Advertisement

Classes of Permutation Polynomials Based on Cyclotomy and an Additive Analogue

  • Michael E. ZieveEmail author
Chapter

Summary

I present a construction of permutation polynomials based on cyclotomy, an additive analogue of this construction, and a generalization of this additive analogue which appears to have no multiplicative analogue. These constructions generalize recent results of José Marcos.

Keywords

Cyclotomy Permutation polynomial 

Notes

Acknowledgements

I thank José Marcos for sending me preliminary versions of his paper [26], and for encouraging me to develop consequences of his ideas while his paper was still under review.

References

  1. 1.
    S. Ahmad: Split dilations of finite cyclic groups with applications to finite fields. Duke Math. J. 37, 547–554 (1970)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    A. Akbary, S. Alaric and Q. Wang: On some classes of permutation polynomials. Int. J. Number Theory 4, 121–133 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    A. Akbary and Q. Wang: On some permutation polynomials over finite fields. Int. J. Math. Math. Sci. 16, 2631–2640 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    A. Akbary and Q. Wang: A generalized Lucas sequence and permutation binomials. Proc. Am. Math. Soc. 134, 15–22 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    A. Akbary and Q. Wang: On polynomials of the form \({x}^{r}f({x}^{(q-1)/l})\). Int. J. Math. Math. Sci. (2007) art. ID 23408Google Scholar
  6. 6.
    E. Betti: Sopra la risolubilitá per radicali delle equazioni algebriche irriduttibili di grado primo. Ann. Sci. Mat. Fis. 2, 5–19 (1851) [ = Op. Mat. 1, 17–27 (1903)]Google Scholar
  7. 7.
    F. Brioschi: Des substitutions de la forme \(\theta (r) \equiv \epsilon ({r}^{n-2} + a{r}^{(n-3)/2})\) pour un nombre n premier de lettres. Math. Ann. 2, 467–470 (1870) [ = Op. Mat. 5, 193–197 (1909)]MathSciNetCrossRefGoogle Scholar
  8. 8.
    L. Carlitz: Some theorems on permutation polynomials. Bull. Am. Math. Soc. 68, 120–122 (1962)zbMATHCrossRefGoogle Scholar
  9. 9.
    L. Carlitz: Permutations in finite fields. Acta Sci. Math. (Szeged) 24, 196–203 (1963)MathSciNetzbMATHGoogle Scholar
  10. 10.
    L. Carlitz and C. Wells: The number of solutions of a special system of equations in a finite field. Acta Arith. 12, 77–84 (1966)MathSciNetzbMATHGoogle Scholar
  11. 11.
    S. D. Cohen and R. W. Matthews: A class of exceptional polynomials. Trans. Am. Math. Soc. 345, 897–909 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    S. D. Cohen and R. W. Matthews: Exceptional polynomials over finite fields. Finite Fields Appl. 1, 261–277 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    L. E. Dickson: The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group. Ann. of Math. 11, 65–120 (1896)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    L. E. Dickson: Linear Groups with an Exposition of the Galois Field Theory, Teubner, Leipzig (1901) [Reprinted by Dover, New York (1958)]zbMATHGoogle Scholar
  15. 15.
    A. B. Evans: Orthomorphism Graphs of Groups, Springer, Heidelberg (1992)zbMATHGoogle Scholar
  16. 16.
    A. B. Evans: Cyclotomy and orthomorphisms: a survey. Congr. Numer. 101, 97–107 (1994)MathSciNetzbMATHGoogle Scholar
  17. 17.
    J. P. Fillmore: A note on split dilations defined by higher residues. Proc. Am. Math. Soc. 18, 171–174 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    R. M. Guralnick and M. E. Zieve: Polynomials with PSL(2) monodromy. Ann. Math., to appear, arXiv:0707.1835Google Scholar
  19. 19.
    Ch. Hermite: Sur les fonctions de sept lettres. C. R. Acad. Sci. Paris. 57, 750–757 (1863) [ = Ouvres 2, 280–288 (1908)]Google Scholar
  20. 20.
