Skip to main content

Functionally Graded Polar Heterostuctures: New Materials for Multifunctional Devices

  • Chapter
Polarization Effects in Semiconductors

Mixing materials of different compositions is an ancient art. As early as 3000 B.C., metallic alloys - brass & bronze were used for sculpture work. Over the last century, major strides were made in the art of crystal growth of metals, dielectrics, and semiconductors. An alloy offers an opportunity to exploit physical, electrical, and optical properties of materials which are either intermediate, or absent in its constituent materials. This has been the driving force behind the study and discovery of new generations of alloys. With the advent of epitaxial growth techniques such as Molecular Beam Epitaxy (MBE) and Metal-Organic Chemical Vapor Deposition (MOCVD), such hybrid materials can now be engineered at the atomic scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. . E. archive New Semiconductor Materials Characteristics and Properties http://www.ioffe. rssi.ru/SVA/NSM/ .

  2. . P. Yu and M. Cardona, Fundamentals of Semiconductors, Physics and Materials Properties. Berlin: Springer Verlag, 1st ed., 1996.

    Google Scholar 

  3. O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 87, p. 334, 2000.

    Article  Google Scholar 

  4. C. Mailhiot and D. L. Smith, “Electronic structure of [001]- and [111]-growth-axis semiconductor superlattices,” Phys. Rev. B, vol. 35, p. 1242, 1987.

    Article  Google Scholar 

  5. D. C. Look and R. J. MolnarAppl. Phys. Lett., vol. 70, p. 3377, 1997.

    Article  Google Scholar 

  6. J. W. P. Hsu, D. V. Lang, S. Richter, R. N. Kleiman, A. M. Sergent, and R. J. Molnar Appl. Phys. Lett., vol. 77, p. 2673, 2000.

    Google Scholar 

  7. S. Heikman, S. Keller, S. P. DenBaars, and U. K. Mishra Appl. Phys. Lett., vol. 81, p. 439, 2002.

    Article  Google Scholar 

  8. J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors,” Appl. Phys. Lett., vol. 77, p. 250, 2000.

    Article  Google Scholar 

  9. S. Keller, S. Heikman, L. Shen, I. P. Smorchkova, S. P. DenBaars, and U. K. Mishra Appl. Phys. Lett., vol. 80, p. 4387, 2002.

    Article  Google Scholar 

  10. P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. Ploog, “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes,” Nature, vol. 406, p. 865, 2000.

    Article  Google Scholar 

  11. R. Cingolani, A. Botchkarev, H. Tang, H. Morkoç, G. Traetta, G. Coli, M. Lomascolo, A. Di Carlo, F. Della Sala, and P. LugliPhys. Rev. B, vol. 61, p. 2711, 2000.

    Article  Google Scholar 

  12. U. K. Mishra, P. Parikh, and Y. F. Wu, “AlGaN/GaN HEMTS: An overview of device operation and applications,” Proceedings of the IEEE., vol. 90, p. 1022, 2002.

    Article  Google Scholar 

  13. A. Jimenez, D. Buttari, D. Jena, R. Coffie, S. Heikman, N. Zhang, L. Shen, E. Calleja, E. Munoz, J. Speck, and U. K. MishraIEEE Elect. Dev. Lett., vol. 23, p. 306, 2002.

    Article  Google Scholar 

  14. T. F. Kuech, R. T. Collins, D. L. Smith, and C. Mailhiot, “Field-effect transistor structure based on strain-induced polarization charges,” J. Appl. Phys., vol. 67, p. 2650, 1990.

    Article  Google Scholar 

  15. E. S. Snow, B. V. Shanabrook, and D. Gammon Appl. Phys. Lett., vol. 56, p. 758, 1990.

    Article  Google Scholar 

  16. P. Kozodoy, I. P. Smorchkova, M. Hansen, H. Xing, S. P. DenBaars, U. K. Mishra, A. W. Saxler, R. Perrin, and W. C. Mitchel J. Appl. Phys., vol. 75, p. 2444, 1999.

    Google Scholar 

  17. P. M. Asbeck, E. T. Yu, S. S. Lau, W. Sun, X. Dang, and C. Shi, “Enhancement of base conductivity via the piezoelectric effect in AlGaN/GaN HBTs,” Solid-State Electron., vol. 44, p. 211, 2000.

