Skip to main content

Deformable Models And Their Application In Segmentation Of Imaged Pathology Specimens

  • Chapter

Microsopic evaluation of peripheral blood smears and stained tissue analysis are performed routinely in pathology departments worldwide for cancer diagnosis and/or early detection. Recently, there has been an increase in the number of institutions using digital imaging and analysis to assist in assesment before a dignosis is rendered. Before the computer can be used to index, achive, analyze, or classify an imaged specimen, it must first be delineated into “homogeneous” regions based on the similarity of pixel attributes. Deformable models, or snakes, have gained significant attention and have become popular image segmentation methods since their first introduction by Kass, Witkin, and Terzopoulus in 1989. In this chapter, we will review recent advances and improvements on deformable models. We will focus primarily on the application and performance of different types of deformable models for analyzing microscopic pathology specimens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. Comaniciu D, Meer P, Foran DJ. 1999. Image-guided decision support system for pathology. Machine Vision Appl 11:213-224.

    Article  Google Scholar 

  2. Foran DJ, Comaniciu D, Meer P, Goodell LA. 2000. Computer-assisted discrimination among malignant lymphomas and leukemia using immunophentyping intelligent image repositories and telemicroscopy. IEEE Trans Inform Technol Biomed 4(4):265-273.

    Article  Google Scholar 

  3. Catalyurek U, Beynon MD, Chang C, Kurc T, Sussman A, Saltz J. 2003. The virtual microscope. IEEE Trans Inform Technol Biomed 7(4):230-248.

    Article  Google Scholar 

  4. Kass M, Witkin A, Terzopoulos D. 1987. Snakes: active contour models. Int J Comput Vision 1:321-331.

    Article  Google Scholar 

  5. Malladi R, Sethian JA, Vemuri BC. Shape modeling with front propagation: a level set approach. IEEE Trans Pattern Anal Machine Intell 17(2):158-175.

    Google Scholar 

  6. Caselles V, Catte F, Coll T, Dibos F. 1993. A geometric model for active contours in image processing. Num Math 66:1-32.

    Article  MATH  MathSciNet  Google Scholar 

  7. Leymarie F, Levine MD. 1993. Tracking deformable objects in the plane using an active contour model. IEEE Trans Pattern Anal Machine Intell 15:617-634.

    Article  Google Scholar 

  8. Durikovic R, Kaneda K, Yamashita H. 1995. Dynamic contour: a texture approach and contour operations. Visual Comput 11:277-289.

    Article  Google Scholar 

  9. Terzopoulos D. 1988. The computation of visible-surface representations. IEEE Trans Pattern Anal Machine Intell 10(4):417-438.

    Article  MATH  Google Scholar 

  10. Terzopoulos D, Szeliski R. 1992. Tracking with Kalman snakes. In Active vision, pp. 3-20. Ed A Blake, A Yuille. Cambridge: MIT Press.

    Google Scholar 

  11. Amini AA, Weymouth TE, Jain RC. 1990. Using dynamic programming for solving variational problems in vision. IEEE Trans Pattern Anal Machine Intell 12(9):855-867.

    Article  Google Scholar 

  12. Williams DJ, Shah M. 1992. A fast algorithm for active contoursand curvature estimation. Comput Vision Graphics Image Process: Image Understand 55(1):14-26.

    MATH  Google Scholar 

  13. Cohen LD. 1991. On active contour models and balloons. Comput Vision Graphics Image Process: Image Understand 53(2):211-218.

    MATH  Google Scholar 

  14. Cohen LD, Cohen I. 1993. Finite-element methods for active contour models and balloons for 2d and 3d images. IEEE Trans Pattern Anal Machine Intell 15(11):1131-1147.

    Article  Google Scholar 

  15. Xu C, Prince JL. 1998. Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359-369.

    Article  MATH  MathSciNet  Google Scholar 

  16. Xu C, Prince JL. 1998. Generalized gradient vector flow external forces for active contours. Int J Signal Process 71(2):131-139.

    Article  MATH  Google Scholar 

  17. Yang L, Meer P, Foran D. 2005. Unsupervised segmentation based on robust estimation and color active contour models. IEEE Trans Inform Technol Biomed 9:475-486.

    Article  Google Scholar 

  18. Jehan-Besson S, Gastaud M, Barlaud M, Aubert G. 2003. Region-based active contours using geometrical and statistical features for image segmentation. In Proceedings of the IEEE interna- tional conference on image processing, Vol. 2, pp. 643-646. Washington, DC: IEEE Computer Society.

    Google Scholar 

  19. Fedkiw RP, Sapiro G, Shu C. 2003. Shock capturing, level sets, and PDE-based methods in computer vision and image processing: a review of Osher’s contributions. J Comput Phys 185(2):309-341.

    Article  MATH  MathSciNet  Google Scholar 

  20. Chan TF, Vese LA. 2001. A level set algorithm for minimizing the Mumford-Shah functional in image processing. In Proceedings of the IEEE Workshop on Variational and Level Set Methods, pp. 161-171, Washington, DC: IEEE Computer Society.

    Chapter  Google Scholar 

  21. Chan TF, Vese LA. Active contours withour edges. IEEE Trans Image Process 10(2):266-277.

    Google Scholar 

  22. Arfken G. 1985. Calculus of variations. In Mathematical Methods for Physicists, 3rd ed, pp. 925-962 (chapter 17). Orlando, FL: Academic Press.

    Google Scholar 

  23. Smith GD. 1986. Numerical solution of partial differential equations: finite-difference methods, 3d ed. Oxford Applied Mathematics & Computing Science Series. Oxford: Oxford UP.

    Google Scholar 

  24. Gradshteyn IS, Ryzhik IM. 2000. Tables of integrals series and products, 6th ed. San Diego, CA: Academic Press.

    Google Scholar 

  25. Zenzo SD. 1986. A note on the gradient of a multi-image. Comput Vision Graphics Image Process: Image Understand 33:116-125.

    Google Scholar 

  26. Sapiro G, Ringach DL. 1996. Anisotropic diffusion on multivalued images with applications to color filtering. IEEE Trans Image Process 5(11):1582-1586.

    Article  Google Scholar 

  27. Gevers T. 2002. Adaptive image segmentation by combining photometric invariant region and edge information. IEEE Trans Pattern Anal Machine Intell 24(6):848-852.

    Article  Google Scholar 

  28. Kreyszig E. 1991. Differential geometry. New York: Dover Publications.

    Google Scholar 

  29. Ray N, Acton ST, Altes T, de Lange EE. 2001. MRI ventilation analysis by merging parametric active contours. In Proceedings of the 2001 international conference on image processing, pp. 861-864. Washington, DC: IEEE Computer Society.

    Google Scholar 

  30. Osher S, Sethian JA. 1988. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi fomulation. J Comput Phys 79:12-49.

    Article  MATH  MathSciNet  Google Scholar 

  31. McInerney T, Terzopoulos D. 1995. A dymamic finite-element surface model for segmentation and tracking in multidimensional medical images with applications on cardiac 4d image analysis. Comput Med Imaging Graphics 19:69-83.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yang, L., Foran, D.J. (2007). Deformable Models And Their Application In Segmentation Of Imaged Pathology Specimens. In: Deformable Models. Topics in Biomedical Engineering. International Book Series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68343-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68343-0_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-31204-0

  • Online ISBN: 978-0-387-68343-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics