Sparse Sets in Time and Frequency Related to Diophantine Problems and Integrable Systems

  • D. V. ChudnovskyEmail author
  • G. V. Chudnovsky
  • T. Morgan


Reconstruction of signals and their Fourier transforms lead to the theory of prolate functions, developed by Slepian and Pollack. We look at prior contributions by Szegö to these problems. We present a unified framework for solutions of Szegö like problems for signals supported by an arbitrary union of intervals, using the techniques of Garnier isomonodromy equations. New classes of completely integrable equations and Darboux–Backlund transformations that arise from this framework are similar to the problems encountered in transcendental number theory. A particular example for the Hilbert matrix is studied in detail.


Hilbert matrix Hankel matrices Padé approximations 


  1. 1.
    Alberto Grünbaum, F.: A remark on Hilbert’s matrix. Linear Algebra Appl. 43, 119–124 (1982)Google Scholar
  2. 2.
    Adler, M., Shiota, T., van Moerbeke, P.: Random matrices, Virasoro algebras, and noncommutative KP. Duke Math. J. 94(2), 379–431 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Chudnovsky, D.: Riemann monodromy problem, isomonodromy deformation equations and completely integrable system. In: Bifurcation phenomena in mathematical physics and related topics, pp. 385–448. D. Reidel, Dordrecht (1980)Google Scholar
  4. 4.
    Chudnovsky, G.: Padé approximation and Riemann monodromy problem. In: Bifurcation phenomena in mathematical physics and related topics, pp. 449–410. D. Reidel, Dordrecht (1980)Google Scholar
  5. 5.
    Chudnovsky, D., Chudnovsky, G.: Explicit continued fractions and quantum gravity. Acta Appl. Math. 36(1–2), 167–185 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Garnier, R.: Sur une classe de systèmes différentiels Abéliens déduits de la théorie des équations linéaires. Circolo Math. Palermo 43, 155–191 (1919)zbMATHCrossRefGoogle Scholar
  7. 7.
    Gilbert, E., Slepian, D.: Doubly orthogonal concentrated polynomials. SIAM J. Math Anal. 8, 290–319 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Hidetaka, S.: A q-analog of the Garnier system. Funkcialaj Ekvacioj 48, 273–297 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Its, A.R., Tracy, C.A., Widom, H.: Random words, Toeplitz determinants and integrable systems II. Physica D 152–153, 199–224 (2001)MathSciNetGoogle Scholar
  10. 10.
    Jackson, F.H.: On q-definite integrals. Quart. J. Pure Appl. Math. 41, 193–203 (1910)zbMATHGoogle Scholar
  11. 11.
    Mahler, K.: Perfect systems. Compos. Math. pp. 95–166 (1968)Google Scholar
  12. 12.
    Morrison, J.A.: On the eigenfunctions corresponding to the bandpass kernel. Quart. Appl. Math. 21, 13–19 (1963)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Okamoto, K.: Isomonodromic deformation and Painleve equation, and the Garnier system. J. Fac. Sci. Univ. Tokyo Sec. IA(33), 575–618 (1986)Google Scholar
  14. 14.
    Rosenblum, M.: On the Hilbert matrix I. Proc. Amer. Math. Soc. 9(1), 137–140 (1958)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Rosenblum, M.: On the Hilbert matrix II. Proc. Amer. Math. Soc. 9(4), 581–585 (1958)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Sawyer, W.W.: On the matrix on elements 1/(r+s-1). Can. Math. Bull. 17(2), 297–298 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Schlesinger, L.: Uber eine klasse von differentialsystemen beliebliger ordnung mit festen kritischer punkten. J. Math. 141, 96–145 (1912)zbMATHGoogle Scholar
  18. 18.
    Slepian, D.: Prolate spheroidal wave functions, Fourier analysis, and uncertainty-V the discrete case. Bell Syst. Tech. J. 57, 1371–1429 (1978)zbMATHGoogle Scholar
  19. 19.
    Slepian, D., Pollak, H.: Prolate spheroidal wave functions, Fourier analysis and uncertainty: Part I. Bell Sys. Tech. J. 40, 43–64 (1961)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Szegö, G.: On some Hermitian forms associated with two given curves of the complex plan. Trans. Am. Math. Soc. 40(3), 450–461 (1936)CrossRefGoogle Scholar
  21. 21.
    Tracy, C.A., Widom, H.: Level spacing distributions and the Bessel kernel. Comm. Math. Phys. 161, 289–309 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Tracy, C.A., Widom, H.: Fredholm determinants, differential equations and matrix models. Comm. Math. Phys. 163, 33–72 (1994)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • D. V. Chudnovsky
    • 1
    Email author
  • G. V. Chudnovsky
    • 1
  • T. Morgan
    • 1
  1. 1.Polytechnic Institute of NYU, IMASBrooklynUSA

Personalised recommendations