    Article  Google Scholar 

  18. M. Singh, Y. Zhang, J. Singh, and U. K. Mishra Appl. Phys. Lett., vol. 77, p. 1867, 2000.

    Article  Google Scholar 

  19. L. Pfeiffer, K. W. West, H. L. Stormer, and K. W. Baldwin Appl. Phys. Lett., vol. 55, p. 1888, 1989.

    Article  Google Scholar 

  20. M. Shayegan, T. Sajoto, M. Santos, and C. Silvestre Appl. Phys. Lett., vol. 53, p. 791, 1988.

    Article  Google Scholar 

  21. A. C. Gossard, M. Sundaram, and P. F. Hopkins, Epitaxial Microstructures, Semiconductors and Semimetals, vol 40. San Diego: Academic Press, 1st ed., 1994.

    Google Scholar 

  22. B. Heying, R. Averbeck, L. F. Chen, E. Haus, H. Riechert, and J. S. Speck J. Appl. Phys., vol. 88, p. 1855, 2000.

    Article  Google Scholar 

  23. O. Brandt, P. Waltereit, and K. Ploog J. Phys. D: Appl. Phys., vol. 35, p. 577, 2002.

    Article  Google Scholar 

  24. . G. L. Snider 1DPoisson, http://www.nd.edu/ gsnider/.

  25. F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B, vol. 56, p. R10 024, 1997.

    Article  Google Scholar 

  26. W. G. Götz, N. M. Johnson, C. Chen, H. Liu, C. Kuo, and W. Imler Appl. Phy. Lett., vol. 68, p. 3144, 1996.

    Article  Google Scholar 

  27. J. Simon, K. Wang, H. Xing, D. Jena, and S. Rajan, “Carrier transport and confinement in polarization-induced 3D electron slabs: Importance of alloy scattering in AlGaN,” Appl. Phys. Lett., vol. 88, p. 042-109, 2006.

    Google Scholar 

  28. S. Rajan, S. DenBaars, U. K. Mishra, H. Xing, and D. Jena, “Electron mobility in graded AlGaN alloys,” Appl. Phys. Lett., vol. 88, p. 042-103, 2006.

    Article  Google Scholar 

  29. D. Jena, A. C. Gossard, and U. K. Mishra, “Dipole scattering in polarization induced III-V Nitride two-dimensional electron gases,” J. Appl. Phys., vol. 88, p. 4734, 2000.

    Article  Google Scholar 

  30. W. Zhao and D. Jena, “Dipole scattering in Highly Polar Semiconductor Alloys,” J. Appl. Phys., vol. 96, p. 2095, 2004.

    Article  Google Scholar 

  31. D. N. Quang, N. H. Tung, N. V. Tuoc, N. V. Minh, and P. N. Phong, “Roughness-induced piezoelectric charges in wurtzite group-III-nitride heterostructures,” Phys. Rev. B, vol. 72, p. 115-337, 2005.

    Google Scholar 

  32. L. M. Roth and P. M. Argyres Semiconductors and Semimetals, vol. 1, p. 159, 1966.

    Article  Google Scholar 

  33. . C. Hamaguchi Basic Semiconductor Physics, p. 280, 2001.

    Google Scholar 

  34. R. B. DingleProc. Roy. Soc., vol. A211, p. 517, 1952.

    Google Scholar 

  35. R. Kubo, H. Hasegawa, and N. Hashitsume J. Phys. Soc. Japan, vol. 14, p. 56, 1959.

    Article  Google Scholar 

  36. D. Jena, S. Heikman, J. S. Speck, A. C. Gossard, U. K. Mishra, A. Link, and O. Ambacher, “Magnetotransport properties of a polarization-doped three-dimensional electron slab,” Phys. Rev. B, vol. 67, p. 153-306, 2003.

    Article  Google Scholar 

  37. G. Bauer and H. Kahlert, “Low-Temperature Non-Ohmic Galvanomagnetic Effects in Degenerate n-type InAs,” Phys. Rev. B, vol. 5, p. 566, 1972.

    Article  Google Scholar 

  38. Y. Katayama and S. TanakaPhys. Rev., vol. 153, p. 873, 1967.

    Article  Google Scholar 

  39. M. R. Boon Phys Rev. B, vol. 7, p. 761, 1973.

    Article  Google Scholar 

  40. B. L. Altshuler, D. Khmelnitzkii, I. A. Larkin, and P. A. Lee Phys Rev. B, vol. 22, p. 5142, 1980.

    Article  Google Scholar 

  41. T. Wang, Y. Ohno, M. Lachab, D. Nakagawa, T. Shirahama, S. Sakai, and H. Ohno Appl. Phys. Lett., vol. 74, p. 3531, 1995.

