholar 

  • Urbanc, B., Cruz, L., Yun, S., Buldyrev, S.V., Bitan, G., Teplow, D.B., and Stanley, H.E. 2004b. In silico. study of amyloid beta-protein folding and oligomerization. Proc. Natl. Acad. Sci. USA. 101:17345–17350.

    Article  ADS  Google Scholar 

  • Vigouroux, S., Briand, M., and Briand, Y. 2004. Linkage between the proteasome pathway and neurodegenerative diseases and aging. Mol. Neurobiol. 30:201–221.

    Article  Google Scholar 

  • Wallqvist, A., and Ullner, M. 1994. A simplified amino-acid potential for use in structure predictions of proteins. Proteins-Struct. Funct. Genet. 18:267–280.

    Article  Google Scholar 

  • Wang, S.S., Tobler, S.A., Good, T.A., and Fernandez, E.J. 2003. Hydrogen exchange-mass spectrometry analysis of beta-amyloid peptide structure. Biochemistry. 42:9507–9514.

    Article  Google Scholar 

  • Wetzel, R. 1992. Protein aggregation in vivo.: Bacterial inclusion bodies and mammalian amyloid. In Stability of Protein Pharmaceuticals: In Vivo Pathways of Degradation and Strategies for Protein Stabilization. (T. J. Ahern and M. C. Manning, Eds.). New York, Plenum Press, pp. 43–88.

    Google Scholar 

  • Wetzel, R. 1994. Mutations and off-pathway aggregation. Trends Biotechnol. 12:193–198.

    Article  Google Scholar 

  • Wetzel, R. 1999. Amyloid, prions, and other protein aggregates. Methods. Enzymol. 309:820. (J. N. Abelson and M. I. Simon, Eds.), Vol. 309, pp. 820. Academic Press, San Diego, CA.

    Google Scholar 

  • Wetzel, R. 2002. Ideas of order for amyloid fibril structure. Structure. 10:1031–1036.

    Article  Google Scholar 

  • Wetzel, R. 2005. Protein folding and aggregation in the expanded polyglutamine repeat diseases. In The Protein Folding Handbook, Part II. (J. Buchner and T. Kiefhaber, Eds.). Weinheim, Wiley-VCH, pp. 1170–1214.

    Google Scholar 

  • Wetzel, R., and Goeddel, D.V. 1983. Synthesis of polypeptides by recombinant DNA methods. In The Peptides: Analysis, Synthesis, Biology. (J. Meienhofer and E. Gross, Eds.). New York, Academic Press, Vol. 5, pp. 1–64.

    Google Scholar 

  • Whittemore, N.A., Mishra, R., Kheterpal, I., Williams, A.D., Wetzel, R., and Serpersu, E.H. 2005. Hydrogen-deuterium (H/D) exchange mapping ofAβ1-40 amyloid fibril secondary structure using NMR spectroscopy. Biochemistry. 44:4434–4441.

    Article  Google Scholar 

  • Wille, H., Michelitsch, M.D., Guenebaut, V., Supattapone, S., Serban, A., Cohen, F.E., Agard, D.A., and Prusiner, S.B. 2002. Structural studies of the scrapie prion protein by electron crystallography. Proc. Natl. Acad. Sci. USA. 99:3563–3568.

    Article  ADS  Google Scholar 

  • Williams, A., Portelius, E., Kheterpal, I., Guo, J.-T., Cook, K., Xu, Y., and Wetzel, R. 2004. Mapping abeta amyloid fibril secondary structure using scanning proline mutagenesis. J. Mol. Biol. 335:833–842.

    Article  Google Scholar 

  • Williams, A.D., Sega, M., Chen, M., Kheterpal, I., Geva, M., Berthelier, V., Kaleta, D.T., Cook, K.D., and Wetzel, R. 2005. Structural properties of Aβ protofibrils stabilized by a small molecule. Proc. Natl. Acad. Sci. USA. 102:7115–7120.

    Article  ADS  Google Scholar 

  • Williams, A.D., Shivaprasad, S., and Wetzel, R. 2006. Alanine scanning mutagenesis of Aβ(1–40) amyloid fibril stability. J. Mol. Biol. 357:1283–1294.

    Article  Google Scholar 

  • Wu, H. 1931. Studies on denaturation of proteins. XII. A theory of denaturation. Chin. J. Physiol. 5:321–344.

    Google Scholar 

  • Yamaguchi, K., Takahashi, S., Kawai, T., Naiki, H., and Goto, Y. 2005. Seeding-dependent propagation and maturation of amyloid fibril conformation. J. Mol. Biol. 352:952–960.

    Article  Google Scholar 

  • Xu, D., Baburaj, K., Peterson, C.B., and Xu, Y. 2001. Model for the three-dimensional structure of vitronectin: Predictions for the multi-domain protein from threading and docking. Proteins. 44:312–320.

    Article  Google Scholar 

  • Xu, Z., Horwich, A.L., and Sigler, P.B. 1997. The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature. 388:741–750.

    Article  ADS  Google Scholar 

  • Zanuy, D., Gunasekaran, K., Ma, B., Tsai, H.H., Tsai, C.J., and Nussinov, R. 2004. Insights into amyloid structural formation and assembly through computational approaches. Amyloid. 11:143–161.

    Article  Google Scholar 

  • Zanuy, D., Ma, B., and Nussinov, R. 2003. Short peptide amyloid organization: Stabilities and conformations of the islet amyloid peptide NFGAIL. Biophys. J. 84:1884–1894.

    Article  ADS  Google Scholar 

  • Zanuy, D., and Nussinov, R. 2003. The sequence dependence of fiber organization. A comparative molecular dynamics study of the islet amyloid polypeptide segments 22–27 and 22–29. J. Mol. Biol. 329:565–584.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Guo, Jt., Hall, C.K., Xu, Y., Wetzel, R. (2007). Modeling Protein Aggregate Assembly and Structure. In: Xu, Y., Xu, D., Liang, J. (eds) Computational Methods for Protein Structure Prediction and Modeling. BIOLOGICAL AND MEDICAL PHYSICS BIOMEDICAL ENGINEERING. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68372-0_9

Download citation

Publish with us

Policies and ethics