Advertisement

Variance of Signals and Their Finite Fourier Transforms

  • D. V. ChudnovskyEmail author
  • G. V. Chudnovsky
  • T. Morgan
Chapter

Summary

The study of properties of the finite Fourier matrix can be traced back to I. Schur and his use of the Gauss reciprocity law to determine the spectral properties of the finite Fourier matrix. Unlike the continuous Fourier transform, there is no widely accepted eigenvector basis. We present different approaches to eigenvector construction for the finite Fourier matrix, and a new set of extremality principles for the finite Fourier transform. One of the consequences of this construction is a new discrete uncertainty principle, analogous to a classical Heisenberg–Weyl formulation.

Keywords

Eigenvectors Fourier matrix Fractional fourier transform 

References

  1. 1.
    Alberto Grünbaum, F.: Trying to beat Heisenberg. Lect. Notes Pure Appl. Math. 39, 657–665 (1990)Google Scholar
  2. 2.
    Alberto Grünbaum, F.: The Heisenbergy inequality for the discrete Fourier transform. Appl. Comput. Harmon. Anal. 15(2), 163–167 (2003)Google Scholar
  3. 3.
    Auslander, L., Tolimieri, R.: Is computing with the finite Fourier transform pure or applied mathematics? Bull. Amer. Math. Soc. (N.S.) 1(6), 847–897 (1979)Google Scholar
  4. 4.
    Beckner, W.: Pitt’s inequality and the uncertainty principle. Proc. Amer. Math. Soc. 123, 1897–1905 (1995)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Beckner, W.: Pitt’s inequality with sharp error estimates. arXiv:math/0701939v2 (2007)Google Scholar
  6. 6.
    Calvez, L., Vilbe, P.: On the uncertainty principle in discrete signals. IEEE Trans. Circuits Syst. II: Analog Digital Signal Process. 39(6), 394–395 (1992)CrossRefGoogle Scholar
  7. 7.
    Carlitz, L.: Some cyclotomic matrices. Acta Arithmetica 5, 293–308 (1959)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Chudnovsky, D.V., Chudnovsky, G.V.: Some remarks on theta functions and S-matrices. In: Classical and quantum models and arithmetic problems, Lecture notes in Pure and Applied Mathematics, 117–214 Marcel Dekker, New York (1984)Google Scholar
  9. 9.
    Chudnovsky, D.V., Chudnovsky, G.V., Morgan, T.: Sparse Sets in Time and Frequency related to Diophantine Problems and Integrable Systems. In: this volume, Springer, New York (2009)Google Scholar
  10. 10.
    Dickinson, B.W., Steiglitz, K.: Eigenvalues and eigenvectors of the discrete Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 30(1), 25–31 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Folland, G., Sitaram, A.: The uncertainty principle: A mathematical survey. J. Fourier Anal. Appl. 3(3), 207–238 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Gutzwiller, M.: Physics and arithmetic chaos in the Fourier transform. In: The Mathematical Beauty of Physics, A Memorial Volume for Claude Itzykson, World Scientific, Singapore, 258–280 (1997)Google Scholar
  13. 13.
    Harper, P.G.: Single band motion of conduction electrons in a uniform magnetic field. Proc. Phys. Soc. A 68, 874–878 (1955)zbMATHCrossRefGoogle Scholar
  14. 14.
    Hirschman, J.I.: A note on entropy. Am. J. Math. 79, 152–156 (1957)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Hofstadter Douglas, R.: Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14(6), 2239–2249 (1976)Google Scholar
  16. 16.
    Ishii, R., Furukawa, K.: The uncertainty principle in discrete signals. IEEE Trans. Circuits Syst. 33(10), 1032–1034 (1986)zbMATHCrossRefGoogle Scholar
  17. 17.
    Matveev, V.B.: Intertwining relations between the Fourier transform and discrete Fourier transform, the related functional identities and beyond. Inverse Probl. 17(4), 633–657 (2001)zbMATHCrossRefGoogle Scholar
  18. 18.
    McClellan, J., Parks, T.: Eigenvalue and eigenvector decomposition of the discrete Fourier transform. IEEE Trans. Audio Electroacoustics 20(1), 66–74 (1972)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mehta, M.L.: Eigenvalues and eigenvectors of the finite Fourier transform. J. Math. Phys. 28(4), 781–785 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Morton, P.: On the eigenvectors of Schur’s matrix. J. Number Theor. 12, 122–127 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Mumford, D.: Tata lectures on theta I, vol. 28. Birkhäuser Boston Inc., Boston, MA (1983)zbMATHGoogle Scholar
  22. 22.
    Ozaktas, H.M., Kutay, M.A., Zalevsky, Z.: The fractional Fourier transform with applications in optics and signal processing. Wiley, Chichester, New York (2001)Google Scholar
  23. 23.
    Prestin, J., Quak, E., Rauhut, H., Selig, K.: The connection of uncertainty principles for functions on the circle and on the real line. J. Fourier Anal. Appl. 9(4), 387–409 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Schur, I.: Über die Gaussschen summen. J. Gött. Nachr. pp. 147–153 (1921)Google Scholar
  25. 25.
    Weyl, H.: The Theory of Groups and Quantum Mechanics. Dover, New York (1950)Google Scholar
  26. 26.
    Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1927)zbMATHGoogle Scholar
  27. 27.
    Yarlagadda, R.: A note on the eigenvectors of DFT matrices. IEEE Trans. Acoust. Speech Signal Process. 25(6), 586–589 (1977)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • D. V. Chudnovsky
    • 1
    Email author
  • G. V. Chudnovsky
    • 1
  • T. Morgan
    • 1
  1. 1.Polytechnic Institute of NYU, IMASBrooklynUSA

Personalised recommendations