    Article  Google Scholar 

  42. A. F. Brana, C. Diaz-Paniagua, F. Batallan, J. A. Garrido, E. Munoz, and F. Omnes J. Appl. Phys., vol. 88, p. 932, 2000.

    Article  Google Scholar 

  43. R. J. Sladek Phys Rev., vol. 110, p. 817, 1958.

    Article  Google Scholar 

  44. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan J. Appl. Phys., vol. 89, p. 8815, 2001.

    Article  Google Scholar 

  45. S. Elhamri, R. S. Newrock, D. B. Mast, M. Ahoujja, W. C. Mitchel, J. M. Redwing, M. A. Tischler, and J. S. Flynn Phys Rev. B, vol. 57, p. 1374, 1998.

    Article  Google Scholar 

  46. W. Knap, S. Contreras, H. Alause, C. Skierbiszewski, J. Camassel, M. Dyakonov, J. L. Robert, J. Yang, Q. Chen, M. A. Khan, M. L. Sadowski, S. Huant, F. H. Yang, M. Goian, J. Leotin, and M. S. Shur Appl. Phys. Lett., vol. 70, p. 2123, 1997.

    Article  Google Scholar 

  47. A. Saxler, P. Debray, R. Perrin, S. Elhamri, W. C. Mitchel, C. R. Elsass, I. P. Smorchkova, B. Heying, E. Haus, P. Fini, J. P. Ibbetson, S. Keller, P. M. Petroff, S. P. DenBaars, U. K. Mishra, and J. S. Speck J. Appl. Phys., vol. 87, p. 369, 2000.

    Article  Google Scholar 

  48. Z. W. Zheng, B. Shen, R. Zhang, Y. S. Gui, C. P. Jiang, Z. X. Ma, G. Z. Zheng, S. L. Gou, Y. Shi, P. Han, Y. D. Zheng, T. Someya, and Y. Arakawa Phys Rev. B, vol. 62, p. R7739, 2000.

    Article  Google Scholar 

  49. D. Jena and U. K. Mishra, “Quantum and classical scattering times due to charged dislocations in an impure electron gas,” Phys. Rev. B, vol. 66, p. 241-307, 2002.

    Article  Google Scholar 

  50. J. P. Harrang, R. J. Higgins, R. K. Goodall, P. R. Ray, M. Laviron, and P. Delescluse Phys Rev. B, vol. 32, p. 8126, 1985.

    Article  Google Scholar 

  51. L. Hsu and W. Walukiewicz Appl. Phys. Lett., vol. 80, p. 2508, 2002.

    Article  Google Scholar 

  52. W. Walukiewicz, P. F. Hopkins, M. Sundaram, and A. C. Gossard Phys Rev. B., vol. 44, p. 10909, 1991.

    Article  Google Scholar 

  53. D. Jena and U. K. Mishra, “Quantum and classical scattering times due to dislocations in an impure electron gas,” Phys. Rev. B, vol. 66, p. 241307(Rapids), 2002.

    Article  Google Scholar 

  54. . B. I. Halperin, “Possible States of a Three-Dimensional Electron Gas in a Strong Magnetic Field,” Jpn. J. Appl. Phys., vol. 26, p. (suppl.3), 1987.

    Google Scholar 

  55. R. Gaska, M. S. Shur, X. Hu, J. W. Yang, A. Tarakji, G. Simin, A. Khan, J. Deng, T. Werner, S. Rumyantsev, and N. Pala Appl. Phys. Lett., vol. 78, p. 769, 2001.

    Article  Google Scholar 

  56. M. A. Khan, A. R. Bhattarai, J. N. Kuznia, and D. T. Olson Appl. Phys. Lett., vol. 63, p. 1214, 1993.

    Article  Google Scholar 

  57. S. C. Binari, L. B. Rowland, W. Kruppa, G. Kelner, K. Doverspike, and D. K. GatskillElectron. Lett., vol. 30, p. 1248, 1994.

    Article  Google Scholar 

  58. J. C. Zolper, R. J. Shul, A. G. Baca, R. G. Wilson, S. J. Pearton, and R. A. Stall Appl. Phys. Lett., vol. 68, p. 2273, 1996.