    N. S. James and R. Lidl: Permutation polynomials on matrices. Linear Algebra Appl. 96, 181–190 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    S. Y. Kim and J. B. Lee: Permutation polynomials of the type \({x}^{1+(q-1)/m} + ax\). Commun. Korean Math. Soc. 10, 823–829 (1995)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Y. Laigle-Chapuy: Permutation polynomials and applications to coding theory. Finite Fields Appl. 13, 58–70 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    J. B. Lee and Y. H. Park: Some permuting trinomials over finite fields. Acta Math. Sci. 17, 250–254 (1997)zbMATHGoogle Scholar
  24. 24.
    H. W. Lenstra, Jr. and M. Zieve: A family of exceptional polynomials in characteristic three. In: Finite Fields and Applications, Cambridge University Press, Cambridge 209–218 (1996)CrossRefGoogle Scholar
  25. 25.
    J. E. Marcos: Specific permutation polynomials over finite fields. arXiv:0810.2738v1 (preliminary version of [26])Google Scholar
  26. 26.
    J. E. Marcos: Specific permutation polynomials over finite fields. Finite Fields Appl., to appearGoogle Scholar
  27. 27.
    A. M. Masuda and M. E. Zieve: Permutation binomials over finite fields. Trans. Am. Math. Soc. 361, 4169–4180 (2009), arXiv:0707.1108MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    E. Mathieu: Mémoire sur l’étude des fonctions de plusieurs quantités sur la manière de les former, et sur les substitutions qui les laissent invariables. J. Math. Pures Appl. 6, 241–323 (1861)Google Scholar
  29. 29.
    G. Mullen and H. Niederreiter: The structure of a group of permutation polynomials. J. Aust. Math. Soc. (Ser. A) 38, 164–170 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    H. Niederreiter and K. H. Robinson: Complete mappings of finite fields. J. Aust. Math. Soc. (Ser. A) 33, 197–212 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    H. Niederreiter and A. Winterhof: Cyclotomic \(\mathcal{R}\)-orthomorphisms of finite fields. Discrete Math. 295, 161–171 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Y. H. Park and J. B. Lee: Permutation polynomials with exponents in an arithmetic progression. Bull. Aust. Math. Soc. 57, 243–252 (1998)zbMATHCrossRefGoogle Scholar
  33. 33.
    Y. H. Park and J. B. Lee: Permutation polynomials and group permutation polynomials. Bull. Aust. Math. Soc. 63, 67–74 (2001)zbMATHCrossRefGoogle Scholar
  34. 34.
    L. J. Rogers: On the analytical representation of heptagrams. Proc. London Math. Soc. 22, 37–52 (1890)CrossRefGoogle Scholar
  35. 35.
    T. J. Tucker and M. E. Zieve: Permutation polynomials, curves without points, and Latin squares. preprint (2000)Google Scholar
  36. 36.
    D. Wan: Permutation polynomials over finite fields. Acta Math. Sin. 3, 1–5 (1987)zbMATHGoogle Scholar
  37. 37.
    D. Wan: Permutation binomials over finite fields. Acta Math. Sin. 10, 30–35 (1994)zbMATHCrossRefGoogle Scholar
  38. 38.
    D. Wan and R. Lidl: Permutation polynomials of the form \({x}^{r}f({x}^{(q-1)/d})\) and their group structure. Monatsh. Math. 112, 149–163 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    L. Wang: On permutation polynomials. Finite Fields Appl. 8, 311–322 (2002)zbMATHCrossRefGoogle Scholar
  40. 40.
    C. Wells: Groups of permutation polynomials. Monatsh. Math. 71, 248–262 (1967)zbMATHGoogle Scholar
  41. 41.
    C. Wells: A generalization of the regular representation of finite abelian groups. Monatsh. Math. 72, 152–156 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    M. E. Zieve: Some families of permutation polynomials over finite fields. Int. J. Number Theory 4, 851–857 (2008), arXiv:0707.1111MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    M. E. Zieve: On some permutation polynomials over \({\mathbb{F}}_{q}\) of the form \({x}^{r}h({x}^{(q-1)/d})\). Proc. Am. Math. Soc. 137, 2209–2216 (2009), arXiv:0707.1110MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations