Advertisement

A Tiling Problem and the Frobenius Number

  • D. Labrousse
  • J. L. Ramírez Alfonsín
Chapter

Summary

In this paper, we investigate tilings of tori and rectangles with rectangular tiles. We present necessary and sufficient conditions for the existence of an integer C such that any torus, having dimensions greater than C, is tiled with two given rectangles (C depending on the dimensions of the tiles). We also give sufficient conditions to tile a sufficiently large n-dimensional rectangle with a set of (n-dimensional) rectangular tiles. We do this by combining the periodicity of some particular tilings and results concerning the so-called Frobenius number.

Keywords

Frobenius number Rectangle Tiling Torus 

References

  1. 1.
    F.W. Barnes, Algebraic theory of bricks packing I, Discrete Math. 42 (1982), 7–26.Google Scholar
  2. 2.
    F.W. Barnes, Algebraic theory of bricks packing II, Discrete Math. 42 (1982), 129–144.Google Scholar
  3. 3.
    R.J. Bower and T.S. Michael, Packing boxes with bricks, Mathematics Magazine 79(1) (2006), 14–30.Google Scholar
  4. 4.
    A. Clivio, Tilings of a torus with rectangular boxes, Discrete Math. 91 (1991), 121–139.Google Scholar
  5. 5.
    N.G. de Bruijn, Filling boxes with bricks, Am. Math. Monthly 76 (1969), 37–40.Google Scholar
  6. 6.
    J. Fricke, Quadratzerlegung eines Rechtecks, Math. Semesterber. 42 (1995), 53–62.Google Scholar
  7. 7.
    G. Katona and D. Szász, Matching problems, J. Comb. Th. Ser B 10 (1971), 60–92.Google Scholar
  8. 8.
    D.A. Klarner, Packing a rectangle with congruent n-ominoes, J. Comb. Theory 7 (1969), 107–115.Google Scholar
  9. 9.
    L.F. Klosinski, G.L. Alexanderson and L.C. Larson, The Fifty-Second William Lowell Putman mathematical competition, Am. Math. Month. 9 (1992), 715–724.Google Scholar
  10. 10.
    D.A. Narayan and A.J. Schwenk, Tiling large rectangles Math. Mag. 75(5) (2002), 372–380.Google Scholar
  11. 11.
    M.B. Nathanson, Unusual Applications of Number Theory, DIMACS, Series in Discrete Mathematics and Theoretical Computer Sciences 64, American Mathematical Society, Providence, RI (2004).Google Scholar
  12. 12.
    T. Plambeck (March, 2001). Web site http://www.plambeck.org/oldhtml/mathematics/klarner/
  13. 13.
    J.L. Ramírez Alfonsín, The Diophantine Frobenius Problem, Oxford Lectures Series in Mathematics and its Applications 30, Oxford University Press, Oxford (2005).CrossRefGoogle Scholar
  14. 14.
    E. Remila, On the tiling of a torus with two bars, Theoretical Computer Sciences 134 (1994), 415–426.Google Scholar
  15. 15.
    J.J. Sylvester, Problem 7382, Educational Times 37 (1884), 26; reprinted in: Mathematical questions with their solution, Educational Times (with additional papers and solutions) 41 (1884), 21.Google Scholar
  16. 16.
    A. Tripathi, On a linear diophantine problem of Frobenius, INTEGERS 6 (2006), # A14.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • D. Labrousse
    • 1
  • J. L. Ramírez Alfonsín
    • 1
    • 2
  1. 1.Equipe Combinatoire et OptimisationUniversité Pierre et Marie Curie, Paris 6Paris Cedex 05France
  2. 2.Institut de Mathématiques et de Modelisation de MontpellierUniversité Montpellier 2MontpellierFrance

Personalised recommendations