Sum-Product Theorems and Applications

  • Jean BourgainEmail author


This is a brief account of recent developments in the theory of exponential sums and on methods from Arithmetic Combinatorics.


Exponential sum Sum-product 


  1. B1.
    J. Bourgain, Multilinear exponential sums in prime fields under optimal entropy condition on the sources, GAFA 18 (2009), no 5, 1477–1502.Google Scholar
  2. B2.
    J. Bourgain, Mordell’s exponential sum estimate revisited, JAMS 18(2) (2005), 477–499.MathSciNetzbMATHGoogle Scholar
  3. B3.
    J. Bourgain, The Sum-product theorem in \({\mathbb{Z}}_{q}\) , with q arbitrary, J. Analyse 106 (2008), 1–93.MathSciNetzbMATHCrossRefGoogle Scholar
  4. B4.
    J. Bourgain, Exponential sum estimates over subgroups of \({\mathbb{Z}}_{q}^{{_\ast}},q\) arbitrary, J. Analyse 97 (2005), 317–356.MathSciNetCrossRefGoogle Scholar
  5. B5.
    J. Bourgain, Exponential sum estimates in finite commutative rings and applications, J. Analyse Math., 101 (2007), 325–355.MathSciNetzbMATHCrossRefGoogle Scholar
  6. B6.
    J. Bourgain, A remark on quantum ergodicity for cat maps, Springer, Berlin, lMN, 1910 (2007), 89–98.MathSciNetGoogle Scholar
  7. B-C1.
    J. Bourgain, M. Chang, A Gauss sum estimate in arbitrary finite fields, C.R. Math. Acad. Sci. Paris 342(9) (2006), 643–646.Google Scholar
  8. B-C2.
    J. Bourgain, M. Chang, On the minimum norm of representatives of residue classes in number fields, Duke Math. J. 138(2) (2007), 263–280.MathSciNetzbMATHCrossRefGoogle Scholar
  9. B-C3.
    J. Bourgain, M. Chang, Exponential sum estimates over subgroups and almost subgroups of \({\mathbb{Z}}_{Q}^{{_\ast}}\) , where Q is composite with few prime factors, GAFA 16(2) (2006), 327–366.MathSciNetzbMATHCrossRefGoogle Scholar
  10. B-G.
    J. Bourgain, M.Z. Garaev, On a variant of sum-product estimates and explicit exponential sum bounds in prime fields, Math. Proc. Camb. Phil. Soc. (2008).Google Scholar
  11. B-G-K.
    J. Bourgain, A. Glibichuk, S. Konyagin, Estimate for the number of sums and products and for exponential sums in fields of prime order, J. London Math. Soc. 73 (2006), 380–398.MathSciNetzbMATHCrossRefGoogle Scholar
  12. B-K-T.
    J. Bourgain, N. Katz, T. Tao, A sum-product estimate in finite fields and applications, GAFA 14 (2004), 27–57.MathSciNetzbMATHCrossRefGoogle Scholar
  13. B-L-M-V.
    J. Bourgain, E. Lindenstrauss, P. Michel, A. Venkatesh, Some effective results for a,b, ETDS, vol 29, 06 (2009), 1705–1722.Google Scholar
  14. Ga.
    M. Garaev, An explicit sum-product estimate in \({\mathbb{F}}_{p}\), IMRN (2007), no 11.Google Scholar
  15. H-B.
    D.R. Heath-Brown, An estimate for Heilbronn’s exponential sum, Analytic Number Theory: The Halberstam Festschrift (B.C. Berndt, H.G. Diamond, A.J. Hildebrand, eds.), 451–463 (Progress in Mathematics 138/139, Birkhäuser-Verlag, Boston 1996).Google Scholar
  16. H-K.
    D.R. Heath-Brown, S.V. Konyagin, New bounds for Gauss sum derived from k-th powers and for Heilbronn’s exponential sum, Q. J. Math. 51 (2003), 221–335.MathSciNetCrossRefGoogle Scholar
  17. Ka-S.
    N. Katz, C.-Y. Shen, A slight improvement to Garaev sum-product estimate, Proc. AMS 136(7) (2008), 2499–2504.MathSciNetzbMATHCrossRefGoogle Scholar
  18. Kon.
    S.V. Konyagin, Estimates for trigonometric sums over subgroups and for Gauss sums, International Conference on Modern Problems of Number Theory and its Applications: Current Problems, Part III, 86–114 (Moscow State University, 2002) (in Russian).Google Scholar
  19. Kor.
    N. Korobov, The distribution of digits in periodic fractions, Math. Sb. (N.S) 89(131) (1972), 654–670.Google Scholar
  20. K-S.
    S.V. Konyagin, I.E. Shparlinski, Character Sums with Exponential Functions and their Applications (Cambridge Tracts in Mathematics 136, Cambridge University Press, Cambridge 1999).Google Scholar
  21. K-R.
    P. Kurlberg, Z. Rudnick, On quantum ergodicity for linear maps of the torus, Comm. Math. Phys. 222 (201), 201–227.Google Scholar
  22. M-V-W.
    H. Montgomery, R. Vaughan, T. Wooley, Some remarks on Gauss sums associated with kth powers, Math. Proc. Cambridge Philos. Soc. 118(1) (1995), 21–22.MathSciNetzbMATHCrossRefGoogle Scholar
  23. Mor.
    L.J. Mordell, On a sum analogous to a Gauss sum, Q.J. Math. 3 (1932), 161–162.Google Scholar
  24. Od.
    R.W.K. Odoni, Trigonometric sums of Heilbronn’s type, Math. Proc. Cambridge Philos. Soc. 98 (1985), 389–396.MathSciNetzbMATHCrossRefGoogle Scholar
  25. T-V.
    T. Tao, V. Vu, Additive Combinatorics, Cambridge Studies in Advanced mathematics, vol. 105, Cambridge University Press, Cambridge (2006).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute for Advanced StudyPrincetonUSA

Personalised recommendations