    Article  Google Scholar 

  59. T. Egawa, K. Nakamura, H. Ishikawa, T. Jimbo, and M. UmenoJpn. J. Appl. Phys. Part 1, vol. 38, p. 2630, 1999.

    Article  Google Scholar 

  60. L. Zhang, L. F. Ester, A. G. Baca, R. J. Shul, P. C. Chang, C. G. Willinson, U. K. Mishra, S. P. DenBaars, and J. C. Zolper, “Epitaxially-grown GaN junction field effect transistors,” IEEE Trans. El. Dev., vol. 47, p. 507, 2000.

    Article  Google Scholar 

  61. S. Rajan, H. Xing, S. DenBaars, U. K. Mishra, and D. Jena, “AlGaN/GaN polFETs for microwave power applications,” Appl. Phys. Lett., vol. 84, p. 1591, 2004.

    Article  Google Scholar 

  62. Matulionis, A., “High-Field transport in III-V Nitride FETs - a Hot Phonon Bottleneck,” Hot Carriers in Semiconductors (Conference), Chicago, p. (In press), 2005.

    Google Scholar 

  63. K. Wang, J. Simon, N. Goel, and D. Jena, “Optical study of hot-electron transport in GaN: Signatures of the hot-phonon effect,” Appl. Phys. Lett., vol. 88, p. 022-103, 2006.

    Google Scholar 

  64. C. H. Oxley and M. J. Uren, “Measurement of Unity Gain Cutoff Frequency and Saturation Velocity of a GaN HEMT Transistor,” IEEE Trans. Electron. Dev., vol. 52, no. 2, p. 165, 2005.

    Article  Google Scholar 

  65. Liberis, J. Ramons, M. Kiprijanovic, O. Matulionis, A. Goel, N. Simon, J. Wang, K. Xing, H. Jena, D., “Hot-phonons in Si-doped GaN,” Appl. Phys. Lett., vol. 89, p. 202-117, 2006.

    Article  Google Scholar 

  66. E. Fatuzzo and W. J. Merz, Ferroelectricity. New York: John Wiley and Sons, Inc., 1967.

    Google Scholar 

  67. J. Smit and H. P. J. Wijn, Ferrite. New York: John Wiley and Sons, Inc., 1959.

    Google Scholar 

  68. E. Salje, Phase Transitions in Ferroelastic and Co-elastic Crystals. Cambridge: Cambridge Univeristy Press, 1990.

    Google Scholar 

  69. L. Landau and E. Lifshitz, Statistical Physics. Oxford: Pergamon Press, 1980.

    Google Scholar 

  70. R. Kretschmer and K. Binder, “Surface effects on phase transitions in ferroelectrics and dipole magnets,” Physical Review B, vol. 20, no. 3, pp. 1065-1075, 1979.

    Article  Google Scholar 

  71. B. Strukov and A. Levanyuk, Ferroelectric Phenomena in Crystals. Berlin: Spring-Verlag, 1998.

    MATH  Google Scholar 

  72. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, vol. 8. Butterworth-Heinemann: Elsevier, 2nd ed., 1984.

    Google Scholar 

  73. L. D. Landau and E. M. Lifshitz, Theory of Elasticity, vol. 7. Butterworth-Heinemann: Elsevier, 2nd ed., 1984.

    Google Scholar 

  74. N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, “Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films,” Physical Review Letters, vol. 80, no. 9, pp. 1988-1991, 1998.

    Article  Google Scholar 

  75. N. Sai, B. Meyer, and D. Vanderbilt, “Compositional inversion symmetry breaking in ferroelectric perovskites,” Physical Review Letters, vol. 84, pp. 5636-5639, 2000.

    Article  Google Scholar 

  76. N. Sai, K. M. Rabe, and D. Vanderbilt, “Theory of structural response to macroscopic electric fields in ferroelectric systems,” Physical Review B, vol. 66, pp. 104108-104125, 2002.

    Article  Google Scholar 

  77. J. B. Neaton and K. M. Rabe, “Thoery of polarization enhancement in epitaxial batio3/srtio3 superlattices,” Applied Physics Letters, vol. 82, no. 10, pp. 1586-1588, 2003.

