Distinct Matroid Base Weights and Additive Theory

  • Y. O. HamidouneEmail author
  • I. P. da Silva


Let M be a matroid on a set E and let w : EG be a weight function, where G is a cyclic group. Assuming that w(E) satisfies the Pollard’s Condition (i.e., Every non-zero element of w(E) − w(E) generates G), we obtain a formula for the number of distinct base weights. If | G | is a prime, our result coincides with a result of Schrijver and Seymour. We also describe Equality cases in this formula. In the prime case, our result generalizes Vosper’s Theorem.


Additive inequalities Vosper’s theorem Weighted matroid 


  1. 1.
    Caro, Yair Zero-sum problems, a survey. Discrete Math. 152 (1996), no. 1–3, 93–113.MathSciNetGoogle Scholar
  2. 2.
    A. L. Cauchy, Recherches sur les nombres, J. Ecole Polytechnique 9 (1813), 99–116.Google Scholar
  3. 3.
    I. Chowla, A theorem on the addition of residue classes: Applications to the number Γ(k) in Waring’s problem, Proc. Indian Acad. Sc., Section A, no. 1 (1935) 242–243.Google Scholar
  4. 4.
    H. Davenport, On the addition of residue classes, J. Lond. Math. Soc. 10 (1935), 30–32.CrossRefGoogle Scholar
  5. 5.
    J.A. Dias da Silva and M.B. Nathanson, Maximal Sidon sets and matroids, Discrete Math. 309 (2009), no. 13, 4489–4494.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    P. Erdős, A. Ginzburg and A. Ziv, A theorem in additive number theory, Bull. Res. Council Israel 10F (1961), 41–43.Google Scholar
  7. 7.
    A. Geroldinger and F. Halter-Koch, Non-unique factorizations. Algebraic, combinatorial and analytic theory. Pure and Applied Mathematics (Boca Raton), 278. Chapman & Hall/CRC, Boca Raton, FL, 2006. xxii + 700 pp.CrossRefGoogle Scholar
  8. 8.
    Y.O. Hamidoune, An isoperimetric method in additive theory. J. Algebra 179 (1996), no. 2, 622–630.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    J. H. B. Kemperman, On small sumsets in abeliangroups, Acta Math. 103 (1960), 66–88.MathSciNetCrossRefGoogle Scholar
  10. 10.
    M. B. Nathanson, Additive Number Theory. Inverse problems and the geometry of sumsets, Grad. Texts in Math. 165, Springer, Berlin, Heidelberg, 1996.zbMATHGoogle Scholar
  11. 11.
    J. M. Pollard, A generalisation of the theorem of Cauchy and Davenport, J. Lond. Math. Soc. (2) 8 (1974), 460–462.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    J. M. Pollard, Addition properties of residue classes, J. Lond. Math. Soc. (2) 11 (1975), no. 2, 147–152.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    A. Schrijver, P. D. Seymour, Spanning trees of different weights. Polyhedral combinatorics (Morristown, NJ, 1989), 281–288, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 1, Amer. Math. Soc., Providence, RI, 1990.Google Scholar
  14. 14.
    I. P. F. da Silva, Orientability of Cubes, Discrete Math. 308 (2008), 3574–3585.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    T. Tao and V.H. Vu, Additive Combinatorics, 105. Cambridge Studies in Advanced Mathematics, Cambridge Press University, Cambridge, 2006.Google Scholar
  16. 16.
    G. Vosper, The critical pairs of subsets of a group of prime order, J. Lond. Math. Soc. 31 (1956), 200–205.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    G. Vosper, Addendum to The critical pairs of subsets of a group of prime order, J. Lond. Math. Soc. 31 (1956), 280–282.MathSciNetCrossRefGoogle Scholar
  18. 18.
    D. J. A. Welsh, Matroid theory, Academic Press, London, 1976.zbMATHGoogle Scholar
  19. 19.
    White, N. (ed.), Theory of matroids, Cambridge University Press, Cambridge, 1986.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Université Pierre et Marie Curie, E. CombinatoireParisFrance
  2. 2.CELC/Universidade de Lisboa, Faculdade de CiênciasCampo GrandeLisboaPortugal

Personalised recommendations