    Article  Google Scholar 

  78. J. Mantese, N. Schubring, A. L. Micheli, M. Mohammed, R. Naik, and G. W. Auner, “Slater model applied to polarization graded ferroelectrics,” Applied Physics Letters, vol. 71, no. 14, pp. 2047-2049, 1997.

    Article  Google Scholar 

  79. J. Mantese, N. Schubring, A. L. Micheli, M. Thompson, R. Naik, G. W. Auner, I. B. Misirlioglu, and S. P. Alpay, “Stress induced polarization-graded ferroelectrics,” Applied Physics Letters, vol. 81, p. 1068, 2002.

    Article  Google Scholar 

  80. W. Fellberg, J. Mantese, N. Schubring, and A. L. Micheli, “Origin of the ”up”, ”down” hysteresis offsets observed from polarization-graded ferroelectric materials,” Applied Physics Letters, vol. 78, no. 4, pp. 524-526, 2001.

    Article  Google Scholar 

  81. A. L. Roytburd and J. Slutsker, “Thermodynamics of polydomain ferroelectric bilayers and graded multilayers,” Applied Physics Letters, vol. 89, no. 4, p. 042-907, 2006.

    Article  Google Scholar 

  82. R. Slowak, S. Hoffmann, R. Liedtke, and R. Waser, “Functional Graded High-K (Ba1− x Sr x )TiO3 Thin Films for Capacitor Structures with Low Temperature Coeffcient,” Integrated Ferroelectrics, vol. 24, p. 169, 1999.

    Article  Google Scholar 

  83. L. B. Freund, “Some elementary connections between curvature and mismatch strain in compositionally graded thin films,” Journal of the Mechanics and Physics of Solids, vol. 44, no. 5, pp. 723-736, 1996.

    Article  MathSciNet  Google Scholar 

  84. . “The average spontaneous polarization P S and the in-plane self-strain are approximately 0.68 Coul /m 2 and 1 percent for PT and 0.23 Coul /m 2 and 0.1 percent for BT.”

    Google Scholar 

  85. G. H. Haertling, “Rainbow ceramic-a new type of ultra-high-displacement actuator,” American Ceramic Society Bulletin, vol. 73, no. 1, p. 93, 1994.

    Google Scholar 

  86. . G. H. Haertling, “Method for making monolithic prestressed ceramic devices,” 1995.

    Google Scholar 

  87. W. D. Nothwang, M. W. Cole, and R. W. Schwartz, “Stressed-biased actuators: Fatigue and lifetime,” Integrated Ferroelectrics, vol. 71, pp. 249-255, 2005.

    Article  Google Scholar 

  88. R. W. Schwartz, L. E. Cross, and Q. M. Wang, “Estimation of the effective d(31) coefficients of the piezoelectric layer in rainbow actuators,” Journal of the American Ceramic Society, vol. 84, no. 11, pp. 2563-2569, 2001.

    Article  Google Scholar 

  89. K. M. Mossi, G. V. Selby, and R. G. Bryant, “Thin-layer composite unimorph ferroelectric driver and sensor properties,” Materials Letters, vol. 35, no. 1-2, pp. 39-49, 1998.

    Article  Google Scholar 

  90. K. M. Mossi, R. G. Bryant, and P. Mane, “Piezoelectric composites as bender actuators,” Integrated Ferroelectrics, vol. 71, pp. 221-232, 2005.

    Article  Google Scholar 

  91. Z.-G. Ban, S. P. Alpay, and J. Mantese, “Fundamentals of graded ferroic materials and devices,” Physical Review B, vol. 67, p. 184-104, 2003.

    Article  Google Scholar 

  92. A. Ohtomo and H. Y. Hwang, “A high-mobility electron gas at the laalo3/srtio3 heterointerface,” Nature, vol. 427, pp. 423-426, 2004.

    Article  Google Scholar 

  93. J. Mannhart and D. G. Schlom, “Semiconductor physics: The value of seeing nothing,” Nature, vol. 430, pp. 620-621, 2004.

    Article  Google Scholar 

  94. H. Y. Hwang, “Perovskites: Oxygen vacancies shine blue,” Nature Materials, vol. 4, pp. 803-804, 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jena, D., Alpay, S.P., Mantese, J.V. (2008). Functionally Graded Polar Heterostuctures: New Materials for Multifunctional Devices. In: Wood, C., Jena, D. (eds) Polarization Effects in Semiconductors. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68319-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68319-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-36831-3

  • Online ISBN: 978-0-387-68319-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics